1
|
Miranda Alarcón YS, Jazwinska D, Lymon T, Khalili A, Browe D, Newton B, Pellegrini M, Cohen RI, Shreiber DI, Freeman JW. The Use of Collagen Methacrylate in Actuating Polyethylene Glycol Diacrylate-Acrylic Acid Scaffolds for Muscle Regeneration. Ann Biomed Eng 2023; 51:1165-1180. [PMID: 36853478 DOI: 10.1007/s10439-023-03139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/03/2023] [Indexed: 03/01/2023]
Abstract
After muscle loss or injury, skeletal muscle tissue has the ability to regenerate and return its function. However, large volume defects in skeletal muscle tissue pose a challenge to regenerate due to the absence of regenerative elements such as biophysical and biochemical cues, making the development of new treatments necessary. One potential solution is to utilize electroactive polymers that can change size or shape in response to an external electric field. Poly(ethylene glycol) diacrylate (PEGDA) is one such polymer, which holds great potential as a scaffold for muscle tissue regeneration due to its mechanical properties. In addition, the versatile chemistry of this polymer allows for the conjugation of new functional groups to enhance its electroactive properties and biocompatibility. Herein, we have developed an electroactive copolymer of PEGDA and acrylic acid (AA) in combination with collagen methacrylate (CMA) to promote cell adhesion and proliferation. The electroactive properties of the CMA + PEGDA:AA constructs were investigated through actuation studies. Furthermore, the biological properties of the hydrogel were investigated in a 14-day in vitro study to evaluate myosin light chain (MLC) expression and metabolic activity of C2C12 mouse myoblast cells. The addition of CMA improved some aspects of material bioactivity, such as MLC expression in C2C12 mouse myoblast cells. However, the incorporation of CMA in the PEGDA:AA hydrogels reduced the sample movement when placed under an electric field, possibly due to steric hindrance from the CMA. Further research is needed to optimize the use of CMA in combination with PEGDA:AA as a potential scaffold for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | - Dorota Jazwinska
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Terrence Lymon
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Amin Khalili
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Daniel Browe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Brandon Newton
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Michael Pellegrini
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Rick I Cohen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Jun I, Li N, Shin J, Park J, Kim YJ, Jeon H, Choi H, Cho JG, Chan Choi B, Han HS, Song JJ. Synergistic stimulation of surface topography and biphasic electric current promotes muscle regeneration. Bioact Mater 2022; 11:118-129. [PMID: 34938917 PMCID: PMC8665271 DOI: 10.1016/j.bioactmat.2021.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Developing a universal culture platform that manipulates cell fate is one of the most important tasks in the investigation of the role of the cellular microenvironment. This study focuses on the application of topographical and electrical field stimuli to human myogenic precursor cell (hMPC) cultures to assess the influences of the adherent direction, proliferation, and differentiation, and induce preconditioning-induced therapeutic benefits. First, a topographical surface of commercially available culture dishes was achieved by femtosecond laser texturing. The detachable biphasic electrical current system was then applied to the hMPCs cultured on laser-textured culture dishes. Laser-textured topographies were remarkably effective in inducing the assembly of hMPC myotubes by enhancing the orientation of adherent hMPCs compared with flat surfaces. Furthermore, electrical field stimulation through laser-textured topographies was found to promote the expression of myogenic regulatory factors compared with nonstimulated cells. As such, we successfully demonstrated that the combined stimulation of topographical and electrical cues could effectively enhance the myogenic maturation of hMPCs in a surface spatial and electrical field-dependent manner, thus providing the basis for therapeutic strategies.
Collapse
Affiliation(s)
- Indong Jun
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), Saarbrücken, 66123, Germany
| | - Na Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jaehee Shin
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jaeho Park
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), Saarbrücken, 66123, Germany
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Gu Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Byoung Chan Choi
- Laser Surface Texturing Group, AYECLUS, Gyeonggi-do, 14255, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| |
Collapse
|
3
|
Basturkmen B, Ergene E, Doganay D, Yilgor Huri P, Unalan HE, Aksoy EA. Silver nanowire loaded poly(ε-caprolactone) nanocomposite fibers as electroactive scaffolds for skeletal muscle regeneration. BIOMATERIALS ADVANCES 2022; 134:112567. [PMID: 35527139 DOI: 10.1016/j.msec.2021.112567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Volumetric muscle loss (VML) due to trauma and tumor removal operations affects millions of people every year. Although skeletal muscle has a natural repair mechanism, it cannot provide self-healing above a critical level of VML. In this study, nanocomposite aligned fiber scaffolds as support materials were developed for volumetric skeletal muscle regeneration. For this purpose, silver nanowire (Ag NW) loaded poly(ε-caprolactone) (PCL) nanocomposite fiber scaffolds (PCL-Ag NW) were prepared to mimic the aligned electroactive structure of skeletal muscle and provide topographic and conductive environment to modulate cellular behavior and orientation. A computer-aided rotational wet spinning (RWS) system was designed to produce high-yield fiber scaffolds. Nanocomposite fiber bundles with lengths of 50 cm were fabricated via this computer-aided RWS system. The morphological, chemical, thermal properties and biodegradation profiles of PCL and PCL-Ag NW nanocomposite fibers were characterized in detail. The proliferation behavior and morphology of C2C12 mouse myoblasts were investigated on PCL and PCL-Ag NW nanocomposite fibrous scaffolds with and without electrical stimulation. Significantly enhanced cell proliferation was observed on PCL-Ag NW nanocomposite fibers compared to neat PCL fibers with electrical stimulations of 1.5 V, 3 V and without electrical stimulation.
Collapse
Affiliation(s)
- Berk Basturkmen
- Department of Polymer Science and Technology, Hacettepe University, Ankara 06800, Turkey
| | - Emre Ergene
- Department of Biomedical Engineering, Ankara University, Ankara 06830, Turkey
| | - Doga Doganay
- Department of Metallurgical and Materials Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
| | - Pinar Yilgor Huri
- Department of Biomedical Engineering, Ankara University, Ankara 06830, Turkey
| | - Husnu Emrah Unalan
- Department of Metallurgical and Materials Engineering, Middle East Technical University (METU), Ankara 06800, Turkey
| | - Eda Ayse Aksoy
- Department of Polymer Science and Technology, Hacettepe University, Ankara 06800, Turkey; Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara 06100, Turkey.
| |
Collapse
|
4
|
Kiran S, Dwivedi P, Kumar V, Price RL, Singh UP. Immunomodulation and Biomaterials: Key Players to Repair Volumetric Muscle Loss. Cells 2021; 10:cells10082016. [PMID: 34440785 PMCID: PMC8394423 DOI: 10.3390/cells10082016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Volumetric muscle loss (VML) is defined as a condition in which a large volume of skeletal muscle is lost due to physical insult. VML often results in a heightened immune response, resulting in significant long-term functional impairment. Estimates indicate that ~250,000 fractures occur in the US alone that involve VML. Currently, there is no active treatment to fully recover or repair muscle loss in VML patients. The health economics burden due to VML is rapidly increasing around the world. Immunologists, developmental biologists, and muscle pathophysiologists are exploring both immune responses and biomaterials to meet this challenging situation. The inflammatory response in muscle injury involves a non-specific inflammatory response at the injured site that is coordination between the immune system, especially macrophages and muscle. The potential role of biomaterials in the regenerative process of skeletal muscle injury is currently an important topic. To this end, cell therapy holds great promise for the regeneration of damaged muscle following VML. However, the delivery of cells into the injured muscle site poses a major challenge as it might cause an adverse immune response or inflammation. To overcome this obstacle, in recent years various biomaterials with diverse physical and chemical nature have been developed and verified for the treatment of various muscle injuries. These biomaterials, with desired tunable physicochemical properties, can be used in combination with stem cells and growth factors to repair VML. In the current review, we focus on how various immune cells, in conjunction with biomaterials, can be used to promote muscle regeneration and, most importantly, suppress VML pathology.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy, St. Louis, MO 63110, USA;
| | - Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
| | - Robert L. Price
- Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208, USA;
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
- Correspondence:
| |
Collapse
|
5
|
Towards bioengineered skeletal muscle: recent developments in vitro and in vivo. Essays Biochem 2021; 65:555-567. [PMID: 34342361 DOI: 10.1042/ebc20200149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Skeletal muscle is a functional tissue that accounts for approximately 40% of the human body mass. It has remarkable regenerative potential, however, trauma and volumetric muscle loss, progressive disease and aging can lead to significant muscle loss that the body cannot recover from. Clinical approaches to address this range from free-flap transfer for traumatic events involving volumetric muscle loss, to myoblast transplantation and gene therapy to replace muscle loss due to sarcopenia and hereditary neuromuscular disorders, however, these interventions are often inadequate. The adoption of engineering paradigms, in particular materials engineering and materials/tissue interfacing in biology and medicine, has given rise to the rapidly growing, multidisciplinary field of bioengineering. These methods have facilitated the development of new biomaterials that sustain cell growth and differentiation based on bionic biomimicry in naturally occurring and synthetic hydrogels and polymers, as well as additive fabrication methods to generate scaffolds that go some way to replicate the structural features of skeletal muscle. Recent advances in biofabrication techniques have resulted in significant improvements to some of these techniques and have also offered promising alternatives for the engineering of living muscle constructs ex vivo to address the loss of significant areas of muscle. This review highlights current research in this area and discusses the next steps required towards making muscle biofabrication a clinical reality.
Collapse
|
6
|
Langridge B, Griffin M, Butler PE. Regenerative medicine for skeletal muscle loss: a review of current tissue engineering approaches. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:15. [PMID: 33475855 PMCID: PMC7819922 DOI: 10.1007/s10856-020-06476-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/18/2020] [Indexed: 05/05/2023]
Abstract
Skeletal muscle is capable of regeneration following minor damage, more significant volumetric muscle loss (VML) however results in permanent functional impairment. Current multimodal treatment methodologies yield variable functional recovery, with reconstructive surgical approaches restricted by limited donor tissue and significant donor morbidity. Tissue-engineered skeletal muscle constructs promise the potential to revolutionise the treatment of VML through the regeneration of functional skeletal muscle. Herein, we review the current status of tissue engineering approaches to VML; firstly the design of biocompatible tissue scaffolds, including recent developments with electroconductive materials. Secondly, we review the progenitor cell populations used to seed scaffolds and their relative merits. Thirdly we review in vitro methods of scaffold functional maturation including the use of three-dimensional bioprinting and bioreactors. Finally, we discuss the technical, regulatory and ethical barriers to clinical translation of this technology. Despite significant advances in areas, such as electroactive scaffolds and three-dimensional bioprinting, along with several promising in vivo studies, there remain multiple technical hurdles before translation into clinically impactful therapies can be achieved. Novel strategies for graft vascularisation, and in vitro functional maturation will be of particular importance in order to develop tissue-engineered constructs capable of significant clinical impact.
Collapse
Affiliation(s)
- Benjamin Langridge
- Department of Plastic & Reconstructive Surgery, Royal Free Hospital, London, UK.
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.
- Division of Surgery & Interventional Science, University College London, London, UK.
| | - Michelle Griffin
- Department of Plastic & Reconstructive Surgery, Royal Free Hospital, London, UK
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK
- Division of Surgery & Interventional Science, University College London, London, UK
| | - Peter E Butler
- Department of Plastic & Reconstructive Surgery, Royal Free Hospital, London, UK
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK
- Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|