1
|
Chen X, Jing S, Xue C, Guan X. Progress in the Application of Hydrogels in Intervertebral Disc Repair: A Comprehensive Review. Curr Pain Headache Rep 2024; 28:1333-1348. [PMID: 38985414 PMCID: PMC11666692 DOI: 10.1007/s11916-024-01296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE OF REVIEW Intervertebral disc degeneration (IVDD) is a common orthopaedic disease and an important cause of lower back pain, which seriously affects the work and life of patients and causes a large economic burden to society. The traditional treatment of IVDD mainly involves early pain relief and late surgical intervention, but it cannot reverse the pathological course of IVDD. Current studies suggest that IVDD is related to the imbalance between the anabolic and catabolic functions of the extracellular matrix (ECM). Anti-inflammatory drugs, bioactive substances, and stem cells have all been shown to improve ECM, but traditional injection methods face short half-life and leakage problems. RECENT FINDINGS The good biocompatibility and slow-release function of polymer hydrogels are being noticed and explored to combine with drugs or bioactive substances to treat IVDD. This paper introduces the pathophysiological mechanism of IVDD, and discusses the advantages, disadvantages and development prospects of hydrogels for the treatment of IVDD, so as to provide guidance for future breakthroughs in the treatment of IVDD.
Collapse
Affiliation(s)
- Xin Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaoze Jing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Chenhui Xue
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaoming Guan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
2
|
Li X, Wang P, Wang Q, Wang D, Wang S, Wang Y, Zhu W, Wang W, Kong C, Lu S, Chen X. Bone morphogenetic proteins, DNA methylation, and gut microbiota interaction in lumbar disc degeneration: A multi-omics Mendelian randomization study. JOR Spine 2024; 7:e70027. [PMID: 39713086 PMCID: PMC11659950 DOI: 10.1002/jsp2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/27/2024] [Accepted: 11/17/2024] [Indexed: 12/24/2024] Open
Abstract
Background Lumbar disc degeneration (LDD) is a ubiquitous finding in low back pain. Many different etiology factors may explain the LDD process, such as bone morphogenetic proteins (BMPs), DNA methylation, and gut microbiota. Until recently the mechanisms underlying the LDD process have been elusive. Methods BMP-related genes were extracted from the GeneCards database. The LDD transcriptome dataset was obtained from the Gene Expression Omnibus. We used linear regression and meta-analysis to screen and integrate the differentially expressed genes associated with BMPs in LDD. Genome-wide association studies (GWASs) of LDD were from FinnGen and UKBB. The expression quantitative trait loci (eQTLs) and DNA methylation quantitative trait loci from the blood were identified via the summary data-based Mendelian randomization (SMR) method, and the possible blood BMP genes and their regulatory elements associated with the risk of LDD were prioritized. Intestinal eQTLs and fecal microbial QTLs (mbQTLs) were integrated, and the potential interactions between BMP gene expression in host intestinal tissue and the gut microbiota were revealed through SMR and colocalization analysis. The GWAS catalog (GCST90246169) was used to validate SMR results. Results A meta-analysis of five datasets revealed that 113 BMP genes were differentially expressed between LDD and control tissues. Seven genes were selected as candidate pathogenic genes of LDD via the three-step SMR method: CREB1, BMP6, PTCH1, GLI1, MEG3, GALNS, and NF1. SMR analysis also revealed five possible gut genes: HFE, MET, MAPK3, NPC1, and GDF5. The correlation between the gut microbiota and BMP gene expression in intestinal tissues was verified by eQTL-mbQTL colocalization. Conclusion This multi-omics study revealed that the BMP genes associated with LDD are regulated by DNA methylation. There are genetic differences between gut gene expression and the gut microbiota. These findings provide evidence for new therapeutic targets in the future.
Collapse
Affiliation(s)
- Xiang‐Yu Li
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Peng‐Yun Wang
- Department of OrthopedicsZibo Central HospitalZiboShandongChina
| | - Qi‐Jun Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Dong‐Fan Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Shuai‐Kang Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Yu Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Wei‐Guo Zhu
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Wei Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Chao Kong
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Shi‐Bao Lu
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Xiao‐Long Chen
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| |
Collapse
|
3
|
Kim J, Bae K, Seo JH. Regenerative therapy in geriatric patients with low back pain. Anesth Pain Med (Seoul) 2024; 19:185-193. [PMID: 39118332 PMCID: PMC11317314 DOI: 10.17085/apm.24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Low back pain (LBP) is a prevalent and debilitating condition, particularly among older adults, with degenerative spinal disease being a major contributor. Regenerative therapy, which aims to repair and regenerate damaged spinal structures, has shown promise in providing long-term pain relief and functional improvement. This review focuses on the application and efficacy of regenerative therapies such as mesenchymal stem cells, platelet-rich plasma, and atelocollagen in older patients with LBP. Despite the potential benefits, there is a notable scarcity of studies specifically targeting the older population, and those available often have small sample sizes and limited age-related analyses. Our findings underscore the need for more comprehensive and well-designed clinical trials to evaluate the effectiveness of these therapies in older patients. Future research should prioritize larger age-specific studies to establish regenerative therapy as a viable and effective treatment option for LBP in the aging population.
Collapse
Affiliation(s)
- Jeongsoo Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kunjin Bae
- Department of Anesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Jeong Hwa Seo
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
de Oliveira CAA, Oliveira BS, Theodoro R, Wang J, Santos GS, Rodrigues BL, Rodrigues IJ, Jorge DDMF, Jeyaraman M, Everts PA, Navani A, Lana JF. Orthobiologic Management Options for Degenerative Disc Disease. Bioengineering (Basel) 2024; 11:591. [PMID: 38927827 PMCID: PMC11200769 DOI: 10.3390/bioengineering11060591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Degenerative disc disease (DDD) is a pervasive condition that limits quality of life and burdens economies worldwide. Conventional pharmacological treatments primarily aimed at slowing the progression of degeneration have demonstrated limited long-term efficacy and often do not address the underlying causes of the disease. On the other hand, orthobiologics are regenerative agents derived from the patient's own tissue and represent a promising emerging therapy for degenerative disc disease. This review comprehensively outlines the pathophysiology of DDD, highlighting the inadequacies of existing pharmacological therapies and detailing the potential of orthobiologic approaches. It explores advanced tools such as platelet-rich plasma and mesenchymal stem cells, providing a historical overview of their development within regenerative medicine, from foundational in vitro studies to preclinical animal models. Moreover, the manuscript delves into clinical trials that assess the effectiveness of these therapies in managing DDD. While the current clinical evidence is promising, it remains insufficient for routine clinical adoption due to limitations in study designs. The review emphasizes the need for further research to optimize these therapies for consistent and effective clinical outcomes, potentially revolutionizing the management of DDD and offering renewed hope for patients.
Collapse
Affiliation(s)
| | - Bernardo Scaldini Oliveira
- Orthopedics, ABCOliveira Medical Clinic, São Paulo 03310-000, SP, Brazil; (C.A.A.d.O.); (B.S.O.); (R.T.)
| | - Rafael Theodoro
- Orthopedics, ABCOliveira Medical Clinic, São Paulo 03310-000, SP, Brazil; (C.A.A.d.O.); (B.S.O.); (R.T.)
| | - Joshua Wang
- Learning and Teaching Unit, Queensland University of Technology, Brisbane, QLD 4059, Australia;
| | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (B.L.R.); (I.J.R.); (D.d.M.F.J.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (P.A.E.); (A.N.)
| | - Bruno Lima Rodrigues
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (B.L.R.); (I.J.R.); (D.d.M.F.J.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (P.A.E.); (A.N.)
| | - Izair Jefthé Rodrigues
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (B.L.R.); (I.J.R.); (D.d.M.F.J.); (J.F.L.)
| | - Daniel de Moraes Ferreira Jorge
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (B.L.R.); (I.J.R.); (D.d.M.F.J.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (P.A.E.); (A.N.)
| | - Madhan Jeyaraman
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (P.A.E.); (A.N.)
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
| | - Peter Albert Everts
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (P.A.E.); (A.N.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
| | - Annu Navani
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (P.A.E.); (A.N.)
- Medical Director, Le Reve, San Jose, CA 95124, USA
- Chief Medical Officer, Boomerang Healthcare, Walnut Creek, CA 94598, USA
| | - José Fábio Lana
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (B.L.R.); (I.J.R.); (D.d.M.F.J.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (P.A.E.); (A.N.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13918-110, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
| |
Collapse
|
5
|
Fainor M, Orozco BS, Muir VG, Mahindroo S, Gupta S, Mauck RL, Burdick JA, Smith HE, Gullbrand SE. Mechanical crosstalk between the intervertebral disc, facet joints, and vertebral endplate following acute disc injury in a rabbit model. JOR Spine 2023; 6:e1287. [PMID: 38156057 PMCID: PMC10751980 DOI: 10.1002/jsp2.1287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 12/30/2023] Open
Abstract
Background Vertebral endplate sclerosis and facet osteoarthritis have been documented in animals and humans. However, it is unclear how these adjacent pathologies engage in crosstalk with the intervertebral disc. This study sought to elucidate this crosstalk by assessing each compartment individually in response to acute disc injury. Methods Eleven New Zealand White rabbits underwent annular disc puncture using a 16G or 21G needle. At 4 and 10 weeks, individual compartments of the motion segment were analyzed. Discs underwent T 1 relaxation mapping with MRI contrast agent gadodiamide as well T 2 mapping. Both discs and facets underwent mechanical testing via vertebra-disc-vertebra tension-compression creep testing and indentation testing, respectively. Endplate bone density was quantified via μCT. Discs and facets were sectioned and stained for histology scoring. Results Intervertebral discs became more degenerative with increasing needle diameter and time post-puncture. Bone density also increased in endplates adjacent to both 21G and 16G punctured discs leading to reduced gadodiamide transport at 10 weeks. The facet joints, however, did not follow this same trend. Facets adjacent to 16G punctured discs were less degenerative than facets adjacent to 21G punctured discs at 10 weeks. 16G facets were more degenerative at 4 weeks than at 10, suggesting the cartilage had recovered. The formation of severe disc osteophytes in 16G punctured discs between 4 and 10 weeks likely offloaded the facet cartilage, leading to the recovery observed. Conclusions Overall, this study supports that degeneration spans the whole spinal motion segment following disc injury. Vertebral endplate thickening occurred in response to disc injury, which limited the diffusion of small molecules into the disc. This work also suggests that altered disc mechanics can induce facet degeneration, and that extreme bony remodeling adjacent to the disc may promote facet cartilage recovery through offloading of the articular cartilage.
Collapse
Affiliation(s)
- Matthew Fainor
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Brianna S. Orozco
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Victoria G. Muir
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sonal Mahindroo
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
- Department of BiologySt. Bonaventure UniversitySt. BonaventureNew YorkUSA
| | - Sachin Gupta
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Robert L. Mauck
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jason A. Burdick
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
| | - Harvey E. Smith
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Sarah E. Gullbrand
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Wang F, Cheung CW, Wong SSC. Regenerative medicine for the treatment of chronic low back pain: a narrative review. J Int Med Res 2023; 51:3000605231155777. [PMID: 36802994 PMCID: PMC9941606 DOI: 10.1177/03000605231155777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Low back pain (LBP) is a common and important clinical problem. In addition to pain, patients are also affected by personal, social, and economic burdens. Intervertebral disc (IVD) degeneration is a common cause of LBP, further increasing the patient's morbidity and medical costs. The limitations of current treatment strategies for long-term pain relief mean that increasing attention has been paid to regenerative medicine. We carried out a narrative review to explore the roles of four types of regenerative medicine for treating LBP: marrow-derived stem cells, growth factors, platelet-rich plasma, and prolotherapy. Marrow-derived stem cells are regarded as an ideal cell source for IVD regeneration. Growth factors may stimulate the synthesis of extracellular matrix and attenuate or reverse the degenerative process in IVD, while platelet-rich plasma, which contains multiple growth factors, is thought to be a promising alternative therapy for IVD degeneration. Prolotherapy can initiate the body's inflammatory healing response to repair injured joints and connective tissues. This review summarizes the mechanisms, in vitro and in vivo studies, and clinical applications of these four types of regenerative medicine in patients with LBP.
Collapse
Affiliation(s)
| | | | - Stanley Sau Ching Wong
- Stanley Sau Ching Wong, Room 424, Block K, Queen Mary Hospital, 102 Pok Fu Lam Road, Hong Kong 852, China.
| |
Collapse
|
7
|
Du J, Garcia JP, Bach FC, Tellegen AR, Grad S, Li Z, Castelein RM, Meij BP, Tryfonidou MA, Creemers LB. Intradiscal injection of human recombinant BMP-4 does not reverse intervertebral disc degeneration induced by nuclectomy in sheep. J Orthop Translat 2022; 37:23-36. [PMID: 36196149 PMCID: PMC9513727 DOI: 10.1016/j.jot.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Background Methods Results Conclusion The Translational Potential of This Article
Collapse
|
8
|
Cunningham ME, Kelly NH, Rawlins BA, Boachie-Adjei O, van der Meulen MCH, Hidaka C. Lumbar spine intervertebral disc gene delivery of BMPs induces anterior spine fusion in lewis rats. Sci Rep 2022; 12:16847. [PMID: 36207369 PMCID: PMC9547004 DOI: 10.1038/s41598-022-21208-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Minimally invasive techniques and biological autograft alternatives such as the bone morphogenetic proteins (BMPs) can reduce morbidity associated with spinal fusions. This study was a proof-of-concept for gene-therapy-mediated anterior spine fusion that could be adapted to percutaneous technique for clinical use. Isogeneic bone marrow stromal cells genetically programmed to express b-galactosidase (LACZ, a marker gene), BMP2, BMP7, a mixture of BMP2 and BMP7 infected cells (homodimers, HM), or BMP2/7 heterodimers (HT) were implanted into the discs between lumbar vertebrae 4 and 5 (L4/5) and L5/6 of male Lewis rats. Spine stiffening was monitored at 4, 8 and 12 weeks using noninvasive-induced angular displacement (NIAD) testing. At 12 weeks isolated spines were assessed for fusion and bone formation by palpation, biomechanical testing [four-point bending stiffness, moment to failure in extension, and in vitro angular displacement (IVAD)], faxitron x-rays, microCT, and histology. Progressive loss of NIAD occurred in only the HT group (p < 0.001), and biomechanical tests correlated with the NIAD results. Significant fusion occurred only in the HT group (94% of animals with one or both levels) as assessed by palpation (p < 0.001), which predicted HT bone production assessed by faxitron (p ≤ 0.001) or microCT (p < 0.023). Intervertebral bridging bone was consistently observed only in HT-treated specimens. Induced bone was located anterior and lateral to the disc space, with no bone formation noted within the disc. Percutaneous anterior spine fusions may be possible clinically, but induction of bone inside the disc space remains a challenge.
Collapse
Affiliation(s)
- Matthew E Cunningham
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA. .,Weill Cornell Medical College, 1300 York Avenue, Lc501, New York, NY, 10065, USA. .,Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.
| | - Natalie H Kelly
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA
| | - Bernard A Rawlins
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA.,Weill Cornell Medical College, 1300 York Avenue, Lc501, New York, NY, 10065, USA.,Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Oheneba Boachie-Adjei
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA.,Weill Cornell Medical College, 1300 York Avenue, Lc501, New York, NY, 10065, USA
| | - Marjolein C H van der Meulen
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA.,Meinig School of Biomedical Engineering and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Chisa Hidaka
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA
| |
Collapse
|
9
|
Intradiscal Therapies for Lumbar Degenerative Disk Disease. J Am Acad Orthop Surg 2022; 30:e1084-e1094. [PMID: 35984081 DOI: 10.5435/jaaos-d-21-01155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Discogenic low back pain is a common musculoskeletal complaint in patients presenting to orthopaedic surgeons. In addition to surgical options, there are several nonsurgical intradiscal treatments that have gained interest, ranging from biologic, nonbiologic, cell-based, and molecular therapies. However, there is limited evidence for many of these techniques, and some are still in the clinical trial stage. We describe a broad overview of these intradiscal therapies, the mechanism of action, and the evidence behind them.
Collapse
|
10
|
Tamagawa S, Sakai D, Nojiri H, Sato M, Ishijima M, Watanabe M. Imaging Evaluation of Intervertebral Disc Degeneration and Painful Discs-Advances and Challenges in Quantitative MRI. Diagnostics (Basel) 2022; 12:707. [PMID: 35328260 PMCID: PMC8946895 DOI: 10.3390/diagnostics12030707] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 01/07/2023] Open
Abstract
In recent years, various quantitative and functional magnetic resonance imaging (MRI) sequences have been developed and used in clinical practice for the diagnosis of patients with low back pain (LBP). Until now, T2-weighted imaging (T2WI), a visual qualitative evaluation method, has been used to diagnose intervertebral disc (IVD) degeneration. However, this method has limitations in terms of reproducibility and inter-observer agreement. Moreover, T2WI observations do not directly relate with LBP. Therefore, new sequences such as T2 mapping, T1ρ mapping, and MR spectroscopy have been developed as alternative quantitative evaluation methods. These new quantitative MRIs can evaluate the anatomical and physiological changes of IVD degeneration in more detail than conventional T2WI. However, the values obtained from these quantitative MRIs still do not directly correlate with LBP, and there is a need for more widespread use of techniques that are more specific to clinical symptoms such as pain. In this paper, we review the state-of-the-art methodologies and future challenges of quantitative MRI as an imaging diagnostic tool for IVD degeneration and painful discs.
Collapse
Affiliation(s)
- Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; (S.T.); (H.N.); (M.I.)
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (M.S.); (M.W.)
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Hidetoshi Nojiri
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; (S.T.); (H.N.); (M.I.)
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; (S.T.); (H.N.); (M.I.)
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| |
Collapse
|
11
|
Malli SE, Kumbhkarn P, Dewle A, Srivastava A. Evaluation of Tissue Engineering Approaches for Intervertebral Disc Regeneration in Relevant Animal Models. ACS APPLIED BIO MATERIALS 2021; 4:7721-7737. [PMID: 35006757 DOI: 10.1021/acsabm.1c00500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Translation of tissue engineering strategies for the regeneration of intervertebral disc (IVD) requires a strong understanding of pathophysiology through the relevant animal model. There is no relevant animal model due to differences in disc anatomy, cellular composition, extracellular matrix components, disc physiology, and mechanical strength from humans. However, available animal models if used correctly could provide clinically relevant information for the translation into humans. In this review, we have investigated different types of strategies for the development of clinically relevant animal models to study biomaterials, cells, biomolecular or their combination in developing tissue engineering-based treatment strategies. Tissue engineering strategies that utilize various animal models for IVD regeneration are summarized and outcomes have been discussed. The understanding of animal models for the validation of regenerative approaches is employed to understand and treat the pathophysiology of degenerative disc disease (DDD) before proceeding for human trials. These animal models play an important role in building a therapeutic regime for IVD tissue regeneration, which can serve as a platform for clinical applications.
Collapse
Affiliation(s)
- Sweety Evangeli Malli
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Pranav Kumbhkarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Ankush Dewle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| |
Collapse
|
12
|
Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther 2021; 6:122. [PMID: 33737507 PMCID: PMC7973744 DOI: 10.1038/s41392-021-00512-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Biomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.
Collapse
Affiliation(s)
- Kieran Joyce
- School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Georgina Targa Fabra
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Yagmur Bozkurt
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
13
|
White KA, Cali VJ, Olabisi RM. Micropatterning biomineralization with immobilized mother of pearl proteins. Sci Rep 2021; 11:2141. [PMID: 33495508 PMCID: PMC7835238 DOI: 10.1038/s41598-021-81534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 11/09/2022] Open
Abstract
In response to the drawbacks of autograft donor-site morbidity and bone morphogenetic protein type 2 (BMP2) carcinogenesis and ectopic bone formation, there has been an increased research focus towards developing alternatives capable of achieving spatial control over bone formation. Here we show for the first time both osteogenic differentiation and mineralization (from solution or mediated by cells) occurring within predetermined microscopic patterns. Our results revealed that both PEGylated BMP2 and nacre proteins induced stem cell osteodifferentiation in microscopic patterns when these proteins were covalently bonded in patterns onto polyethylene glycol diacrylate (PEGDA) hydrogel substrates; however, only nacre proteins induced mineralization localized to the micropatterns. These findings have broad implications on the design and development of orthopedic biomaterials and drug delivery.
Collapse
Affiliation(s)
- Kristopher A White
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
| | - Vincent J Cali
- Department of Anatomy and Physiology, Queens College, City University of New York, Bayside, NY, USA
| | - Ronke M Olabisi
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
14
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
15
|
Kim S, Lee M. Rational design of hydrogels to enhance osteogenic potential. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:9508-9530. [PMID: 33551566 PMCID: PMC7857485 DOI: 10.1021/acs.chemmater.0c03018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bone tissue engineering (BTE) encompasses the field of biomaterials, cells, and bioactive molecules to successfully guide the growth and repair of bone tissue. Current BTE strategies rely on delivering osteogenic molecules or cells via scaffolding materials. However, growth factor- and stem cell-based treatments have several limitations, such as source restriction, low stability, difficulties in predicting long-term efficacy, and high costs, among others. These issues have promoted the development of material-based therapy with properties of accessibility, high stability, tunable efficacy, and low-cost production. Hydrogels are widely used in BTE applications because of their unique hydrophilic nature and tunable physicochemical properties to mimic the native bone environment. However, current hydrogel materials are not ideal candidates due to minimal osteogenic capability on their own. Therefore, recent studies of BTE hydrogels attempt to counterbalance these issues by modifying their biophysical properties. In this article, we review recent progress in the design of hydrogels to instruct osteogenic potential, and present strategies developed to precisely control its bone healing properties.
Collapse
Affiliation(s)
- Soyon Kim
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
- Department of Bioengineering, University of California, Los Angeles, USA
| |
Collapse
|
16
|
Mern DS, Walsen T, Beierfuß A, Thomé C. Animal models of regenerative medicine for biological treatment approaches of degenerative disc diseases. Exp Biol Med (Maywood) 2020; 246:483-512. [PMID: 33175609 DOI: 10.1177/1535370220969123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Degenerative disc disease (DDD) is a painful, chronic and progressive disease, which is characterized by inflammation, structural and biological deterioration of the intervertebral disc (IVD) tissues. DDD is specified as cell-, age-, and genetic-dependent degenerative process that can be accelerated by environmental factors. It is one of the major causes of chronic back pain and disability affecting millions of people globally. Current treatment options, such as physical rehabilitation, pain management, and surgical intervention, can provide only temporary pain relief. Different animal models have been used to study the process of IVD degeneration and develop therapeutic options that may restore the structure and function of degenerative discs. Several research works have depicted considerable progress in understanding the biological basis of disc degeneration and the therapeutic potentials of cell transplantation, gene therapy, applications of supporting biomaterials and bioactive factors, or a combination thereof. Since animal models play increasingly significant roles in treatment approaches of DDD, we conducted an electronic database search on Medline through June 2020 to identify, compare, and discuss publications regarding biological therapeutic approaches of DDD that based on intradiscal treatment strategies. We provide an up-to-date overview of biological treatment strategies in animal models including mouse, rat, rabbit, porcine, bovine, ovine, caprine, canine, and primate models. Although no animal model could profoundly reproduce the clinical conditions in humans; animal models have played important roles in specifying our knowledge about the pathophysiology of DDD. They are crucial for developing new therapy approaches for clinical applications.
Collapse
Affiliation(s)
| | - Tanja Walsen
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - Anja Beierfuß
- Laboratory Animal Facility, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
17
|
Tryfonidou MA, de Vries G, Hennink WE, Creemers LB. "Old Drugs, New Tricks" - Local controlled drug release systems for treatment of degenerative joint disease. Adv Drug Deliv Rev 2020; 160:170-185. [PMID: 33122086 DOI: 10.1016/j.addr.2020.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) and chronic low back pain (CLBP) caused by intervertebral disc (IVD) degeneration are joint diseases that have become major causes for loss of quality of life worldwide. Despite the unmet need, effective treatments other than invasive, and often ineffective, surgery are lacking. Systemic administration of drugs entails suboptimal local drug exposure in the articular joint and IVD. This review provides an overview of the potency of biomaterial-based drug delivery systems as novel treatment modality, with a focus on the biological effects of drug release systems that have reached translation at the level of in vivo models and relevant ex vivo models. These studies have shown encouraging results of biomaterial-based local delivery of several types of drugs, mostly inhibitors of inflammatory cytokines or other degenerative factors. Prevention of inflammation and degeneration and pain relief was achieved, although mainly in small animal models, with interventions applied at an early disease stage. Less convincing data were obtained with the delivery of regenerative factors. Multidisciplinary efforts towards tackling the discord between in vitro and in vivo release, combined with adaptations in the regulatory landscape may be needed to enhance safe and expeditious introduction of more and more effective controlled release-based treatments with the OA and CLBP patients.
Collapse
|
18
|
Drug delivery in intervertebral disc degeneration and osteoarthritis: Selecting the optimal platform for the delivery of disease-modifying agents. J Control Release 2020; 328:985-999. [PMID: 32860929 DOI: 10.1016/j.jconrel.2020.08.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
Osteoarthritis (OA) and intervertebral disc degeneration (IVDD) as major cause of chronic low back pain represent the most common degenerative joint pathologies and are leading causes of pain and disability in adults. Articular cartilage (AC) and intervertebral discs are cartilaginous tissues with a similar biochemical composition and pathophysiological aspects of degeneration. Although treatments directed at reversing these conditions are yet to be developed, many promising disease-modifying drug candidates are currently under investigation. Given the localized nature of these chronic diseases, drug delivery systems have the potential to enhance therapeutic outcomes by providing controlled and targeted release of bioactives, minimizing the number of injections needed and increasing drug concentration in the affected areas. This review provides a comprehensive overview of the currently most promising disease-modifying drugs as well as potential drug delivery systems for OA and IVDD therapy.
Collapse
|
19
|
Tang N, Dong Y, Liu J, Zhao H. Silencing of Long Non-coding RNA NEAT1 Upregulates miR-195a to Attenuate Intervertebral Disk Degeneration via the BAX/BAK Pathway. Front Mol Biosci 2020; 7:147. [PMID: 32850952 PMCID: PMC7433405 DOI: 10.3389/fmolb.2020.00147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background/Aims An increasing body of evidence has demonstrated that long non-coding RNAs (lncRNAs) play a vital regulatory role in intervertebral disk degeneration (IVDD). Nucleus enriched abundant transcript 1 (NEAT1), a novel cancer-related lncRNA, is associated with many malignancies, including ovarian cancer, and esophageal squamous cell carcinoma. Nevertheless, the role of NEAT1 in the progression of IVDD remains to be studied. Here, we explored the effect of NEAT1 on the progression of IVDD and the mechanisms involved. Methods An IVDD model was constructed in SD rats in vivo, and degeneration was induced by advanced glycation end product (AGE) in human nucleus pulposus cells (HNPC) in vitro. Quantitative real-time PCR was performed to detect the relative NEAT1 and miR-195a expressions and further confirmed the relationship between NEAT1 and miR-195a. Cell apoptosis was evaluated by TUNEL assay. The related mechanisms were explored by Western blot assay. Results The relative NEAT1 expression was significantly upregulated in the IVDD rat model and the denatured HNPC. Silencing of NEAT1 expression in HNPC significantly promoted the Collagen II and TIMP-1 expression induced by AGE while greatly suppressing the expressions of MMP-3 and cleaved caspase-3. Besides, downregulation of NEAT1 obviously reversed the AGE-induced apoptosis in HNPC. More interestingly, these effects of NEAT1 knockout on HNPC were largely reversed by silencing of miR-195a or overexpression of BAX under the AGE treatment. Mechanically, the direct combination of NEAT1 with miR-195a resulted in upregulation of MMP-3, cleaved caspase-3, BAX, and BAK, as well as downregulation of Collagen II and TIMP-1, which are associated with EMT and apoptosis. We also demonstrated similar results in the in vivo experiments. Conclusion NEAT1 played its role in IVDD progression via partly by mediating the miR-195 expression and might be used as a potential target for IVDD therapy.
Collapse
Affiliation(s)
- Ning Tang
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yulei Dong
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaming Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Zhao
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Shi K, Huang Y, Huang L, Wang J, Wang Y, Feng G, Liu L, Song Y. [Research progress of hydrogel used for regeneration of nucleus pulposus in intervertebral disc degeneration]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:275-284. [PMID: 32174070 DOI: 10.7507/1002-1892.201907092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To summarize the research progress of hydrogels for the regeneration and repair of degenerative intervertebral disc and to investigate the potential of hydrogels in clinical application. Methods The related literature about the role of hydrogels in intervertebral disc degeneration especially for nucleus pulposus was reviewed and analyzed. Results Hydrogels share similar properties with nucleus pulposus, and it plays an important role in the regeneration and repair of degenerative intervertebral disc, which can be mainly applied in nucleus pulposus prosthesis, hydrogel-based cell therapy, non-cellular therapy, and tissue engineering repair. Conclusion Hydrogels are widely used in the regeneration and repair of intervertebral disc, which provides a potential treatment for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Kun Shi
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yong Huang
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Leizhen Huang
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jingcheng Wang
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yuhan Wang
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ganjun Feng
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Limin Liu
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yueming Song
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
21
|
Thakar H, Sebastian SM, Mandal S, Pople A, Agarwal G, Srivastava A. Biomolecule-Conjugated Macroporous Hydrogels for Biomedical Applications. ACS Biomater Sci Eng 2019; 5:6320-6341. [DOI: 10.1021/acsbiomaterials.9b00778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Lolli A, Sivasubramaniyan K, Vainieri ML, Oieni J, Kops N, Yayon A, van Osch GJVM. Hydrogel-based delivery of antimiR-221 enhances cartilage regeneration by endogenous cells. J Control Release 2019; 309:220-230. [PMID: 31369767 DOI: 10.1016/j.jconrel.2019.07.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/15/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023]
Abstract
Articular cartilage is frequently injured by trauma or osteoarthritis, with limited and inadequate treatment options. We investigated a new strategy based on hydrogel-mediated delivery of a locked nucleic acid microRNA inhibitor targeting miR-221 (antimiR-221) to guide in situ cartilage repair by endogenous cells. First, we showed that transfection of antimiR-221 into human bone marrow-derived mesenchymal stromal cells (hMSCs) blocked miR-221 expression and enhanced chondrogenesis in vitro. Next, we loaded a fibrin/hyaluronan (FB/HA) hydrogel with antimiR-221 in combination or not with lipofectamine carrier. FB/HA strongly retained functional antimiR-221 over 14 days of in vitro culture, and provided a supportive environment for cell transfection, as validated by flow cytometry and qRT-PCR analysis. Seeding of hMSCs on the surface of antimiR-221 loaded FB/HA led to invasion of the hydrogel and miR-221 knockdown in situ within 7 days. Overall, the use of lipofectamine enhanced the potency of the system, with increased antimiR-221 retention and miR-221 silencing in infiltrating cells. Finally, FB/HA hydrogels were used to fill defects in osteochondral biopsies that were implanted subcutaneously in mice. FB/HA loaded with antimiR-221/lipofectamine significantly enhanced cartilage repair by endogenous cells, demonstrating the feasibility of our approach and the need to achieve highly effective in situ transfection. Our study provides new evidence on the treatment of focal cartilage injuries using controlled biomaterial-mediated delivery of antimicroRNA for in situ guided regeneration.
Collapse
Affiliation(s)
- Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | - Maria L Vainieri
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; AO Research Institute, Davos, Switzerland
| | - Jacopo Oieni
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nicole Kops
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Avner Yayon
- ProCore Ltd., Weizmann Science Park, Nes Ziona, Israel
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
23
|
Ying J, Han Z, Zeng Y, Du Y, Pei S, Su L, Ruan D, Chen C. Evaluation of intervertebral disc regeneration with injection of mesenchymal stem cells encapsulated in PEGDA-microcryogel delivery system using quantitative T2 mapping: a study in canines. Am J Transl Res 2019; 11:2028-2041. [PMID: 31105815 PMCID: PMC6511749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Intervertebral disc degeneration (IDD), the primary cause of low back pain, is still a great challenge to spinal surgeons and clinicians. T2 mapping, a biochemical magnetic resonance imaging (MRI) technique to calculate relaxation time, has the potential to offer a quantitative assessment of IDD. The aim of the study was to evaluate the regenerative effects of adipose-derived mesenchymal stem cells (MSCs) encapsulated in PEGDA-microcryogels (PMs) reinforced alginate hydrogel (AH) on the degenerative intervertebral disc (IVD) in a canine model using T2 mapping. Four degeneration-induced IVDs (L3-L4 to L6-L7) of 12 adult beagle dogs were injected with phosphate-buffered saline (PBS), MSCs, AH-PMs, and MSCs-laden AH-PMs, respectively. The intact IVD L7-S1 served as the normal control. IVD height change on plain radiograph, Pfirrmann grade and T2 relaxation time on MRI, histological change, and extracellular matrix (ECM)-associated proteins were evaluated during the 24-week follow-up period. Injection of MSCs-laden AH-PMs had the most satisfactory effects, having less decrease of IVD height, lower Pfirrmann grade, milder histological change, and longer T2 relaxation time (P < 0.05). T2 relaxation time was positively correlated with ECM content (proteoglycan: r = 0.85, P < 0.001; collagen II: r = 0.79, P < 0.001) and IVD height (r = 0.81, P < 0.001), but negatively correlated with Pfirrmann grade and histological grade (rho = -0.86, P < 0.001; rho = -0.95, P < 0.001). These results suggest that T2 mapping has the potential to quantitatively evaluate the repairing effects of cell-based engineering treatments on IDD for a long-term follow-up.
Collapse
Affiliation(s)
- Jinwei Ying
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, China
- Department of Orthopedic Surgery, Navy General HospitalBeijing 100048, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, China
| | - Zhihua Han
- Department of Trauma and Orthopedics, Trauma Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Experimental Trauma and Orthopedic Surgery, JW Goethe-UniversityFrankfurt am Main, Germany
| | - Yang Zeng
- Department of Cancer Biology, Dana Farber Cancer Institute/Harvard Medical School360 Longwood Ave, Room 3316K, Boston, MA
| | - Yanan Du
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua UniversityBeijing 100084, China
| | - Shishen Pei
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, China
- Department of Orthopedic Surgery, Navy General HospitalBeijing 100048, China
| | - Linghao Su
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, China
- Department of Orthopedic Surgery, Navy General HospitalBeijing 100048, China
| | - Dike Ruan
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, China
- Department of Orthopedic Surgery, Navy General HospitalBeijing 100048, China
| | - Chun Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and EngineeringWenzhou 325011, China
| |
Collapse
|
24
|
Hodgkinson T, Shen B, Diwan A, Hoyland JA, Richardson SM. Therapeutic potential of growth differentiation factors in the treatment of degenerative disc diseases. JOR Spine 2019; 2:e1045. [PMID: 31463459 PMCID: PMC6686806 DOI: 10.1002/jsp2.1045] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is a major contributing factor to chronic low back pain and disability, leading to imbalance between anabolic and catabolic processes, altered extracellular matrix composition, loss of tissue hydration, inflammation, and impaired mechanical functionality. Current treatments aim to manage symptoms rather than treat underlying pathology. Therefore, IVD degeneration is a target for regenerative medicine strategies. Research has focused on understanding the molecular process of degeneration and the identification of various factors that may have the ability to halt and even reverse the degenerative process. One such family of growth factors, the growth differentiation factor (GDF) family, have shown particular promise for disc regeneration in in vitro and in vivo models of IVD degeneration. This review outlines our current understanding of IVD degeneration, and in this context, aims to discuss recent advancements in the use of GDF family members as anabolic factors for disc regeneration. An increasing body of evidence indicates that GDF family members are central to IVD homeostatic processes and are able to upregulate healthy nucleus pulposus cell marker genes in degenerative cells, induce mesenchymal stem cells to differentiate into nucleus pulposus cells and even act as chemotactic signals mobilizing resident cell populations during disc injury repair. The understanding of GDF signaling and its interplay with inflammatory and catabolic processes may be critical for the future development of effective IVD regeneration therapies.
Collapse
Affiliation(s)
- Tom Hodgkinson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Bojiang Shen
- St. George Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ashish Diwan
- St. George Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation TrustManchester Academic Health Sciences CentreManchesterUK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
| |
Collapse
|
25
|
White KA, Olabisi RM. Spatiotemporal Control Strategies for Bone Formation through Tissue Engineering and Regenerative Medicine Approaches. Adv Healthc Mater 2019; 8:e1801044. [PMID: 30556328 DOI: 10.1002/adhm.201801044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Global increases in life expectancy drive increasing demands for bone regeneration. The gold standard for surgical bone repair is autografting, which enjoys excellent clinical outcomes; however, it possesses significant drawbacks including donor site morbidity and limited availability. Although collagen sponges delivered with bone morphogenetic protein, type 2 (BMP2) are a common alternative or supplement, they do not efficiently retain BMP2, necessitating extremely high doses to elicit bone formation. Hence, reports of BMP2 complications are rising, including cancer promotion and ectopic bone formation, the latter inducing complications such as breathing difficulties and neurologic impairments. Thus, efforts to exert spatial control over bone formation are increasing. Several tissue engineering approaches have demonstrated the potential for targeted and controlled bone formation. These approaches include biomaterial scaffolds derived from synthetic sources, e.g., calcium phosphates or polymers; natural sources, e.g., bone or seashell; and immobilized biofactors, e.g., BMP2. Although BMP2 is the only protein clinically approved for use in a surgical device, there are several proteins, small molecules, and growth factors that show promise in tissue engineering applications. This review profiles the tissue engineering advances in achieving control over the location and onset of bone formation (spatiotemporal control) toward avoiding the complications associated with BMP2.
Collapse
Affiliation(s)
- Kristopher A. White
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Road Piscataway NJ 08854 USA
| | - Ronke M. Olabisi
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway NJ 08854 USA
| |
Collapse
|
26
|
Emanuel KS, Mader KT, Peeters M, Kingma I, Rustenburg CME, Vergroesen PPA, Sammon C, Smit TH. Early changes in the extracellular matrix of the degenerating intervertebral disc, assessed by Fourier transform infrared imaging. Osteoarthritis Cartilage 2018; 26:1400-1408. [PMID: 29935308 DOI: 10.1016/j.joca.2018.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/09/2018] [Accepted: 06/07/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Mechanical overloading induces a degenerative cell response in the intervertebral disc. However, early changes in the extracellular matrix (ECM) are challenging to assess with conventional techniques. Fourier Transform Infrared (FTIR) imaging allows visualization and quantification of the ECM. We aim to identify markers for disc degeneration and apply these to investigate early degenerative changes due to overloading and katabolic cell activity. DESIGN Three experiments were conducted; Exp 1.: In vivo, lumbar spines of seven goats were operated: one disc was injected with chondroitinase ABC [cABC (mild degeneration)] and compared to the adjacent disc (control) after 24 weeks. Exp 2a: Ex vivo, caprine discs received physiological loading (n = 10) or overloading (n = 10) in a bioreactor. Exp 2b: Cell activity was diminished prior to testing by freeze-thaw cycles, 18 discs were then tested as in Exp 2a. In all experiments, FTIR images (spectral region: 1000-1300 cm-1) of mid-sagittal slices were analyzed using multivariate curve resolution. RESULTS In vivo, FTIR was more sensitive than biochemical and histological analysis in identifying reduced proteoglycan content (P = 0.046) and increased collagen content in degenerated discs (P < 0.01). Notably, FTIR analysis additionally showed disorganization of the ECM, indicated by increased collagen entropy (P = 0.011). Ex vivo, the proteoglycan/collagen ratio decreased due to overloading (P = 0.047) and collagen entropy increased (P = 0.047). Cell activity affected collagen content only (P = 0.044). CONCLUSION FTIR imaging allows a more detailed investigation of early disc degeneration than traditional measures. Changes due to mild overloading could be assessed and quantified. Matrix remodeling is the first detectable step towards intervertebral disc degeneration.
Collapse
Affiliation(s)
- K S Emanuel
- Department of Orthopaedic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands; Department of Orthopedic Surgery, VU University Medical Center, Amsterdam Movement Sciences, The Netherlands.
| | - K T Mader
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK.
| | - M Peeters
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam Movement Sciences, The Netherlands.
| | - I Kingma
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands.
| | - C M E Rustenburg
- Department of Orthopaedic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands; Department of Orthopedic Surgery, VU University Medical Center, Amsterdam Movement Sciences, The Netherlands.
| | - P-P A Vergroesen
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam Movement Sciences, The Netherlands; Department of Orthopaedic Surgery, NoordWest Ziekenhuisgroep, Alkmaar, The Netherlands.
| | - C Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK.
| | - T H Smit
- Department of Orthopaedic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands; Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Biologic canine and human intervertebral disc repair by notochordal cell-derived matrix: from bench towards bedside. Oncotarget 2018; 9:26507-26526. [PMID: 29899873 PMCID: PMC5995168 DOI: 10.18632/oncotarget.25476] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022] Open
Abstract
The socioeconomic burden of chronic back pain related to intervertebral disc (IVD) disease is high and current treatments are only symptomatic. Minimally invasive strategies that promote biological IVD repair should address this unmet need. Notochordal cells (NCs) are replaced by chondrocyte-like cells (CLCs) during IVD maturation and degeneration. The regenerative potential of NC-secreted substances on CLCs and mesenchymal stromal cells (MSCs) has already been demonstrated. However, identification of these substances remains elusive. Innovatively, this study exploits the regenerative NC potential by using healthy porcine NC-derived matrix (NCM) and employs the dog as a clinically relevant translational model. NCM increased the glycosaminoglycan and DNA content of human and canine CLC aggregates and facilitated chondrogenic differentiation of canine MSCs in vitro. Based on these results, NCM, MSCs and NCM+MSCs were injected in mildly (spontaneously) and moderately (induced) degenerated canine IVDs in vivo and, after six months of treatment, were analyzed. NCM injected in moderately (induced) degenerated canine IVDs exerted beneficial effects at the macroscopic and MRI level, induced collagen type II-rich extracellular matrix production, improved the disc height, and ameliorated local inflammation. MSCs exerted no (additive) effects. In conclusion, NCM induced in vivo regenerative effects on degenerated canine IVDs. NCM may, comparable to demineralized bone matrix in bone regeneration, serve as ‘instructive matrix’, by locally releasing growth factors and facilitating tissue repair. Therefore, intradiscal NCM injection could be a promising regenerative treatment for IVD disease, circumventing the cumbersome identification of bioactive NC-secreted substances.
Collapse
|
28
|
Fan T, Huang G, Wu W, Guo R, Zeng Q. Combined treatment with extracorporeal shock‑wave therapy and bone marrow mesenchymal stem cell transplantation improves bone repair in a rabbit model of bone nonunion. Mol Med Rep 2017; 17:1326-1332. [PMID: 29115642 DOI: 10.3892/mmr.2017.7984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 06/08/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to analyze whether extracorporeal shock‑wave therapy (ESWT) combined with bone marrow mesenchymal stem cell (BMMSC) transplantation improves bone repair in a rabbit bone nonunion model. ESWT combined with BMMSC effectively enhanced mechanical strength, fracture stiffness and histological scores, and increased alkaline phosphatase activity, and osteopontin, runt related transcription factor 2 and collagen type I α1 chain protein expression levels in a rabbit bone nonunion model. In addition, ESWT combined with BMMSC effectively enhanced insulin‑like growth factor 1 and vascular endothelial growth factor contents, promoted transforming growth factor‑β (TGF‑β) contents, and induced the growth factors, bone morphogenetic protein (BMP)‑2, BMP‑4 and purinergic receptor P2X7 (P2X7) protein expression in the rabbit bone nonunion model. Thus, the present study demonstrated that ESWT combined with BMMSC transplantation improves bone repair in a rabbit bone nonunion model via the BMPs and P2X7 signaling pathways.
Collapse
Affiliation(s)
- Tao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Wen Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Rong Guo
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
29
|
Reitmaier S, Graichen F, Shirazi-Adl A, Schmidt H. Separate the Sheep from the Goats: Use and Limitations of Large Animal Models in Intervertebral Disc Research. J Bone Joint Surg Am 2017; 99:e102. [PMID: 28976436 DOI: 10.2106/jbjs.17.00172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Approximately 5,168 large animals (pigs, sheep, goats, and cattle) were used for intervertebral disc research in identified studies published between 1985 and 2016. Most of the reviewed studies revealed a low scientific impact, a lack of sound justifications for the animal models, and a number of deficiencies in the documentation of the animal experimentation. The scientific community should take suitable measures to investigate the presumption that animal models have translational value in intervertebral disc research. Recommendations for future investigations are provided to improve the quality, validity, and usefulness of animal studies for intervertebral disc research. More in vivo studies are warranted to comprehensively evaluate the suitability of animal models in various applications and help place animal models as an integral, complementary part of intervertebral disc research.
Collapse
Affiliation(s)
- Sandra Reitmaier
- 1Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany 2École Polytechnique, Montréal, Canada
| | | | | | | |
Collapse
|
30
|
Kazezian Z, Sakai D, Pandit A. Hyaluronic Acid Microgels Modulate Inflammation and Key Matrix Molecules toward a Regenerative Signature in the Injured Annulus Fibrosus. ACTA ACUST UNITED AC 2017; 1:e1700077. [PMID: 32646195 DOI: 10.1002/adbi.201700077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/30/2017] [Indexed: 01/08/2023]
Abstract
Low back pain results from disc degeneration, which is a chronic inflammatory disease characterized by an imbalance between anabolic and catabolic factors. Today, regenerative medicine is focused on identifying inflammatory markers to target disc disease. Hyaluronan is used as a scaffold for cell delivery in disc degeneration; however, to date high molecular weight hyaluronan (HMW HA) is evaluated for its anti-inflammatory and matrix modulatory properties in an in vivo disc injury model. Ex vivo bovine organ culture studies demonstrate the anti-inflammatory and matrix modulatory effects of HMW HA on the IFNα2β signaling pathway that provides the motivation for evaluating its efficacy in regenerating the annulus fibrosus in an in vivo disc injury model. It is demonstrated that the HMW HA microgel acts as an anti-inflammatory molecule in the annulus fibrosus, by downregulating the expression of the pro-inflammatory interferon gamma (IFNα) and pro-apoptotic insulin-like growth factor-binding protein 3 (IGFBP3) and the apoptosis marker caspase 3. Mass spectrometry studies demonstrate that the HMW HA microgel modulates the matrix modulatory effect by upregulating hyaluronic acid link protein (HAPLN1) and aggrecan, which are further confirmed by immunostaining. The microgel's regenerative capacity is illustrated by the increase in the disc height index.
Collapse
Affiliation(s)
- Zepur Kazezian
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Shibuya, Tokyo, 151-0063, Japan
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
31
|
Park SH, Kwon JS, Lee BS, Park JH, Lee BK, Yun JH, Lee BY, Kim JH, Min BH, Yoo TH, Kim MS. BMP2-modified injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells. Sci Rep 2017; 7:6603. [PMID: 28747761 PMCID: PMC5529463 DOI: 10.1038/s41598-017-06911-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
This is the first report on the development of a covalently bone morphogenetic protein-2 (BMP2)-immobilized hydrogel that is suitable for osteogenic differentiation of human periodontal ligament stem cells (hPLSCs). O-propargyl-tyrosine (OpgY) was site-specifically incorporated into BMP2 to prepare BMP2-OpgY with an alkyne group. The engineered BMP2-OpgY exhibited osteogenic characteristics after in vitro osteogenic differentiation of hPLSCs, indicating the osteogenic ability of BMP2-OpgY. A methoxy polyethylene glycol-(polycaprolactone-(N3)) block copolymer (MC-N3) was prepared as an injectable in situ-forming hydrogel. BMP2 covalently immobilized on an MC hydrogel (MC-BMP2) was prepared quantitatively by a simple biorthogonal reaction between alkyne groups on BMP2-OpgY and azide groups on MC-N3 via a Cu(I)-catalyzed click reaction. The hPLSCs-loaded MC-BMP2 formed a hydrogel almost immediately upon injection into animals. In vivo osteogenic differentiation of hPLSCs in the MC-BMP2 formulation was confirmed by histological staining and gene expression analyses. Histological staining of hPLSC-loaded MC-BMP2 implants showed evidence of mineralized calcium deposits, whereas hPLSC-loaded MC-Cl or BMP2-OpgY mixed with MC-Cl, implants showed no mineral deposits. Additionally, MC-BMP2 induced higher levels of osteogenic gene expression in hPLSCs than in other groups. In conclusion, BMP2-OpgY covalently immobilized on MC-BMP2 induced osteogenic differentiation of hPLSCs as a noninvasive method for bone tissue engineering.
Collapse
Affiliation(s)
- Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Jin Seon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Byeong Sung Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Ji Hoon Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Bo Keun Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Jeong-Ho Yun
- Department of Periodontology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-712, Korea
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Jae Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea.
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea.
| |
Collapse
|
32
|
Jin L, Balian G, Li XJ. Animal models for disc degeneration-an update. Histol Histopathol 2017; 33:543-554. [PMID: 28580566 DOI: 10.14670/hh-11-910] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intervertebral disc degeneration is considered a major cause of back pain that places a heavy burden on society, both because of its effect on the physiology of individuals and its consequences on the world economy. During the past few decades, research findings in the pre-clinical setting have led to a significant increase in the understanding of intervertebral disc degeneration, although many aspects of the disease remain unclear. The goal of this review is to summarize existing animal models for disc degeneration studies and the difficulties that are associated with the use of such models. A firm understanding of the cellular and molecular events that ensue as a result of injuries, as well as environmental factors, could be instrumental in the development of targeted therapies for the treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Gary Balian
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Xudong Joshua Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
33
|
Bach FC, Miranda-Bedate A, van Heel FW, Riemers FM, Müller MC, Creemers LB, Ito K, Benz K, Meij BP, Tryfonidou MA. Bone Morphogenetic Protein-2, But Not Mesenchymal Stromal Cells, Exert Regenerative Effects on Canine and Human Nucleus Pulposus Cells. Tissue Eng Part A 2017; 23:233-242. [DOI: 10.1089/ten.tea.2016.0251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alberto Miranda-Bedate
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ferdi W.M. van Heel
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank M. Riemers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Margot C.M.E. Müller
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Laura B. Creemers
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Keita Ito
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Björn P. Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
34
|
Gullbrand SE, Malhotra NR, Schaer TP, Zawacki Z, Martin JT, Bendigo JR, Milby AH, Dodge GR, Vresilovic EJ, Elliott DM, Mauck RL, Smith LJ. A large animal model that recapitulates the spectrum of human intervertebral disc degeneration. Osteoarthritis Cartilage 2017; 25:146-156. [PMID: 27568573 PMCID: PMC5182186 DOI: 10.1016/j.joca.2016.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/01/2016] [Accepted: 08/17/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The objective of this study was to establish a large animal model that recapitulates the spectrum of intervertebral disc degeneration that occurs in humans and which is suitable for pre-clinical evaluation of a wide range of experimental therapeutics. DESIGN Degeneration was induced in the lumbar intervertebral discs of large frame goats by either intradiscal injection of chondroitinase ABC (ChABC) over a range of dosages (0.1U, 1U or 5U) or subtotal nucleotomy. Radiographs were used to assess disc height changes over 12 weeks. Degenerative changes to the discs and endplates were assessed via magnetic resonance imaging (MRI), semi-quantitative histological grading, microcomputed tomography (μCT), and measurement of disc biomechanical properties. RESULTS Degenerative changes were observed for all interventions that ranged from mild (0.1U ChABC) to moderate (1U ChABC and nucleotomy) to severe (5U ChABC). All groups showed progressive reductions in disc height over 12 weeks. Histological scores were significantly increased in the 1U and 5U ChABC groups. Reductions in T2 and T1ρ, and increased Pfirrmann grade were observed on MRI. Resorption and remodeling of the cortical boney endplate adjacent to ChABC-injected discs also occurred. Spine segment range of motion (ROM) was greater and compressive modulus was lower in 1U ChABC and nucleotomy discs compared to intact. CONCLUSIONS A large animal model of disc degeneration was established that recapitulates the spectrum of structural, compositional and biomechanical features of human disc degeneration. This model may serve as a robust platform for evaluating the efficacy of therapeutics targeted towards varying degrees of disc degeneration.
Collapse
Affiliation(s)
- S E Gullbrand
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - N R Malhotra
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - T P Schaer
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Z Zawacki
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - J T Martin
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - J R Bendigo
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - A H Milby
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - G R Dodge
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - E J Vresilovic
- Penn State Hershey Bone and Joint Institute, Pennsylvania State University, Hershey, PA, United States
| | - D M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - R L Mauck
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - L J Smith
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
35
|
Implant Composed of Demineralized Bone and Mesenchymal Stem Cells Genetically Modified with AdBMP2/AdBMP7 for the Regeneration of Bone Fractures in Ovis aries. Stem Cells Int 2016; 2016:7403890. [PMID: 27818692 PMCID: PMC5081458 DOI: 10.1155/2016/7403890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/29/2016] [Indexed: 01/05/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology.
Collapse
|
36
|
Mader KT, Peeters M, Detiger SEL, Helder MN, Smit TH, Le Maitre CL, Sammon C. Investigation of intervertebral disc degeneration using multivariate FTIR spectroscopic imaging. Faraday Discuss 2016; 187:393-414. [PMID: 27057647 PMCID: PMC5047047 DOI: 10.1039/c5fd00160a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/14/2016] [Indexed: 12/26/2022]
Abstract
Traditionally tissue samples are analysed using protein or enzyme specific stains on serial sections to build up a picture of the distribution of components contained within them. In this study we investigated the potential of multivariate curve resolution-alternating least squares (MCR-ALS) to deconvolute 2nd derivative spectra of Fourier transform infrared (FTIR) microscopic images measured in transflectance mode of goat and human paraffin embedded intervertebral disc (IVD) tissue sections, to see if this methodology can provide analogous information to that provided by immunohistochemical stains and bioassays but from a single section. MCR-ALS analysis of non-degenerate and enzymatically in vivo degenerated goat IVDs reveals five matrix components displaying distribution maps matching histological stains for collagen, elastin and proteoglycan (PG), as well as immunohistochemical stains for collagen type I and II. Interestingly, two components exhibiting characteristic spectral and distribution profiles of proteoglycans were found, and relative component/tissue maps of these components (labelled PG1 and PG2) showed distinct distributions in non-degenerate versus mildly degenerate goat samples. MCR-ALS analysis of human IVD sections resulted in comparable spectral profiles to those observed in the goat samples, highlighting the inter species transferability of the presented methodology. Multivariate FTIR image analysis of a set of 43 goat IVD sections allowed the extraction of semi-quantitative information from component/tissue gradients taken across the IVD width of collagen type I, collagen type II, PG1 and PG2. Regional component/tissue parameters were calculated and significant correlations were found between histological grades of degeneration and PG parameters (PG1: p = 0.0003, PG2: p < 0.0001); glycosaminoglycan (GAG) content and PGs (PG1: p = 0.0055, PG2: p = 0.0001); and MRI T2* measurements and PGs (PG1: p = 0.0021, PG2: p < 0.0001). Additionally, component/tissue parameters for collagen type I and II showed significant correlations with total collagen content (p = 0.0204, p = 0.0127). In conclusion, the presented findings illustrate, that the described multivariate FTIR imaging approach affords the necessary chemical specificity to be considered an important tool in the study of IVD degeneration in goat and human IVDs.
Collapse
Affiliation(s)
- Kerstin T Mader
- Sheffield Hallam University, Materials and Engineering Research Institute, Sheffield, S1 1WB, UK.
| | - Mirte Peeters
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands and Skeletal Tissue Engineering Group Amsterdam (STEGA) and MOVE Research Institute, Amsterdam, The Netherlands
| | - Suzanne E L Detiger
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands and Skeletal Tissue Engineering Group Amsterdam (STEGA) and MOVE Research Institute, Amsterdam, The Netherlands
| | - Marco N Helder
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands and Skeletal Tissue Engineering Group Amsterdam (STEGA) and MOVE Research Institute, Amsterdam, The Netherlands
| | - Theo H Smit
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands and Skeletal Tissue Engineering Group Amsterdam (STEGA) and MOVE Research Institute, Amsterdam, The Netherlands
| | - Christine L Le Maitre
- Sheffield Hallam University, Biomolecular Science Research Centre, Sheffield, S1 1WB, UK
| | - Chris Sammon
- Sheffield Hallam University, Materials and Engineering Research Institute, Sheffield, S1 1WB, UK.
| |
Collapse
|