1
|
Del Maschio N, Bellini C, Giannachi M, Mauro GD, Abutalebi J. Effects of early neuroanatomical variants on reading skills and brain function in typical adult Italian readers. Brain Struct Funct 2025; 230:55. [PMID: 40266341 DOI: 10.1007/s00429-025-02919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
Reading is a core feature of human communication that develops throughout intensive academic training. Recently, a group of studies examined whether neuroanatomical variants that predate literacy acquisition may influence reading abilities at later stages of life, yielding mixed results. To complement and expand previous knowledge, we used multimodal magnetic resonance imaging (MRI) to investigate whether distinct anatomical patterns of the left occipito-temporal sulcus (OTS), which hosts the so-called "visual word form area" (VWFA), are predictive of reading skills and brain activity in typical adult readers. Overall, our findings indicate that: (1) the pattern of the left OTS is not predictive of participants' scores on reading fluency tests; (2) the pattern of the left OTS is not predictive of local brain activity during sentence-reading; (3) individual differences in the left OTS pattern are associated with the functional architecture of the left OTS as assessed by resting-state fMRI. In conclusion, while it is well-established that the acquisition of reading skills modifies brain structure and function, the predictive role of early neuroanatomical variants on reading skills and brain function in typical readers remains equivocal. Environmental and experience-related factors may have a greater and predominant role in accounting for ultimate reading abilities in healthy populations.
Collapse
Affiliation(s)
- Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics, Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.
| | - Camilla Bellini
- Centre for Neurolinguistics and Psycholinguistics, Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Giannachi
- Centre for Neurolinguistics and Psycholinguistics, Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Gianpaolo Del Mauro
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, USA
- UiT The Arctic University of Norway, PO Box 6050, Langnes, Tromsø, N-9037, Norway
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics, Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- UiT The Arctic University of Norway, PO Box 6050, Langnes, Tromsø, N-9037, Norway
- Cognitive Health and Intelligence Centre, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation
| |
Collapse
|
2
|
Häkkinen S, Voorhies WI, Willbrand EH, Tsai YH, Gagnant T, Yao JK, Weiner KS, Bunge SA. Anchoring functional connectivity to individual sulcal morphology yields insights in a pediatric study of reasoning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.18.590165. [PMID: 38659961 PMCID: PMC11042283 DOI: 10.1101/2024.04.18.590165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A salient neuroanatomical feature of the human brain is its pronounced cortical folding, and there is mounting evidence that sulcal morphology is relevant to functional brain architecture and cognition. However, our understanding of the relationships between sulcal anatomy, brain activity, and behavior is still in its infancy. We previously found the depth of three small, shallow sulci in lateral prefrontal cortex (LPFC) was linked to reasoning performance in childhood and adolescence (Voorhies et al., 2021). These findings beg the question: what is the linking mechanism between sulcal morphology and cognition? To shed light on this question, we investigated functional connectivity among sulci in LPFC and lateral parietal cortex (LPC). We leveraged manual parcellations (21 sulci/hemisphere, total of 1806) and functional magnetic resonance (fMRI) data from a reasoning task from 43 participants aged 7-18 years (20 female). We conducted clustering and classification analyses of individual-level functional connectivity among sulci. Broadly, we found that 1) the connectivity patterns of individual sulci could be differentiated - and more accurately than rotated sulcal labels equated for size and shape; 2) sulcal connectivity did not consistently correspond with that of probabilistic labels or large-scale networks; 3) sulci clustered together into groups with similar patterns, not dictated by spatial proximity; and 4) across individuals, greater depth was associated with higher network centrality for several sulci under investigation. These results highlight that functional connectivity can be meaningfully anchored to individual sulcal anatomy, and demonstrate that functional network centrality can vary as a function of sulcal depth.
Collapse
Affiliation(s)
- Suvi Häkkinen
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Willa I. Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Ethan H. Willbrand
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, 53726 USA
| | - Yi-Heng Tsai
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Thomas Gagnant
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Medical Science Faculty, University of Bordeaux, Bordeaux, France
| | | | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Silvia A. Bunge
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
| |
Collapse
|
3
|
Willbrand EH, Maboudian SA, Elliott MV, Kellerman GM, Johnson SL, Weiner KS. Variable Presence of an Evolutionarily New Brain Structure Is Related to Trait Impulsivity. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00352-5. [PMID: 39613159 DOI: 10.1016/j.bpsc.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Impulsivity is a multidimensional construct reflecting poor constraint over one's behaviors. Clinical psychology research has identified separable impulsivity dimensions that are each unique transdiagnostic indicators for psychopathology. However, despite this apparent clinical importance, the shared and unique neuroanatomical correlates of these factors remain largely unknown. Concomitantly, neuroimaging research has identified variably present human brain structures implicated in cognition and disorder: the folds (sulci) of the cerebral cortex located in the latest-developing and most evolutionarily expanded hominoid-specific association cortices. METHODS We tethered these 2 fields to test whether variability in one such structure in the anterior cingulate cortex (ACC)-the paracingulate sulcus (PCGS)-was related to individual differences in trait impulsivity. A total of 120 adult participants with internalizing or externalizing psychopathology completed a magnetic resonance imaging scan and the Three-Factor Impulsivity Index. Using precision imaging techniques, we manually identified the PCGS, when present, and acquired quantitative folding metrics (PCGS length and ACC local gyrification index). RESULTS Neuroanatomical-behavioral analyses revealed that participants with leftward or symmetrical PCGS patterns had greater severity of Lack of Follow Through (LFT)-which captures inattention and lack of perseverance-than those with rightward asymmetry. Neuroanatomical-functional analyses identified that the PCGS colocalized with a focal locus found in a neuroimaging meta-analysis on a feature underlying LFT. Neither quantitative folding metric related to any impulsivity dimension. CONCLUSIONS This study advances understanding of the neuroanatomical correlates of impulsivity and establishes the notion that the topographical organization of distinct, hominoid-specific cortical expanses underlies separable impulsivity dimensions with robust, transdiagnostic implications for psychopathology.
Collapse
Affiliation(s)
- Ethan H Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Samira A Maboudian
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California; Department of Neuroscience, University of California, Berkeley, Berkeley, California
| | - Matthew V Elliott
- Department of Psychology, University of California, Berkeley, Berkeley, California
| | - Gabby M Kellerman
- Department of Psychology, University of California, Berkeley, Berkeley, California
| | - Sheri L Johnson
- Department of Psychology, University of California, Berkeley, Berkeley, California
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California; Department of Neuroscience, University of California, Berkeley, Berkeley, California; Department of Psychology, University of California, Berkeley, Berkeley, California.
| |
Collapse
|
4
|
Willbrand EH, Maboudian SA, Elliott MV, Kellerman GM, Johnson SL, Weiner KS. Variable Presence of an Evolutionarily New Brain Structure is Related to Trait Impulsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619912. [PMID: 39484399 PMCID: PMC11527008 DOI: 10.1101/2024.10.23.619912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Impulsivity is a multidimensional construct reflecting poor constraint over one's behaviors. Clinical psychology research identifies separable impulsivity dimensions that are each unique transdiagnostic indicators for psychopathology. Yet, despite this apparent clinical importance, the shared and unique neuroanatomical correlates of these factors remain largely unknown. Concomitantly, neuroimaging research identifies variably present human brain structures implicated in cognition and disorder: the folds (sulci) of the cerebral cortex located in the latest developing and most evolutionarily expanded hominoid-specific association cortices. Methods We tethered these two fields to test whether variability in one such structure in anterior cingulate cortex (ACC)-the paracingulate sulcus (PCGS)-was related to individual differences in trait impulsivity. 120 adult participants with internalizing or externalizing psychopathology completed a magnetic resonance imaging scan and the Three-Factor Impulsivity Index. Using precision imaging techniques, we manually identified the PCGS, when present, and acquired quantitative folding metrics (PCGS length and ACC local gyrification index). Results Neuroanatomical-behavioral analyses revealed that participants with leftward or symmetrical PCGS patterns had greater severity of Lack of Follow Through (LFT)-which captures inattention and lack of perseverance-than those with rightward asymmetry. Neuroanatomical-functional analyses identified that the PCGS co-localized with a focal locus found in a neuroimaging meta-analysis on a feature underlying LFT. Both quantitative folding metrics did not relate to any impulsivity dimension. Conclusions This study advances understanding of the neuroanatomical correlates of impulsivity and establishes the notion that the topographical organization of distinct, hominoid-specific cortical expanses underlie separable impulsivity dimensions with robust, transdiagnostic implications for psychopathology.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI USA
| | - Samira A. Maboudian
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| | - Matthew V. Elliott
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Gabby M. Kellerman
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Sheri L. Johnson
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin S. Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Harper L, Strandberg O, Spotorno N, Nilsson M, Lindberg O, Hansson O, Santillo AF. Structural and functional connectivity associations with anterior cingulate sulcal variability. Brain Struct Funct 2024; 229:1561-1576. [PMID: 38900167 PMCID: PMC11374863 DOI: 10.1007/s00429-024-02812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Sulcation of the anterior cingulate may be defined by presence of a paracingulate sulcus, a tertiary sulcus developing during the third gestational trimester with implications on cognitive function and disease. In this cross-sectional study we examine task-free resting state functional connectivity and diffusion-weighted tract segmentation data from a cohort of healthy adults (< 60-year-old, n = 129), exploring the impact of ipsilateral paracingulate sulcal presence on structural and functional connectivity. Presence of a left paracingulate sulcus was associated with reduced fractional anisotropy in the left cingulum bundle and the left peri-genual and dorsal bundle segments, suggesting reduced structural organisational coherence in these tracts. This association was not observed in the offsite temporal cingulum bundle segment. Left paracingulate sulcal presence was associated with increased left peri-genual radial diffusivity and tract volume possibly suggesting increased U-fibre density in this region. Greater network dispersity was identified in individuals with an absent left paracingulate sulcus by presence of a significant, predominantly intraregional, frontal component of resting state functional connectivity which was not present in individuals with a present left paracingulate sulcus. Seed-based functional connectivity in pre-defined networks was not associated with paracingulate sulcal presence. These results identify a novel association between sulcation and structural connectivity in a healthy adult population with implications for conditions where this variation is of interest. Presence of a left paracingulate sulcus appears to alter local structural and functional connectivity, possibly as a result of the presence of a local network reliant on short association fibres.
Collapse
Affiliation(s)
- Luke Harper
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden.
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
| | - Markus Nilsson
- Diagnostic Radiology, Faculty of Medicine, Department of Clinical Sciences, Lund, Sweden
| | - Olof Lindberg
- Division of Clinical Geriatrics, Karolinska Institute, Stockholm, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
| |
Collapse
|
6
|
Zhao X, Wang Y, Wu X, Liu S. An MRI Study of Morphology, Asymmetry, and Sex Differences of Inferior Precentral Sulcus. Brain Topogr 2024; 37:748-763. [PMID: 38374489 PMCID: PMC11393153 DOI: 10.1007/s10548-024-01035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
Numerous studies utilizing magnetic resonance imaging (MRI) have observed sex and interhemispheric disparities in sulcal morphology, which could potentially underpin certain functional disparities in the human brain. Most of the existing research examines the precentral sulcus comprehensively, with a rare focus on its subsections. To explore the morphology, asymmetry, and sex disparities within the inferior precentral sulcus (IPCS), we acquired 3.0T magnetic resonance images from 92 right-handed Chinese adolescents. Brainvisa was used to reconstruct the IPCS structure and calculate its mean depth (MD). Based on the morphological patterns of IPCS, it was categorized into five distinct types. Additionally, we analyzed four different types of spatial relationships between IPCS and inferior frontal sulcus (IFS). There was a statistically significant sex disparity in the MD of IPCS, primarily observed in the right hemisphere. Females exhibited significantly greater asymmetry in the MD of IPCS compared to males. No statistically significant sex or hemispheric variations were identified in sulcal patterns. Our findings expand the comprehension of inconsistencies in sulcal structure, while also delivering an anatomical foundation for the study of related regions' function.
Collapse
Affiliation(s)
- Xinran Zhao
- Department of Clinical Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Wang
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaokang Wu
- Department of Clinical Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Shuwei Liu
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
7
|
Santacroce F, Cachia A, Fragueiro A, Grande E, Roell M, Baldassarre A, Sestieri C, Committeri G. Human intraparietal sulcal morphology relates to individual differences in language and memory performance. Commun Biol 2024; 7:520. [PMID: 38698168 PMCID: PMC11065983 DOI: 10.1038/s42003-024-06175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
The sulco-gyral pattern is a qualitative feature of the cortical anatomy that is determined in utero, stable throughout lifespan and linked to brain function. The intraparietal sulcus (IPS) is a nodal associative brain area, but the relation between its morphology and cognition is largely unknown. By labelling the left and right IPS of 390 healthy participants into two patterns, according to the presence or absence of a sulcus interruption, here we demonstrate a strong association between the morphology of the right IPS and performance on memory and language tasks. We interpret the results as a morphological advantage of a sulcus interruption, probably due to the underlying white matter organization. The right-hemisphere specificity of this effect emphasizes the neurodevelopmental and plastic role of sulcus morphology in cognition prior to lateralisation processes. The results highlight a promising area of investigation on the relationship between cognitive performance, sulco-gyral pattern and white matter bundles.
Collapse
Affiliation(s)
- Federica Santacroce
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy.
| | - Arnaud Cachia
- Université Paris Cité, Laboratoire de Psychologie du développement et de l'Education de l'Enfant (LaPsyDÉ), CNRS UMR 8240, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France
| | - Agustina Fragueiro
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Eleonora Grande
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Margot Roell
- Université Paris Cité, Laboratoire de Psychologie du développement et de l'Education de l'Enfant (LaPsyDÉ), CNRS UMR 8240, Paris, France
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy.
| |
Collapse
|
8
|
Harper L, Strandberg O, Spotorno N, Nilsson M, Lindberg O, Hansson O, Santillo AF. Structural and functional connectivity associations with anterior cingulate sulcal variability. RESEARCH SQUARE 2024:rs.3.rs-3831519. [PMID: 38260469 PMCID: PMC10802698 DOI: 10.21203/rs.3.rs-3831519/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Sulcation of the anterior cingulate may be defined by presence of a paracingulate sulcus, a tertiary sulcus developing during the third gestational trimester with implications on cognitive function and disease. Methods In this retrospective analysis we examine task-free resting state functional connectivity and diffusion-weighted tract segmentation data from a cohort of healthy adults (< 60-year-old, n = 129), exploring the impact of ipsilateral paracingulate sulcal presence on structural and functional connectivity. Results Presence of a left paracingulate sulcus was associated with reduced fractional anisotropy in the left cingulum (P = 0.02) bundle and the peri-genual (P = 0.002) and dorsal (P = 0.03) but not the temporal cingulum bundle segments. Left paracingulate sulcal presence was associated with increased left peri-genual radial diffusivity (P = 0.003) and tract volume (P = 0.012). A significant, predominantly intraregional frontal component of altered resting state functional connectivity was identified in individuals possessing a left PCS (P = 0.01). Seed-based functional connectivity in pre-defined networks was not associated with paracingulate sulcal presence. Conclusion These results identify a novel association between neurodevelopmentally derived sulcation and altered structural connectivity in a healthy adult population with implications for conditions where this variation is of interest. Furthermore, they provide evidence of a link between the structural and functional connectivity of the brain in the presence of a paracingulate sulcus which may be mediated by a highly connected local functional network reliant on short association fibres.
Collapse
|
9
|
Harper L, de Boer S, Lindberg O, Lätt J, Cullen N, Clark L, Irwin D, Massimo L, Grossman M, Hansson O, Pijnenburg Y, McMillan CT, Santillo AF. Anterior cingulate sulcation is associated with onset and survival in frontotemporal dementia. Brain Commun 2023; 5:fcad264. [PMID: 37869576 PMCID: PMC10586312 DOI: 10.1093/braincomms/fcad264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/05/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023] Open
Abstract
Frontotemporal dementia is the second most common form of early onset dementia (<65 years). Despite this, there are few known disease-modifying factors. The anterior cingulate is a focal point of pathology in behavioural variant frontotemporal dementia. Sulcation of the anterior cingulate is denoted by the presence of a paracingulate sulcus, a tertiary sulcus developing, where present during the third gestational trimester and remaining stable throughout life. This study aims to examine the impact of right paracingulate sulcal presence on the expression and prognosis of behavioural variant frontotemporal dementia. This retrospective analysis drew its population from two clinical samples recruited from memory clinics at university hospitals in the USA and The Netherlands. Individuals with sporadic behavioural variant frontotemporal dementia were enrolled between 2000 and 2022 and followed up for an average of 7.71 years. T1-MRI data were evaluated for hemispheric paracingulate sulcal presence in accordance with an established protocol by two blinded raters. Outcome measures included age at onset, survival, cortical thickness and Frontotemporal Lobar Degeneration-modified Clinical Dementia Rating determined clinical disease progression. The study population consisted of 186 individuals with sporadic behavioural variant frontotemporal dementia (113 males and 73 females), mean age 63.28 years (SD 8.32). The mean age at onset was 2.44 years later in individuals possessing a right paracingulate sulcus [60.2 years (8.54)] versus individuals who did not [57.76 (8.05)], 95% confidence interval > 0.41, P = 0.02. Education was not associated with age at onset (β = -0.05, P = 0.75). The presence of a right paracingulate sulcus was associated with an 83% increased risk of death per year after age at onset (hazard ratio 1.83, confidence interval [1.09-3.07], P < 0.02), whilst the mean age at death was similar for individuals with a present and absent right paracingulate sulcus (P = 0.7). Right paracingulate sulcal presence was not associated with baseline cortical thickness. Right paracingulate sulcal presence is associated with disease expression and survival in sporadic behavioural variant frontotemporal dementia. Findings provide evidence of neurodevelopmental brain reserve in behavioural variant frontotemporal dementia that may be important in the design of trials for future therapeutic approaches.
Collapse
Affiliation(s)
- Luke Harper
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| | - Sterre de Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam 1105 BA, The Netherlands
| | - Olof Lindberg
- Division of Clinical Geriatrics, Karolinska Institute, Stockholm 17165, Sweden
| | - Jimmy Lätt
- Centre for Medical Imaging and Physiology, Skane University Hospital, Lund 22242, Sweden
| | - Nicholas Cullen
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| | - Lyles Clark
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Irwin
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Massimo
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 22100, Sweden
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam 1105 BA, The Netherlands
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center (FTDC), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| |
Collapse
|
10
|
Harper L, de Boer S, Lindberg O, Lätt J, Cullen N, Clark L, Irwin D, Massimo L, Grossman M, Hansson O, Pijnenburg Y, McMillan CT, Santillo AF. Anterior cingulate sulcation is associated with onset and survival in frontotemporal dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.30.23287945. [PMID: 37034647 PMCID: PMC10081407 DOI: 10.1101/2023.03.30.23287945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Frontotemporal dementia is the second most common form of early onset dementia (< 65 years). Despite this there are few known disease modifying factors. The anterior cingulate is a focal point of pathology in behavioural variant frontotemporal dementia. Sulcation of the anterior cingulate is denoted by the presence of a paracingulate sulcus, a tertiary sulcus developing, where present during the third gestational trimester and remaining stable throughout life. This study aims to examine the impact of right paracingulate sulcal presence on the expression and prognosis of behavioural variant Frontotemporal Dementia. Methods This retrospective analysis drew it's population from two clinical samples recruited from memory clinics at University Hospitals in The United States of America and The Netherlands. Individuals with sporadic behavioural variant Frontotemporal Dementia were enrolled between 2004 and 2022 and followed up for an average of 7.71 years. T1-MRI data were evaluated for hemispheric paracingulate sulcal presence in accordance with an established protocol by two blinded raters. Outcome measures included age at onset, survival, cortical thickness, and Frontotemporal Lobar Degeneration-modified Clinical Dementia Rating determined clinical disease progression. Results The study population consisted of 186 individuals with sporadic behavioural variant Frontotemporal Dementia, (113 males and 73 females) mean age 63.28 years (SD 8.32). The mean age at onset was 2.44 years later in individuals possessing a right paracingulate sulcus (60.2 years (SD 8.54)) versus individuals who did not (57.76 (8.05)), 95% CI >0.41, P = 0.02. Education was not associated with age at onset (β = -0.05, P =0.75). Presence of a right paracingulate sulcus was associated with a 119% increased risk of death per year after age at onset (HR 2.19, CI [1.21 - 3.96], P <0.01), whilst the mean age at death was similar for individuals with a present and absent right paracingulate sulcus ( P = 0.7). Right paracingulate sulcal presence was not associated with baseline cortical thickness. Conclusion Right paracingulate sulcal presence is associated with disease expression and survival in sporadic behavioural variant Frontotemporal Dementia. Findings provide evidence of neurodevelopmental brain reserve in behavioural variant Frontotemporal Dementia which may be important in the design of trials for future therapeutic approaches.
Collapse
|
11
|
Baizer JS, Witelson SF. Comparative analysis of four nuclei in the human brainstem: Individual differences, left-right asymmetry, species differences. Front Neuroanat 2023; 17:1069210. [PMID: 36874056 PMCID: PMC9978016 DOI: 10.3389/fnana.2023.1069210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction It is commonly thought that while the organization of the cerebral cortex changes dramatically over evolution, the organization of the brainstem is conserved across species. It is further assumed that, as in other species, brainstem organization is similar from one human to the next. We will review our data on four human brainstem nuclei that suggest that both ideas may need modification. Methods We have studied the neuroanatomical and neurochemical organization of the nucleus paramedianus dorsalis (PMD), the principal nucleus of the inferior olive (IOpr), the arcuate nucleus of the medulla (Arc) and the dorsal cochlear nucleus (DC). We compared these human brainstem nuclei to nuclei in other mammals including chimpanzees, monkeys, cats and rodents. We studied human cases from the Witelson Normal Brain collection using Nissl and immunostained sections, and examined archival Nissl and immunostained sections from other species. Results We found significant individual variability in the size and shape of brainstem structures among humans. There is left-right asymmetry in the size and appearance of nuclei, dramatically so in the IOpr and Arc. In humans there are nuclei, e.g., the PMD and the Arc, not seen in several other species. In addition, there are brainstem structures that are conserved across species but show major expansion in humans, e.g., the IOpr. Finally, there are nuclei, e.g. the DC, that show major differences in structure among species. Discussion Overall, the results suggest several principles of human brainstem organization that distinguish humans from other species. Studying the functional correlates of, and the genetic contributions to, these brainstem characteristics are important future research directions.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Sandra F Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Del Mauro G, Del Maschio N, Abutalebi J. The relationship between reading abilities and the left occipitotemporal sulcus: A dual perspective study. BRAIN AND LANGUAGE 2022; 235:105189. [PMID: 36260960 DOI: 10.1016/j.bandl.2022.105189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Reading activates a region within the left lateral occipitotemporal sulcus (OTS) known as the 'visual word form area' (VWFA). While several studies have investigated the impact of reading on brain structure through neuroplastic mechanisms, it has been recently suggested that individual differences in the pattern of the posterior OTS may predict reading skills in adults. In the present study, we first examined whether the structure and morphology and the anatomical connectivity of the left OTS are associated to reading ability. Second, we explored whether reading skills are predicted by the pattern of the left OTS. We found that reading skills were positively associated with increased connectivity between the left OTS and a network of reading-related regions in the left hemisphere. On the other hand, we did not observe an association between the pattern of the left OTS and reading skills. Finally, we found evidence that the morphology and the connectivity of the left OTS are correlated to its sulcal pattern.
Collapse
Affiliation(s)
- Gianpaolo Del Mauro
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Facultyof Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Facultyof Psychology, Vita-Salute San Raffaele University, Milan, Italy; TheArctic University of Norway, Tromsø, Norway.
| |
Collapse
|
13
|
Fedeli D, Del Maschio N, Del Mauro G, Defendenti F, Sulpizio S, Abutalebi J. Cingulate cortex morphology impacts on neurofunctional activity and behavioral performance in interference tasks. Sci Rep 2022; 12:13684. [PMID: 35953536 PMCID: PMC9372177 DOI: 10.1038/s41598-022-17557-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Inhibitory control is the capacity to withhold or suppress a thought or action intentionally. The anterior Midcingulate Cortex (aMCC) participates in response inhibition, a proxy measure of inhibitory control. Recent research suggests that response inhibition is modulated by individual variability in the aMCC sulcal morphology. However, no study has investigated if this phenomenon is associated with neurofunctional differences during a task. In this study, 42 participants performed an Attention Network Task and a Numerical Stroop task in an MRI scanner. We investigated differences in brain activity and response inhibition efficiency between individuals with symmetric and asymmetric aMCC sulcal patterns. The results showed that aMCC morphological variability is partly associated with inhibitory control, and revealed greater activation in individuals with symmetric patterns during the Stroop task. Our findings provide novel insights into the functional correlates of the relationship between aMCC morphology and executive abilities.
Collapse
Affiliation(s)
- Davide Fedeli
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Gianpaolo Del Mauro
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Federica Defendenti
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Simone Sulpizio
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
14
|
Baizer JS, Webster CJ, Witelson SF. Individual variability in the size and organization of the human arcuate nucleus of the medulla. Brain Struct Funct 2021; 227:159-176. [PMID: 34613435 DOI: 10.1007/s00429-021-02396-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
The arcuate nucleus (Arc) of the medulla is found in almost all human brains and in a small percentage of chimpanzee brains. It is absent in the brains of other mammalian species including mice, rats, cats, and macaque monkeys. The Arc is classically considered a precerebellar relay nucleus, receiving input from the cerebral cortex and projecting to the cerebellum via the inferior cerebellar peduncle. However, several studies have found aplasia of the Arc in babies who died of SIDS (Sudden Infant Death Syndrome), and it was suggested that the Arc is the locus of chemosensory neurons critical for brainstem control of respiration. Aplasia of the Arc, however, has also been reported in adults, suggesting that it is not critical for survival. We have examined the Arc in closely spaced Nissl-stained sections in thirteen adult human cases to acquire a better understanding of the degree of variability of its size and location in adults. We have also examined immunostained sections to look for neurochemical compartments in this nucleus. Caudally, neurons of the Arc are ventrolateral to the pyramidal tracts (py); rostrally, they are ventro-medial to the py and extend up along the midline. In some cases, the Arc is discontinuous, with a gap between sections with the ventrolaterally located and the ventromedially located neurons. In all cases, there is some degree of left-right asymmetry in Arc position, size, and shape at all rostro-caudal levels. Somata of neurons in the Arc express calretinin (CR), neuronal nitric oxide synthase (nNOS), and nonphosphorylated neurofilament protein (NPNFP). Calbindin (CB) is expressed in puncta whereas there is no expression of parvalbumin (PV) in somata or puncta. There is also immunostaining for GAD and GABA receptors suggesting inhibitory input to Arc neurons. These properties were consistent among cases. Our data show differences in location of caudal and rostral Arc neurons and considerable variability among cases in the size and shape of the Arc. The variability in size suggests that "hypoplasia" of the Arc is difficult to define. The discontinuity of the Arc in many cases suggests that establishing aplasia of the Arc requires examination of many closely spaced sections through the brainstem.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 123 Sherman Hall, South Campus, Buffalo, NY, 14214, USA.
| | - Charles J Webster
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 123 Sherman Hall, South Campus, Buffalo, NY, 14214, USA
| | - Sandra F Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
15
|
Del Maschio N, Sulpizio S, Abutalebi J. Thinking outside the box: The brain-bilingualism relationship in the light of early neurobiological variability. BRAIN AND LANGUAGE 2020; 211:104879. [PMID: 33080496 DOI: 10.1016/j.bandl.2020.104879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/01/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Bilingualism represents a distinctive way to investigate the interplay between brain and behaviour, and an elegant model to study the role of environmental factors in shaping this relationship. Past neuroimaging research has mainly focused on how bilingualism influences brain structure, and how eventually the brain accommodates a second language. In this paper, we discuss a more recent contribution to the field which views bilingualism as lens to understand brain-behaviour mappings from a different perspective. It has been shown, in contexts not related to bilingualism, that cognitive performance across several domains can be predicted by neuroanatomical variants determined prenatally and largely impervious to postnatal changes. Here, we discuss novel findings indicating that bilingualism modulates the predictive role of these variants on domain-specific cognition. The repercussions of these findings are potentially far-reaching on multiple levels, and highlight the need to shape more complex questions for progress in cognitive neuroscience approaches to bilingualism.
Collapse
Affiliation(s)
- Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, University Vita-Salute San Raffaele, Milano, Italy
| | - Simone Sulpizio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, University Vita-Salute San Raffaele, Milano, Italy; Department of Psychology, University of Milano-Bicocca, Milano, Italy
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, University Vita-Salute San Raffaele, Milano, Italy; The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|