1
|
Taran N, Gatenyo R, Hadjadj E, Farah R, Horowitz-Kraus T. Distinct connectivity patterns between perception and attention-related brain networks characterize dyslexia: Machine learning applied to resting-state fMRI. Cortex 2024; 181:216-232. [PMID: 39566125 PMCID: PMC11614717 DOI: 10.1016/j.cortex.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 11/22/2024]
Abstract
Diagnosis of dyslexia often occurs in late schooling years, leading to academic and psychological challenges. Furthermore, diagnosis is time-consuming, costly, and reliant on arbitrary cutoffs. On the other hand, automated algorithms hold great potential in medical and psychological diagnostics. The aim of the present study was to develop a machine learning tool for the detection of dyslexia in children based on the intrinsic connectivity patterns of different brain networks underlying perception and attention. Here, 117 children (8-12 years old; 58 females; 52 typical readers; TR and 65 children with dyslexia) completed cognitive and reading assessments and underwent 10 min of resting-state fMRI. Functional connectivity coefficients between 264 brain regions were used as features for machine learning. Different supervised algorithms were employed for classification of children with and without dyslexia. A classifier trained on dorsal attention network features exhibited the highest performance (accuracy .79, sensitivity .92, specificity .64). Auditory, visual, and fronto-parietal network-based classification showed intermediate accuracy levels (70-75%). These results highlight significant neurobiological differences in brain networks associated with visual attention between TR and children with dyslexia. Distinct neural integration patterns can differentiate dyslexia from typical development, which may be utilized in the future as a biomarker for the presence and/or severity of dyslexia.
Collapse
Affiliation(s)
- Nikolay Taran
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Rotem Gatenyo
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Emmanuelle Hadjadj
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Rola Farah
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Kennedy Krieger Institute, Baltimore, MD 21205, USA; Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
2
|
Lee MM, Stoodley CJ. Neural bases of reading fluency: A systematic review and meta-analysis. Neuropsychologia 2024; 202:108947. [PMID: 38964441 DOI: 10.1016/j.neuropsychologia.2024.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Reading fluency, the ability to read quickly and accurately, is a critical marker of successful reading and is notoriously difficult to improve in reading disabled populations. Despite its importance to functional literacy, fluency is a relatively under-studied aspect of reading, and the neural correlates of reading fluency are not well understood. Here, we review the literature of the neural correlates of reading fluency as well as rapid automatized naming (RAN), a task that is robustly related to reading fluency. In a qualitative review of the neuroimaging literature, we evaluated structural and functional MRI studies of reading fluency in readers from a range of skill levels. This was followed by a quantitative activation likelihood estimate (ALE) meta-analysis of fMRI studies of reading speed and RAN measures. We anticipated that reading speed, relative to untimed reading and reading-related tasks, would harness ventral reading pathways that are thought to enable the fast, visual recognition of words. The qualitative review showed that speeded reading taps the entire canonical reading network. The meta-analysis indicated a stronger role of the ventral reading pathway in rapid reading and rapid naming. Both reviews identified regions outside the canonical reading network that contribute to reading fluency, such as the bilateral insula and superior parietal lobule. We suggest that fluent reading engages both domain-specific reading pathways as well as domain-general regions that support overall task performance and discuss future avenues of research to expand our understanding of the neural bases of fluent reading.
Collapse
Affiliation(s)
- Marissa M Lee
- Department of Neuroscience, American University, USA; Center for Applied Brain and Cognitive Sciences, Tufts University, USA
| | - Catherine J Stoodley
- Department of Neuroscience, American University, USA; Developing Brain Institute, Children's National Hospital, USA; Departments of Neurology and Pediatrics, The George Washington University School of Medicine and Health Sciences, USA.
| |
Collapse
|
3
|
Lin Z, Li X, Qi G, Yang J, Sun H, Guo Q, Wu J, Xu M. Phonological properties of logographic words modulate brain activation in bilinguals: a comparative study of Chinese characters and Japanese Kanji. Cereb Cortex 2024; 34:bhae150. [PMID: 38652552 PMCID: PMC11037275 DOI: 10.1093/cercor/bhae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
The brain networks for the first (L1) and second (L2) languages are dynamically formed in the bilingual brain. This study delves into the neural mechanisms associated with logographic-logographic bilingualism, where both languages employ visually complex and conceptually rich logographic scripts. Using functional Magnetic Resonance Imaging, we examined the brain activity of Chinese-Japanese bilinguals and Japanese-Chinese bilinguals as they engaged in rhyming tasks with Chinese characters and Japanese Kanji. Results showed that Japanese-Chinese bilinguals processed both languages using common brain areas, demonstrating an assimilation pattern, whereas Chinese-Japanese bilinguals recruited additional neural regions in the left lateral prefrontal cortex for processing Japanese Kanji, reflecting their accommodation to the higher phonological complexity of L2. In addition, Japanese speakers relied more on the phonological processing route, while Chinese speakers favored visual form analysis for both languages, indicating differing neural strategy preferences between the 2 bilingual groups. Moreover, multivariate pattern analysis demonstrated that, despite the considerable neural overlap, each bilingual group formed distinguishable neural representations for each language. These findings highlight the brain's capacity for neural adaptability and specificity when processing complex logographic languages, enriching our understanding of the neural underpinnings supporting bilingual language processing.
Collapse
Affiliation(s)
- Zhenglong Lin
- School of Psychology, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, Guangdong, China
| | - Xiujun Li
- School of Computer Science and Technology, Changchun University of Science and Technology, Weixing Road 7186, Changchun 130022, Jilin, China
| | - Geqi Qi
- Department of Psychology, College of Education Science, Inner Mongolia Normal University, West College Road 235, Huhhot 010021, Inner Mongolia, China
| | - Jiajia Yang
- Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University, 2-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang 110055, Liaoning, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang 110055, Liaoning, China
| | - Jinglong Wu
- Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University, 2-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- Key Laboratory of Biomimetic Robots and System, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Zhongguancun South Street No 5, Beijing 100811, China
| | - Min Xu
- School of Psychology, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, Guangdong, China
| |
Collapse
|
4
|
Hashimoto T, Hotta R, Kawashima R. Enhanced memory and hippocampal connectivity in humans 2 days after brief resistance exercise. Brain Behav 2024; 14:e3436. [PMID: 38383042 PMCID: PMC10881282 DOI: 10.1002/brb3.3436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
INTRODUCTION Exercise has significant health benefits and can enhance learning. A single bout of high-intensity resistance training may be sufficient to improve memory. This study aimed to assess memory enhancement by a single bout of high-intensity resistance training and to examine the neural underpinnings using resting-state functional magnetic resonance imaging (MRI). METHODS Sixty young adults (34 men and 26 women), divided into the training and control groups, participated. The first session included verbal memory recall tests (cued- and free-recall), resting-state functional MRI (rs-fMRI), and a single-bout high-intensity resistance training for the training group. Two days later, they underwent post-intervention memory tests and rs-fMRI. The study design was 2 groups × 2 sessions for memory tests, and within training group comparisons for rs-fMRI. RESULTS Compared to the control group without resistance training, the training group showed higher cued-recall performance 2 days after the brief resistance training (training: +0.27, control: -0.13, interaction: p = .01), and their free-recall scores were associated with enhanced left posterior hippocampal connectivity (r = .64, p < .001). CONCLUSIONS These results suggest that brief high-intensity resistance exercise/strength training could enhance memory without repeated exercising. The quick effect of resistance training on memory and hippocampal connectivity could be revealed. A focused and one-shot exercise may be sufficient to enhance memory performance and neural plasticity in a few days.
Collapse
Affiliation(s)
- Teruo Hashimoto
- Department of Functional Brain Imaging, Institute Development, Aging and CancerTohoku UniversitySendaiJapan
| | | | - Ryuta Kawashima
- Department of Functional Brain Imaging, Institute Development, Aging and CancerTohoku UniversitySendaiJapan
| |
Collapse
|
5
|
Packheiser J, Papadatou-Pastou M, Koufaki A, Paracchini S, Stein CC, Schmitz J, Ocklenburg S. Elevated levels of mixed-hand preference in dyslexia: Meta-analyses of 68 studies. Neurosci Biobehav Rev 2023; 154:105420. [PMID: 37783301 DOI: 10.1016/j.neubiorev.2023.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Since almost a hundred years, psychologists have investigated the link between hand preference and dyslexia. We present a meta-analysis to determine whether there is indeed an increase in atypical hand preference in dyslexia. We included studies used in two previous meta-analyses (Bishop, 1990; Eglinton & Annett, 1994) as well as studies identified through PubMed MEDLINE, PsycInfo, Google Scholar, and Web of Science up to August 2022. K = 68 studies (n = 4660 individuals with dyslexia; n = 40845 controls) were entered into three random effects meta-analyses using the odds ratio as the effect size (non-right-handers; left-handers; mixed-handers vs. total). Evidence of elevated levels of atypical hand preference in dyslexia emerged that were especially pronounced for mixed-hand preference (OR = 1.57), although this category was underdefined. Differences in (direction or degree) of hand skill or degree of hand preference could not be assessed as no pertinent studies were located. Our findings allow for robust conclusions only for a relationship of mixed-hand preference with dyslexia.
Collapse
Affiliation(s)
- Julian Packheiser
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Marietta Papadatou-Pastou
- School of Education, National and Kapodistrian University of Athens, Athens, Greece; BioMedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Angeliki Koufaki
- School of Education, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Clara C Stein
- Division of Forensic Psychiatry, Department of Psychiatry, Psychotherapy, and Preventive Medicine, LWL-University Hospital Bochum, Bochum, Germany
| | - Judith Schmitz
- Biological Personality Psychology, Georg-August-University Goettingen, Goettingen, Germany
| | - Sebastian Ocklenburg
- Department of Psychology, Medical School Hamburg, Hamburg, Germany; ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany; Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Greenwood P, Hutton J, Dudley J, DiFrancesco M, Farah R, Altaye M, Horowitz-Kraus T. Maternal education as an environmental factor related to reading in children with reading difficulties: A functional magnetic resonance imaging study. DYSLEXIA (CHICHESTER, ENGLAND) 2023; 29:217-234. [PMID: 37264693 DOI: 10.1002/dys.1744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/29/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
The expanded simple view of reading (SVR) model suggests that word decoding, language comprehension and executive functions are necessary for reading comprehension. Children with reading difficulties (RDs) often have deficits in critical components of reading established in the expanded SVR model and alterations in brain function of reading-related regions. Maternal education could provide children with advantageous educational opportunities or resources that support reading acquisition. The primary goal of this study was to examine the contributions of maternal education to the behavioural and neurobiological correlates of the expanded SVR model. Seventy-two 8- to 12-year-old children with RDs and typical readers (TRs) completed reading, behavioural and an functional magnetic resonance imaging stories-listening task to determine the functional connectivity of the receptive language network to the whole brain in association with maternal education. Higher maternal education was associated with better vocabulary in children with RDs and positive functional connectivity between the receptive language network and regions related to visual processing in children with RDs versus TRs. These data suggest that maternal education supports the ability to comprehend oral language and engagement of neural networks that support imagination/visualization in children with RDs.
Collapse
Affiliation(s)
- Paige Greenwood
- Reading and Literacy Discovery Center, Pediatric Neuroimaging Research Consortium, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - John Hutton
- Reading and Literacy Discovery Center, Pediatric Neuroimaging Research Consortium, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jonathan Dudley
- Reading and Literacy Discovery Center, Pediatric Neuroimaging Research Consortium, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mark DiFrancesco
- Reading and Literacy Discovery Center, Pediatric Neuroimaging Research Consortium, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rola Farah
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Mekibib Altaye
- Reading and Literacy Discovery Center, Pediatric Neuroimaging Research Consortium, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Dynamic functional connectivity associated with prospective memory success in children. NEUROIMAGE: REPORTS 2022. [DOI: 10.1016/j.ynirp.2022.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Hashimoto T, Yokota S, Matsuzaki Y, Kawashima R. Intrinsic hippocampal functional connectivity underlying rigid memory in children and adolescents with autism spectrum disorder: A case-control study. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 25:1901-1912. [PMID: 33779333 PMCID: PMC8419294 DOI: 10.1177/13623613211004058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atypical learning and memory in early life can promote atypical behaviors in later life. Less relational learning and inflexible retrieval in childhood may enhance restricted and repeated behaviors in patients with autism spectrum disorder. The purpose of this study was to elucidate the mechanisms of atypical memory in children with autism spectrum disorder. We conducted picture–name pair learning and delayed-recognition tests with two groups: one group with high-functioning autism spectrum disorder children (aged 7–16, n = 41) and one group with typically developing children (n = 82) that matched the first group’s age, sex, and IQ. We assessed correlations between successful recognition scores and seed-to-whole-brain resting-state functional connectivity. Although both learning and retrieval performances were comparable between the two groups, we observed slightly lower category learning and significantly fewer memory gains in the autism spectrum disorder group than in the typically developing group. The right canonical anterior hippocampal network was involved in successful memory in youths with typically developing, while other memory systems may be involved in successful memory in youths with autism spectrum disorder. Context-independent and less relational memory processing may be associated with fewer memory gains in autism spectrum disorder. These atypical memory characteristics in autism spectrum disorder may accentuate their inflexible behaviors in some situations.
Collapse
|