1
|
Alyamni N, Abot JL, Zestos AG. Carbon microelectrodes for the measurement of neurotransmitters with fast-scan cyclic voltammetry: methodology and applications. Front Bioeng Biotechnol 2025; 13:1569508. [PMID: 40260016 PMCID: PMC12010108 DOI: 10.3389/fbioe.2025.1569508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Carbon microelectrodes (CMEs) have emerged as pivotal tools in the field of neurochemical sensing, enabling precise, real-time monitoring of neurotransmitters in both research and clinical contexts. The current review explores the design, fabrication, and application of CMEs, emphasizing recent advancements in material science and electrochemical techniques that enhance their sensitivity, selectivity, and biocompatibility. Innovations such as the incorporation of nanomaterials, including graphene and carbon nanotubes, and the adoption of advanced fabrication methods like three-dimensional (3D) printing and chemical vapor deposition, are discussed in detail. These developments have led to significant improvements in electrode performance, the reduction of biofouling and interferants, while enabling the detection of low concentrations of neurochemicals in complex biological systems. This review further highlights the potential of CMEs to address clinical challenges such as diagnosing and monitoring neurological disorders such as Parkinson's Disease and depression. By integrating advanced surface modifications, polymer coatings, and method development strategies, CMEs demonstrate high durability, reduced fouling, and enhanced specificity. Despite these advancements, challenges remain related to long-term in vivo stability, batch fabrication, and reproducibility, thus necessitating further research and optimization. This review highlights the transformative potential of CMEs in both research and therapeutic applications, providing a comprehensive overview of their current state and future directions. By addressing existing limitations and leveraging emerging technologies, CMEs have the potential to further enhance neurochemical sensing and contribute to breakthroughs in neuroscience and biomedical science.
Collapse
Affiliation(s)
- Nadiah Alyamni
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, United States
- Department of Chemistry, American University, Washington, DC, United States
| | - Jandro L. Abot
- Department of Mechanical Engineering, The Catholic University of America, Washington, DC, United States
| | | |
Collapse
|
2
|
Zimmermann J, Farooqi AR, van Rienen U. Electrical stimulation for cartilage tissue engineering - A critical review from an engineer's perspective. Heliyon 2024; 10:e38112. [PMID: 39416819 PMCID: PMC11481755 DOI: 10.1016/j.heliyon.2024.e38112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Cartilage has a limited intrinsic healing capacity. Hence, cartilage degradation and lesions pose a huge clinical challenge, particularly in an ageing society. Osteoarthritis impacts a significant number of the population and requires the development of repair and tissue engineering methods for hyaline articular cartilage. In this context, electrical stimulation has been investigated for more than 50 years already. Yet, no well-established clinical therapy to treat osteoarthritis by means of electrical stimulation exists. We argue that one reason is the lack of replicability of electrical stimulation devices from a technical perspective together with lacking hypotheses of the biophysical mechanism. Hence, first, the electrical stimulation studies reported in the context of cartilage tissue engineering with a special focus on technical details are summarized. Then, an experimental and numerical approach is discussed to make the electrical stimulation experiments replicable. Finally, biophysical hypotheses have been reviewed on the interaction of electric fields and cells that are relevant for cartilage tissue engineering. With that, the aim is to inspire future research to enable clinical electrical stimulation therapies to fight osteoarthritis.
Collapse
Affiliation(s)
- Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
| | - Abdul Razzaq Farooqi
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
- Department of Electronic Engineering, Faculty of Engineering, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, 18051 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
3
|
Iwasa SN, Liu X, Naguib HE, Kalia SK, Popovic MR, Morshead CM. Electrical Stimulation for Stem Cell-Based Neural Repair: Zapping the Field to Action. eNeuro 2024; 11:ENEURO.0183-24.2024. [PMID: 39256040 PMCID: PMC11391505 DOI: 10.1523/eneuro.0183-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024] Open
Affiliation(s)
- Stephanie N Iwasa
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
| | - Xilin Liu
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Hani E Naguib
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Suneil K Kalia
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Department of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario M5T 2S8, Canada
- Krembil Research Institute, Toronto, Ontario M5T 2S8, Canada
| | - Milos R Popovic
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Cindi M Morshead
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| |
Collapse
|
4
|
Chen T, Lau KSK, Hong SH, Shi HTH, Iwasa SN, Chen JXM, Li T, Morrison T, Kalia SK, Popovic MR, Morshead CM, Naguib HE. Cryogel-based neurostimulation electrodes to activate endogenous neural precursor cells. Acta Biomater 2023; 171:392-405. [PMID: 37683963 DOI: 10.1016/j.actbio.2023.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The delivery of electrical pulses to the brain via penetrating electrodes, known as brain stimulation, has been recognized as an effective clinical approach for treating neurological disorders. Resident brain neural precursor cells (NPCs) are electrosensitive cells that respond to electrical stimulation by expanding in number, migrating and differentiating which are important characteristics that support neural repair. Here, we report the design of a conductive cryogel brain stimulation electrode specifically developed for NPC activation. The cryogel electrode has a modulus switching mechanism permitting facile penetration and reducing the mechanical mismatch between brain tissue and the penetrating electrode. The cryogel demonstrated good in vivo biocompatibility and reduced the interfacial impedance to deliver the stimulating electric field with lower voltage under charge-balanced current controlled stimulation. An ex vivo assay reveals that electrical stimulation using the cryogel electrodes results in significant expansion in the size of NPC pool. Hence, the cryogel electrodes have the potential to be used for NPC activation to support endogenous neural repair. STATEMENT OF SIGNIFICANCE: The objective of this study is to develop a cryogel-based stimulation electrode as an alternative to traditional electrode materials to be used in regenerative medicine applications for enhancing neural regeneration in brain. The electrode offers benefits such as adaptive modulus for implantation, high charge storage and injection capacities, and modulus matching with brain tissue, allowing for stable delivery of electric field for long-term neuromodulation. The electrochemical properties of cryogel electrodes were characterized in living tissue with an ex vivo set-up, providing a deeper understanding of stimulation capacity in brain environments. The cryogel electrode is biocompatible and enables low voltage, current-controlled stimulation for effective activation of endogenous neural precursor cells, revealing their potential utility in neural stem cell-mediated brain repair.
Collapse
Affiliation(s)
- Tianhao Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kylie Sin Ki Lau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sung Hwa Hong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hao Tian Harvey Shi
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| | - Stephanie N Iwasa
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jia Xi Mary Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Terek Li
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Taylor Morrison
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada; Department of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Hani E Naguib
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
A novel ex vivo assay to define charge-balanced electrical stimulation parameters for neural precursor cell activation in vivo. Brain Res 2023; 1804:148263. [PMID: 36702184 DOI: 10.1016/j.brainres.2023.148263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
Endogenous neural stem cells and their progeny (together termed neural precursor cells (NPCs)) are promising candidates to facilitate neuroregeneration. Charge-balanced biphasic monopolar stimulation (BPMP) is a clinically relevant approach that can activate NPCs both in vitro and in vivo. Herein, we established a novel ex vivo stimulation system to optimize the efficacy of BPMP electric field (EF) application in activating endogenous NPCs. Using the ex vivo system, we discerned that cathodal amplitude of 200 μA resulted in the greatest NPC pool expansion and enhanced cathodal migration. Application of the same stimulation parameters in vivo resulted in the same NPC activation in the mouse brain. The design and implementation of the novel ex vivo model bridges the gap between in vitro and in vivo systems, enabling a moderate throughput stimulation system to explore and optimize EF parameters that can be applied to clinically relevant brain injury/disease models.
Collapse
|
6
|
Perkucin I, Lau KSK, Chen T, Iwasa SN, Naguib HE, Morshead CM. Facile Fabrication of Injectable Alginate and Poly(3,4-ethylenedioxythiophene)-Based Soft Electrodes toward the Goal of Neuro-Regenerative Applications. Adv Healthc Mater 2022; 11:e2201164. [PMID: 36177684 DOI: 10.1002/adhm.202201164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/12/2022] [Indexed: 01/28/2023]
Abstract
Resident brain neural precursor cells (NPCs) are electrosensitive cells that respond to electric field application by proliferating, differentiating, and undergoing rapid and directed cathodal migration. Harnessing NPC potential is a promising strategy to facilitate neural repair following injury or disease. The use of electric fields to activate NPCs is limited by current electrode designs which are typically made of conductive metals that are stiff and can lead to neuroinflammation following implantation, in part due to the mechanical mismatch between physiological conditions and material. Herein, the design of a novel, injectable biobased soft electrode with properties suitable for electrical stimulation in vivo is explored. The recent interest in using biologically derived polymers which are relatively abundant and afford economic feasibility have been built upon. Sodium alginate is utilized to form soft hydrogels, thereby addressing the issue of mechanical mismatch, and the conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), to generate an innovative new material. It is demonstrated that the optimized alginate PEDOT blend matches the modulus of the brain and is suitable for injection and is not cytotoxic to neural cells. Furthermore, in vivo studies demonstrate minimal activation of inflammatory cells upon implantation in the brain compared to classically used platinum-based electrodes.
Collapse
Affiliation(s)
- Ivana Perkucin
- Department of Chemical Engineering & Applied Sciences, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Kylie S K Lau
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Tianhao Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Stephanie N Iwasa
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.,CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Hani E Naguib
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.,Department of Materials Science Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada.,Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.,The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.,CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2C4, Canada.,Department of Surgery, Division of Anatomy, University of Toronto, Toronto, ON, M5T 1P5, Canada
| |
Collapse
|
7
|
Erofeev A, Antifeev I, Bolshakova A, Bezprozvanny I, Vlasova O. In Vivo Penetrating Microelectrodes for Brain Electrophysiology. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239085. [PMID: 36501805 PMCID: PMC9735502 DOI: 10.3390/s22239085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
In recent decades, microelectrodes have been widely used in neuroscience to understand the mechanisms behind brain functions, as well as the relationship between neural activity and behavior, perception and cognition. However, the recording of neuronal activity over a long period of time is limited for various reasons. In this review, we briefly consider the types of penetrating chronic microelectrodes, as well as the conductive and insulating materials for microelectrode manufacturing. Additionally, we consider the effects of penetrating microelectrode implantation on brain tissue. In conclusion, we review recent advances in the field of in vivo microelectrodes.
Collapse
Affiliation(s)
- Alexander Erofeev
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Correspondence: (A.E.); (O.V.)
| | - Ivan Antifeev
- Laboratory of Methods and Instruments for Genetic and Immunoassay Analysis, Institute for Analytical Instrumentation of the Russian Academy of Sciences, 198095 Saint Petersburg, Russia
| | - Anastasia Bolshakova
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga Vlasova
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Correspondence: (A.E.); (O.V.)
| |
Collapse
|
8
|
Cuenca-Ortolá I, Martínez-Rojas B, Moreno-Manzano V, García Castelló M, Monleón Pradas M, Martínez-Ramos C, Más Estellés J. A Strategy for Magnetic and Electric Stimulation to Enhance Proliferation and Differentiation of NPCs Seeded over PLA Electrospun Membranes. Biomedicines 2022; 10:2736. [PMID: 36359255 PMCID: PMC9687775 DOI: 10.3390/biomedicines10112736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 10/25/2022] [Indexed: 09/30/2023] Open
Abstract
Neural progenitor cells (NPCs) have been shown to serve as an efficient therapeutic strategy in different cell therapy approaches, including spinal cord injury treatment. Despite the reported beneficial effects of NPC transplantation, the low survival and differentiation rates constrain important limitations. Herein, a new methodology has been developed to overcome both limitations by applying a combination of wireless electrical and magnetic stimulation to NPCs seeded on aligned poly(lactic acid) nanofibrous scaffolds for in vitro cell conditioning prior transplantation. Two stimulation patterns were tested and compared, continuous (long stimulus applied once a day) and intermittent (short stimulus applied three times a day). The results show that applied continuous stimulation promotes NPC proliferation and preferential differentiation into oligodendrocytic and neuronal lineages. A neural-like phenotypic induction was observed when compared to unstimulated NPCs. In contrast, intermittent stimulation patterns did not affect NPC proliferation and differentiation to oligodendrocytes or astrocytes morphology with a detrimental effect on neuronal differentiation. This study provides a new approach of using a combination of electric and magnetic stimulation to induce proliferation and further neuronal differentiation, which would improve therapy outcomes in disorders such as spinal cord injury.
Collapse
Affiliation(s)
- Irene Cuenca-Ortolá
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
| | - Beatriz Martínez-Rojas
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Marcos García Castelló
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
- Unitat Predepartamental de Medicina, Universitat Jaume I, Avda/Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Jorge Más Estellés
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
9
|
Potel SR, Marceglia S, Meoni S, Kalia SK, Cury RG, Moro E. Advances in DBS Technology and Novel Applications: Focus on Movement Disorders. Curr Neurol Neurosci Rep 2022; 22:577-588. [PMID: 35838898 DOI: 10.1007/s11910-022-01221-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is an established treatment in several movement disorders, including Parkinson's disease, dystonia, tremor, and Tourette syndrome. In this review, we will review and discuss the most recent findings including but not limited to clinical evidence. RECENT FINDINGS New DBS technologies include novel hardware design (electrodes, cables, implanted pulse generators) enabling new stimulation patterns and adaptive DBS which delivers potential stimulation tailored to moment-to-moment changes in the patient's condition. Better understanding of movement disorders pathophysiology and functional anatomy has been pivotal for studying the effects of DBS on the mesencephalic locomotor region, the nucleus basalis of Meynert, the substantia nigra, and the spinal cord. Eventually, neurosurgical practice has improved with more accurate target visualization or combined targeting. A rising research domain emphasizes bridging neuromodulation and neuroprotection. Recent advances in DBS therapy bring more possibilities to effectively treat people with movement disorders. Future research would focus on improving adaptive DBS, leading more clinical trials on novel targets, and exploring neuromodulation effects on neuroprotection.
Collapse
Affiliation(s)
- Sina R Potel
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Sara Marceglia
- Dipartimento Di Ingegneria E Architettura, Università Degli Studi Di Trieste, Trieste, Italy
| | - Sara Meoni
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France
| | - Suneil K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Rubens G Cury
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Elena Moro
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France.
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France.
| |
Collapse
|
10
|
Influence of 40 Hz and 100 Hz Vibration on SH-SY5Y Cells Growth and Differentiation-A Preliminary Study. Molecules 2022; 27:molecules27103337. [PMID: 35630814 PMCID: PMC9143216 DOI: 10.3390/molecules27103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: A novel bioreactor platform of neuronal cell cultures using low-magnitude, low-frequency (LMLF) vibrational stimulation was designed to discover vibration influence and mimic the dynamic environment of the in vivo state. To better understand the impact of 40 Hz and 100 Hz vibration on cell differentiation, we join biotechnology and advanced medical technology to design the nano-vibration system. The influence of vibration on the development of nervous tissue on the selected cell line SH-SY5Y (experimental research model in Alzheimer’s and Parkinson’s) was investigated. (2) Methods: The vibration stimulation of cell differentiation and elongation of their neuritis were monitored. We measured how vibrations affect the morphology and differentiation of nerve cells in vitro. (3) Results: The highest average length of neurites was observed in response to the 40 Hz vibration on the collagen surface in the differentiating medium, but cells response did not increase with vibration frequency. Also, vibrations at a frequency of 40 Hz or 100 Hz did not affect the average density of neurites. 100 Hz vibration increased the neurites density significantly with time for cultures on collagen and non-collagen surfaces. The exposure of neuronal cells to 40 Hz and 100 Hz vibration enhanced cell differentiation. The 40 Hz vibration has the best impact on neuronal-like cell growth and differentiation. (4) Conclusions: The data demonstrated that exposure to neuronal cells to 40 Hz and 100 Hz vibration enhanced cell differentiation and proliferation. This positive impact of vibration can be used in tissue engineering and regenerative medicine. It is planned to optimize the processes and study its molecular mechanisms concerning carrying out the research.
Collapse
|
11
|
Zimmermann J, Budde K, Arbeiter N, Molina F, Storch A, Uhrmacher AM, van Rienen U. Using a Digital Twin of an Electrical Stimulation Device to Monitor and Control the Electrical Stimulation of Cells in vitro. Front Bioeng Biotechnol 2021; 9:765516. [PMID: 34957068 PMCID: PMC8693021 DOI: 10.3389/fbioe.2021.765516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Electrical stimulation for application in tissue engineering and regenerative medicine has received increasing attention in recent years. A variety of stimulation methods, waveforms and amplitudes have been studied. However, a clear choice of optimal stimulation parameters is still not available and is complicated by ambiguous reporting standards. In order to understand underlying cellular mechanisms affected by the electrical stimulation, the knowledge of the actual prevailing field strength or current density is required. Here, we present a comprehensive digital representation, a digital twin, of a basic electrical stimulation device for the electrical stimulation of cells in vitro. The effect of electrochemical processes at the electrode surface was experimentally characterised and integrated into a numerical model of the electrical stimulation. Uncertainty quantification techniques were used to identify the influence of model uncertainties on relevant observables. Different stimulation protocols were compared and it was assessed if the information contained in the monitored stimulation pulses could be related to the stimulation model. We found that our approach permits to model and simulate the recorded rectangular waveforms such that local electric field strengths become accessible. Moreover, we could predict stimulation voltages and currents reliably. This enabled us to define a controlled stimulation setting and to identify significant temperature changes of the cell culture in the monitored voltage data. Eventually, we give an outlook on how the presented methods can be applied in more complex situations such as the stimulation of hydrogels or tissue in vivo.
Collapse
Affiliation(s)
- Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Kai Budde
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Nils Arbeiter
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Francia Molina
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Adelinde M Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, Rostock, Germany.,Department Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| |
Collapse
|
12
|
Iorio-Morin C, Fomenko A, Kalia SK. Deep-Brain Stimulation for Essential Tremor and Other Tremor Syndromes: A Narrative Review of Current Targets and Clinical Outcomes. Brain Sci 2020; 10:E925. [PMID: 33271848 PMCID: PMC7761254 DOI: 10.3390/brainsci10120925] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Tremor is a prevalent symptom associated with multiple conditions, including essential tremor (ET), Parkinson's disease (PD), multiple sclerosis (MS), stroke and trauma. The surgical management of tremor evolved from stereotactic lesions to deep-brain stimulation (DBS), which allowed safe and reversible interference with specific neural networks. This paper reviews the current literature on DBS for tremor, starting with a detailed discussion of current tremor targets (ventral intermediate nucleus of the thalamus (Vim), prelemniscal radiations (Raprl), caudal zona incerta (Zi), thalamus (Vo) and subthalamic nucleus (STN)) and continuing with a discussion of results obtained when performing DBS in the various aforementioned tremor syndromes. Future directions for DBS research are then briefly discussed.
Collapse
Affiliation(s)
- Christian Iorio-Morin
- Christian Iorio-Morin, Division of Neurosurgery, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada; (A.F.); (S.K.K.)
| | - Anton Fomenko
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada; (A.F.); (S.K.K.)
| | - Suneil K. Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada; (A.F.); (S.K.K.)
| |
Collapse
|