1
|
Hengst JA, Ruiz-Velasco VJ, Raup-Konsavage WM, Vrana KE, Yun JK. Cannabinoid-Induced Immunogenic Cell Death of Colorectal Cancer Cells Through De Novo Synthesis of Ceramide Is Partially Mediated by CB2 Receptor. Cancers (Basel) 2024; 16:3973. [PMID: 39682160 DOI: 10.3390/cancers16233973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Our recent studies have identified a link between sphingolipid metabolites and the induction of a specialized form of regulated cell death termed immunogenic cell death (ICD). We have recently demonstrated that the synthetic cannabinoid (±) 5-epi CP 55,940 (5-epi) stimulates the accumulation of ceramide (Cer), and that inhibition of sphingosine kinase 1 (SphK1) enhances Cer accumulation and ICD-induction in human colorectal cancer (CRC) cell lines. Methods: We employed flow-cytometric, western blot analyses, pharmacological inhibitors of the sphingolipid metabolic pathway and small molecule agonists and antagonists of the CB receptors to further analyze the mechanism by which 5-epi induces Cer accumulation. Results: Herein, and report that 5-epi induces de novo synthesis of Cer primarily through engagement of the cannabinoid receptor 2 (CB2) and depletion of intracellular calcium levels. Moreover, we report that 5-epi stimulates Cer synthesis through dysregulation of the endogenous inhibitor of the de novo Cer pathway, ORMDL3. We also observed a remarkable and specific accumulation of one Cer species, C20:4 Cer, generated predominantly by ceramide synthase 4, as a key factor required for 5-epi-induced ICD. Conclusions: Together, these data indicate that engagement of CB2, by 5-epi, alters regulation of the de novo ceramide synthesis pathway to generate Cer species that mediate ICD.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Department of Pediatrics, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Victor J Ruiz-Velasco
- Department of Anesthesiology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Wesley M Raup-Konsavage
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Kent E Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jong K Yun
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
2
|
Carkaci-Salli N, Raup-Konsavage WM, Karelia D, Sun D, Jiang C, Lu J, Vrana KE. Cannabinoids as Potential Cancer Therapeutics: The Concentration Conundrum. Cannabis Cannabinoid Res 2024; 9:e1159-e1169. [PMID: 36944160 DOI: 10.1089/can.2022.0344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Background: Studies have reported that cannabinoids, in particular Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), significantly reduce cancer cell viability in vitro. Unfortunately, treatment conditions vary significantly across reports. In particular, a majority of reports utilize conditions with reduced serum concentrations (0-3%) that may compromise the growth of the cells themselves, as well as the observed results. Objectives: This study was designed to test the hypothesis that, based on their known protein binding characteristics, cannabinoids would be less effective in the presence of fetal bovine serum (FBS). Moreover, we wished to determine if the treatments served to be cytotoxic or cytostatic under these conditions. Methods: Six cancer cell lines, representing two independent lines of three different types of cancer (glioblastoma, melanoma, and colorectal cancer [CRC]), were treated with 10 μM pure Δ9-THC, CBD, KM-233, and HU-331 for 48 h (in the presence or absence of FBS). Cell viability was measured with the MTT assay. Dose-response curves were then generated comparing the potencies of the four cannabinoids under the same conditions. Results: We found that serum-free medium alone produces cell cycle arrest for CRC cells and slows cell growth for the other cancer types. The antineoplastic effects of three of the four cannabinoids (Δ9-THC, CBD, and KM-233) increase when serum is omitted from the media. In addition, dose-response curves for these drugs demonstrated lower IC50 values for serum-free media compared with the media with 10% serum in all cell lines. The fourth compound, HU-331, was equally effective under both conditions. A further confound we observed is that omission of serum produces dramatic binding of Δ9-THC and CBD to plastic. Conclusions: Treatment of cancer cells in the absence of FBS appears to enhance the potency of cannabinoids. However, omission of FBS itself compromises cell growth and represents a less physiological condition. Given the knowledge that cannabinoids are 90-95% protein bound and have well-known affinities for plastic, it may be ill-advised to treat cells under conditions where the cells are not growing optimally and where known concentrations cannot be assumed (i.e., FBS-free conditions).
Collapse
Affiliation(s)
- Nurgul Carkaci-Salli
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | | - Deepkamal Karelia
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Dongxiao Sun
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Cheng Jiang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Junxuan Lu
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kent E Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
3
|
Carter TH, Weyer-Nichols CE, Garcia-Sanchez JI, Wilson K, Nagarkatti P, Nagarkatti M. Delta-9-Tetrahydrocannabinol Blocks Bone Marrow-Derived Macrophage Differentiation through Elimination of Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:887. [PMID: 39199132 PMCID: PMC11352128 DOI: 10.3390/antiox13080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Macrophages are vital components of the immune system and serve as the first line of defense against pathogens. Macrophage colony-stimulating factor (M-CSF) induces macrophage differentiation from bone marrow-derived cells (BMDCs). Δ9-tetrahydrocannabiol (THC), a phytocannabinoid from the Cannabis plant, has profound anti-inflammatory properties with significant effects on myeloid cells. To investigate the effect of THC on macrophage differentiation, we cultured BMDCs with M-CSF in the presence of THC. Interestingly, THC markedly blocked the differentiation of BMDCs into CD45 + CD11b + F4/80+ macrophages. The effect of THC was independent of cannabinoid receptors CB1, and CB2, as well as other potential receptors such as GPR18, GPR55, and Adenosine 2A Receptor. RNA-seq analysis revealed that the THC-treated BMDCs displayed a significant increase in the expression of NRF2-ARE-related genes. KEGG pathway analysis revealed that the expression profiles of THC-treated cells correlated with ferroptosis and glutathione metabolism pathways. Fluorescence-based labile iron assays showed that the THC-treated BMDCs had significantly increased iron levels. Finally, THC-exposed BMDCs showed decreased levels of intracellular ROS. THC has the unique molecular property to block the Fenton Reaction, thus preventing the increase in intracellular ROS that is normally induced by high iron levels. Together, these studies demonstrated that THC blocks M-CSF-induced macrophage differentiation by inhibiting ROS production through both the induction of NRF2-ARE-related gene expression and the prevention of ROS formation via the Fenton Reaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Mitzi Nagarkatti
- Department of Pathology Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (T.H.C.); (C.E.W.-N.); (J.I.G.-S.); (K.W.); (P.N.)
| |
Collapse
|
4
|
Cherkasova V, Ilnytskyy Y, Kovalchuk O, Kovalchuk I. Targeting Colorectal Cancer: Unravelling the Transcriptomic Impact of Cisplatin and High-THC Cannabis Extract. Int J Mol Sci 2024; 25:4439. [PMID: 38674023 PMCID: PMC11050262 DOI: 10.3390/ijms25084439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Cisplatin and other platinum-derived chemotherapy drugs have been used for the treatment of cancer for a long time and are often combined with other medications. Unfortunately, tumours often develop resistance to cisplatin, forcing scientists to look for alternatives or synergistic combinations with other drugs. In this work, we attempted to find a potential synergistic effect between cisplatin and cannabinoid delta-9-THC, as well as the high-THC Cannabis sativa extract, for the treatment of HT-29, HCT-116, and LS-174T colorectal cancer cell lines. However, we found that combinations of the high-THC cannabis extract with cisplatin worked antagonistically on the tested colorectal cancer cell lines. To elucidate the mechanisms of drug interactions and the distinct impacts of individual treatments, we conducted a comprehensive transcriptomic analysis of affected pathways within the colorectal cancer cell line HT-29. Our primary objective was to gain a deeper understanding of the underlying molecular mechanisms associated with each treatment modality and their potential interactions. Our findings revealed an antagonistic interaction between cisplatin and high-THC cannabis extract, which could be linked to alterations in gene transcription associated with cell death (BCL2, BAD, caspase 10), DNA repair pathways (Rad52), and cancer pathways related to drug resistance.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (V.C.); (Y.I.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (V.C.); (Y.I.)
| |
Collapse
|
5
|
Karelia D, Corey Z, Wang H, Raup-Konsavage WM, Vrana KE, Lü J, Jiang C. Library Screening and Preliminary Characterization of Synthetic Cannabinoids Against Prostate and Pancreatic Cancer Cell Lines. Cannabis Cannabinoid Res 2024; 9:523-536. [PMID: 36880938 DOI: 10.1089/can.2022.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Background: Our previous screening efforts with colorectal cancer cell lines suggested potential cannabinoid therapeutic leads for other solid cancers. Objectives: The aim of this study was to identify cannabinoid lead compounds that have cytostatic and cytocidal activities against prostate and pancreatic cancer cell lines and profile cellular responses and molecular pathways of select leads. Materials and Methods: A library of 369 synthetic cannabinoids was screened against 4 prostate and 2 pancreatic cancer cell lines with 48 h of exposure at 10 μM in medium with 10% fetal bovine serum using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) viability assay. Concentration titration of the top 6 hits was carried out to identify their concentration-response patterns and calculate IC50 values. Three select leads were examined for cell cycle, apoptosis, and autophagy responses. The role of cannabinoid receptors (CB1 and CB2) and noncanonical receptors in apoptosis signaling was examined with selective antagonists. Results: Two independent screening experiments in each cell line detected growth inhibitory activities against all six or a majority of cancer cell lines for HU-331 (a known cannabinoid topoisomerase II inhibitor), (±)5-epi-CP55,940, and PTI-2, each previously identified in our colorectal cancer study. 5-Fluoro NPB-22, FUB-NPB-22, and LY2183240 were novel hits. Morphologically and biochemically, (±)5-epi-CP55,940 elicited caspase-mediated apoptosis of PC-3-luc2 (a PC-3 subline with luciferase) prostate cancer and Panc-1 pancreatic cancer cell lines, each the most aggressive of the respective organ site. The apoptosis induced by (±)5-epi-CP55,940 was abolished by the CB2 antagonist, SR144528, but not modulated by the CB1 antagonist, rimonabant, and GPR55 antagonist, ML-193, nor TRPV1 antagonist, SB-705498. In contrast, 5-fluoro NPB-22 and FUB-NPB-22 did not cause substantial apoptosis in either cell line, but resulted in cytosolic vacuoles and increased LC3-II formation (suggestive of autophagy) and S and G2/M cell cycle arrests. Combining each fluoro compound with an autophagy inhibitor, hydroxychloroquine, enhanced the apoptosis. Conclusions: 5-Fluoro NPB-22, FUB-NPB-22, and LY2183240 represent new leads against prostate and pancreatic cancer cells in addition to the previously reported compounds, HU-331, (±)5-epi-CP55,940, and PTI-2. Mechanistically, the two fluoro compounds and (±)5-epi-CP55,940 differed regarding their structures, CB receptor involvement, and death/fate responses and signaling. Safety and antitumor efficacy studies in animal models are warranted to guide further R&D.
Collapse
Affiliation(s)
- Deepkamal Karelia
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
| | - Zachary Corey
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Haifeng Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wesley M Raup-Konsavage
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
| | - Kent E Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
| | - Junxuan Lü
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Cheng Jiang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Pennsylvania-Designated Medical Marijuana Academic Clinical Research Center at Penn State, Hershey, Pennsylvania, USA
| |
Collapse
|
6
|
Cherkasova V, Ilnytskyy Y, Kovalchuk O, Kovalchuk I. Transcriptome Analysis of Cisplatin, Cannabidiol, and Intermittent Serum Starvation Alone and in Various Combinations on Colorectal Cancer Cells. Int J Mol Sci 2023; 24:14743. [PMID: 37834191 PMCID: PMC10572413 DOI: 10.3390/ijms241914743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Platinum-derived chemotherapy medications are often combined with other conventional therapies for treating different tumors, including colorectal cancer. However, the development of drug resistance and multiple adverse effects remain common in clinical settings. Thus, there is a necessity to find novel treatments and drug combinations that could effectively target colorectal cancer cells and lower the probability of disease relapse. To find potential synergistic interaction, we designed multiple different combinations between cisplatin, cannabidiol, and intermittent serum starvation on colorectal cancer cell lines. Based on the cell viability assay, we found that combinations between cannabidiol and intermittent serum starvation, cisplatin and intermittent serum starvation, as well as cisplatin, cannabidiol, and intermittent serum starvation can work in a synergistic fashion on different colorectal cancer cell lines. Furthermore, we analyzed differentially expressed genes and affected pathways in colorectal cancer cell lines to understand further the potential molecular mechanisms behind the treatments and their interactions. We found that synergistic interaction between cannabidiol and intermittent serum starvation can be related to changes in the transcription of genes responsible for cell metabolism and cancer's stress pathways. Moreover, when we added cisplatin to the treatments, there was a strong enrichment of genes taking part in G2/M cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (V.C.); (Y.I.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (V.C.); (Y.I.)
| |
Collapse
|
7
|
Sirbu CA, Georgescu R, Pleşa FC, Paunescu A, Marilena Ţânţu M, Nicolae AC, Caloianu I, Mitrica M. Cannabis and Cannabinoids in Multiple Sclerosis: From Experimental Models to Clinical Practice-A Review. Am J Ther 2023; 30:e220-e231. [PMID: 37278703 DOI: 10.1097/mjt.0000000000001568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND As far as 80% of people diagnosed with multiple sclerosis (MS) experience disabling symptoms in the course of the disease, such as spasticity and neuropathic pain. As first-line symptomatic therapy is associated with important adverse reactions, cannabinoids have become increasingly popular among patients with MS. This review intends to provide an overview of the evidence of the role of cannabinoids in treating symptoms related to MS and to encourage further research on this matter. AREAS OF UNCERTAINTY To date, the evidence supporting the role of cannabis and its derivatives in alleviating the MS-related symptoms comes only from studies on experimental models of demyelination. To the best of our knowledge, relatively few clinical trials inquired about the therapeutic effects of cannabinoids on patients with MS, with variable results. DATA SOURCES We conducted a literature search through PubMed and Google Scholar from the beginning until 2022. We included articles in English describing the latest findings regarding the endocannabinoid system, the pharmacology of cannabinoids, and their therapeutic purpose in MS. RESULTS Evidence from preclinical studies showed that cannabinoids can limit the demyelination process, promote remyelination, and have anti-inflammatory properties by reducing immune cell infiltration of the central nervous system in mice with experimental autoimmune encephalomyelitis. Moreover, it has been established that experimental autoimmune encephalomyelitis mice treated with cannabinoids experienced a significant reduction of symptoms and slowing of the disease progression. Given the complexity of human immune and nervous systems, cannabinoids did not have the anticipated effects on human subjects. However, data obtained from clinical trials showed some beneficial results of cannabinoids as a single or as add-on therapy in reducing the spasticity and pain related to MS. CONCLUSION Considering their various mechanisms of action and good tolerability, cannabinoids remain an interesting therapy for spasticity and chronic pain related to MS.
Collapse
Affiliation(s)
- Carmen-Adella Sirbu
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Ruxandra Georgescu
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Florentina Cristina Pleşa
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Alina Paunescu
- Department of Natural Sciences, University of Pitesti, Faculty of Sciences, Physical Education and Informatics, Piteşti, Romania
| | - Monica Marilena Ţânţu
- Department of Health Care and Physical Therapy, University of Pitesti, Faculty of Sciences, Physical Education and Informatics, Piteşti, Romania
| | - Alina Crenguţa Nicolae
- Biochemistry Department, "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Bucharest, Romania; and
| | - Ionut Caloianu
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Marian Mitrica
- Clinical Neurosciences Department, University of Medicine and Pharmacy "Carol Davila" Bucharest, Romania
| |
Collapse
|
8
|
Yüksel B, Hızlı Deniz AA, Şahin F, Sahin K, Türkel N. Cannabinoid compounds in combination with curcumin and piperine display an anti-tumorigenic effect against colon cancer cells. Front Pharmacol 2023; 14:1145666. [PMID: 37180710 PMCID: PMC10169831 DOI: 10.3389/fphar.2023.1145666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Currently, use of cannabinoids is limited to improve adverse effects of chemotherapy and their palliative administration during treatment is curiously concomitant with improved prognosis and regressed progression in patients with different tumor types. Although, non-psychoactive cannabidiol (CBD) and cannabigerol (CBG) display antineoplastic effects by repressing tumor growth and angiogenesis both in cell line and animal models, their use as chemotherapeutic agents is awaiting further investigation. Both clinical and epidemiological evidence supported by experimental findings suggest that micronutrients such as curcumin and piperine may present a safer strategy in preventing tumorigenesis and its recurrence. Recent studies demonstrated that piperine potentiates curcumin's inhibitory effect on tumor progression via enhancing its delivery and therapeutic activity. In this study, we investigated a plausible therapeutic synergism of a triple combination of CBD/CBG, curcumin, and piperine in the colon adenocarcinoma using HCT116 and HT29 cell lines. Potential synergistic effects of various combinations including these compounds were tested by measuring cancer cell proliferation and apoptosis. Our findings revealed that different genetic backgrounds of HCT116 and HT29 cell lines resulted in divergent responses to the combination treatments. Triple treatment showed synergism in terms of exhibiting anti-tumorigenic effects by activating the Hippo YAP signaling pathway in the HCT116 cell line.
Collapse
Affiliation(s)
- Büşra Yüksel
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ayşen Aslı Hızlı Deniz
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Türkiye
| | - Nezaket Türkel
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| |
Collapse
|
9
|
Efficient Synthesis for Altering Side Chain Length on Cannabinoid Molecules and Their Effects in Chemotherapy and Chemotherapeutic Induced Neuropathic Pain. Biomolecules 2022; 12:biom12121869. [PMID: 36551296 PMCID: PMC9776378 DOI: 10.3390/biom12121869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Recently, a number of side chain length variants for tetrahydrocannabinol and cannabidiol have been identified in cannabis; however, the precursor to these molecules would be based upon cannabigerol (CBG). Because CBG, and its side chain variants, are rapidly converted to other cannabinoids in the plant, there are typically only small amounts in plant extracts, thus prohibiting investigations related to CBG and CBG variant therapeutic effects. (2) Methods: To overcome this, we developed an efficient synthesis of corresponding resorcinol fragments using the Wittig reaction which, under acid catalyzed coupling with geraniol, produced the desired side chain variants of CBG. These compounds were then tested in an animal model of chemotherapeutic-induced neuropathic pain and to reduce colorectal cancer cell viability. (3) Results: We found that all side-chain variants were similarly capable of reducing neuropathic pain in mice at a dose of 10 mg/kg. However, the molecules with shorter side chains (i.e., CBGV and CBGB) were better at reducing colorectal cancer cell viability. (4) Conclusions: The novel synthesis method developed here will be of utility for studying other side chain derivatives of minor cannabinoids such as cannabichromene, cannabinol, and cannabielsoin.
Collapse
|
10
|
Hengst JA, Nduwumwami AJ, Raup-Konsavage WM, Vrana KE, Yun JK. Inhibition of Sphingosine Kinase Activity Enhances Immunogenic Cell Surface Exposure of Calreticulin Induced by the Synthetic Cannabinoid 5-epi-CP-55,940. Cannabis Cannabinoid Res 2022; 7:637-647. [PMID: 34846947 PMCID: PMC9587795 DOI: 10.1089/can.2021.0100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Endogenous and synthetic cannabinoids have been shown to induce cancer cell death through the accumulation of the sphingolipid, ceramide (Cer). Recently, we have demonstrated that Cer accumulation enhances the induction of immunogenic cell death (ICD). Objectives: The primary objective of this study was to demonstrate that (±) 5-epi CP 55,940 (5-epi), a by-product of the chemical synthesis of the synthetic cannabinoid CP 55,940, induces ICD in colorectal cancer (CRC) cells, and that modulation of the sphingolipid metabolic pathway through inhibition of the sphingosine kinases (SphKs) enhances these effects. Methods: A cell culture model system of human CRC cell lines was employed to measure the cell surface and intracellular production of markers of ICD. The effects of 5-epi, alone and in combination with SphK inhibitors, on production of Cer through the de novo sphingolipid synthesis pathway were measured by Liquid Chromatography - Tandem Mass Spectrometry (LC/MS/MS)-based sphingolipidomic analysis. Cell surface exposure of calreticulin (ectoCRT), a hallmark of ICD, was measured by flow cytometry. Examination of the effects of 5-epi, alone and in combination with SphK inhibitors, on the intracellular signaling pathway associated with ICD was conducted by immunoblot analysis of human CRC cell lines. Results: Sphingolipidomic analysis indicated that 5-epi induces the de novo sphingolipid synthetic pathway. 5-epi dose dependently induces cell surface exposure of ectoCRT, and inhibition of Cer metabolism through inhibition of the SphKs significantly enhances 5-epi-induced ectoCRT exposure in multiple CRC cell lines. 5-epi induces and SphK inhibition enhances activation of the cell death signaling pathway associated with ICD. Conclusions: This study is the first demonstration that cannabinoids can induce the cell surface expression of ectoCRT, and potentially induce ICD. Moreover, this study reinforces our previous observation of a role for Cer accumulation in the induction of ICD and extends this observation to the cannabinoids, agents not typically associated with ICD. Inhibition of SphKs enhanced the 5-epi-induced signaling pathways leading to ICD and production of ectoCRT. Overexpression of SphK1 has previously been associated with chemotherapy resistance. Thus, targeting the SphKs has the potential to reverse chemotherapy resistance and simultaneously enhance the antitumor immune response through enhancement of ICD induction.
Collapse
Affiliation(s)
- Jeremy A. Hengst
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Asvelt J. Nduwumwami
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Wesley M. Raup-Konsavage
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kent E. Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jong K. Yun
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW There have been many debates, discussions, and published writings about the therapeutic value of cannabis plant and the hundreds of cannabinoids it contains. Many states and countries have attempted, are attempting, or have already passed bills to allow legal use of cannabinoids, especially cannabidiol (CBD), as medicines to treat a wide range of clinical conditions without having been approved by a regulatory body. Therefore, by using PubMed and Google Scholar databases, we have reviewed published papers during the past 30 years on cannabinoids as medicines and comment on whether there is sufficient clinical evidence from well-designed clinical studies and trials to support the use of CBD or any other cannabinoids as medicines. RECENT FINDINGS Current research shows that CBD and other cannabinoids currently are not ready for formal indications as medicines to treat a wide range of clinical conditions as promoted except for several exceptions including limited use of CBD for treating two rare forms of epilepsy in young children and CBD in combination with THC for treating multiple-sclerosis-associated spasticity. SUMMARY Research indicates that CBD and several other cannabinoids have potential to treat multiple clinical conditions, but more preclinical, and clinical studies and clinical trials, which follow regulatory guidelines, are needed to formally recommend CBD and other cannabinoids as medicines.
Collapse
|
12
|
Khalsa JH, Bunt G, Blum K, Maggirwar SB, Galanter M, Potenza MN. Review: Cannabinoids as Medicinals. CURRENT ADDICTION REPORTS 2022; 9:630-646. [PMID: 36093358 PMCID: PMC9449267 DOI: 10.1007/s40429-022-00438-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 12/04/2022]
Abstract
Purpose of review
There have been many debates, discussions, and published writings about the therapeutic value of cannabis plant and the hundreds of cannabinoids it contains. Many states and countries have attempted, are attempting, or have already passed bills to allow legal use of cannabinoids, especially cannabidiol (CBD), as medicines to treat a wide range of clinical conditions without having been approved by a regulatory body. Therefore, by using PubMed and Google Scholar databases, we have reviewed published papers during the past 30 years on cannabinoids as medicines and comment on whether there is sufficient clinical evidence from well-designed clinical studies and trials to support the use of CBD or any other cannabinoids as medicines. Recent findings Current research shows that CBD and other cannabinoids currently are not ready for formal indications as medicines to treat a wide range of clinical conditions as promoted except for several exceptions including limited use of CBD for treating two rare forms of epilepsy in young children and CBD in combination with THC for treating multiple-sclerosis-associated spasticity. Summary Research indicates that CBD and several other cannabinoids have potential to treat multiple clinical conditions, but more preclinical, and clinical studies and clinical trials, which follow regulatory guidelines, are needed to formally recommend CBD and other cannabinoids as medicines.
Collapse
Affiliation(s)
- Jag H. Khalsa
- Division of Therapeutics and Medical Consequences, Medical Consequences of Drug Abuse and Infections Branch, National Institute on Drug Abuse, NIH, Special Volunteer, 16071 Industrial Drive, Gaithersburg, MD 20877 USA
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Ross Hall Room 502A, 2300 I Street, Washington, NWDC 20037 USA
- Drug Addiction and Co-occurring Infections, Aldie, VA 20105-5572 USA
| | - Gregory Bunt
- Samaritan Day Top Village, NYU School of Medicine, 550 First Ave, New York, NY 10016 USA
| | - Kenneth Blum
- Center for Behavioral Health & Sports, Western University Health Sciences, Pomona, CA USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Division of Nutrigenomics, Precision Translational Medicine, LLC, San Antonio, TX USA
- Division of Nutrigenomics, Institute of Behavior & Neurogenetics, LLC, San Antonio, TX USA
- Department of Psychiatry, University of Vermont, Burlington, VT USA
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH USA
| | - Sanjay B. Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Ross Hall Room 502A, 2300 I Street, Washington, NWDC 20037 USA
| | - Marc Galanter
- Department of Psychiatry, NYU School of Medicine, 550 First Avenue, Room NBV20N28, New York, NY 10016 USA
| | - Marc N. Potenza
- Departments of Psychiatry and Neuroscience and the Child Study Center, Yale School of Medicine, 1 Church Street, Rm726, New Haven, CT 06510 USA
| |
Collapse
|
13
|
Lee HS, Tamia G, Song HJ, Amarakoon D, Wei CI, Lee SH. Cannabidiol exerts anti-proliferative activity via a cannabinoid receptor 2-dependent mechanism in human colorectal cancer cells. Int Immunopharmacol 2022; 108:108865. [DOI: 10.1016/j.intimp.2022.108865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022]
|
14
|
Srivastava RK, Lutz B, Ruiz de Azua I. The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Front Cell Neurosci 2022; 16:867267. [PMID: 35634468 PMCID: PMC9130962 DOI: 10.3389/fncel.2022.867267] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
The endocannabinoid system, with its receptors and ligands, is present in the gut epithelium and enteroendocrine cells, and is able to modulate brain functions, both indirectly through circulating gut-derived factors and directly through the vagus nerve, finally acting on the brain’s mechanisms regarding metabolism and behavior. The gut endocannabinoid system also regulates gut motility, permeability, and inflammatory responses. Furthermore, microbiota composition has been shown to influence the activity of the endocannabinoid system. This review examines the interaction between microbiota, intestinal endocannabinoid system, metabolism, and stress responses. We hypothesize that the crosstalk between microbiota and intestinal endocannabinoid system has a prominent role in stress-induced changes in the gut-brain axis affecting metabolic and mental health. Inter-individual differences are commonly observed in stress responses, but mechanisms underlying resilience and vulnerability to stress are far from understood. Both gut microbiota and the endocannabinoid system have been implicated in stress resilience. We also discuss interventions targeting the microbiota and the endocannabinoid system to mitigate metabolic and stress-related disorders.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
- *Correspondence: Raj Kamal Srivastava,
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Inigo Ruiz de Azua,
| |
Collapse
|
15
|
Abstract
Preclinical models provided ample evidence that cannabinoids are cytotoxic against cancer cells. Among the best studied phytocannabinoids, cannabidiol (CBD) is most promising for the treatment of cancer as it lacks the psychotomimetic properties of delta-9-tetrahydrocannabinol (THC). In vitro studies and animal experiments point to a concentration- (dose-)dependent anticancer effect. The effectiveness of pure compounds versus extracts is the subject of an ongoing debate. Actual results demonstrate that CBD-rich hemp extracts must be distinguished from THC-rich cannabis preparations. Whereas pure CBD was superior to CBD-rich extracts in most in vitro experiments, the opposite was observed for pure THC and THC-rich extracts, although exceptions were noted. The cytotoxic effects of CBD, THC and extracts seem to depend not only on the nature of cannabinoids and the presence of other phytochemicals but also largely on the nature of cell lines and test conditions. Neither CBD nor THC are universally efficacious in reducing cancer cell viability. The combination of pure cannabinoids may have advantages over single agents, although the optimal ratio seems to depend on the nature of cancer cells; the existence of a 'one size fits all' ratio is very unlikely. As cannabinoids interfere with the endocannabinoid system (ECS), a better understanding of the circadian rhythmicity of the ECS, particularly endocannabinoids and receptors, as well as of the rhythmicity of biological processes related to the growth of cancer cells, could enhance the efficacy of a therapy with cannabinoids by optimization of the timing of the administration, as has already been reported for some of the canonical chemotherapeutics. Theoretically, a CBD dose administered at noon could increase the peak of anandamide and therefore the effects triggered by this agent. Despite the abundance of preclinical articles published over the last 2 decades, well-designed controlled clinical trials on CBD in cancer are still missing. The number of observations in cancer patients, paired with the anticancer activity repeatedly reported in preclinical in vitro and in vivo studies warrants serious scientific exploration moving forward.
Collapse
|
16
|
Legare CA, Raup-Konsavage WM, Vrana KE. Therapeutic Potential of Cannabis, Cannabidiol, and Cannabinoid-Based Pharmaceuticals. Pharmacology 2022; 107:131-149. [DOI: 10.1159/000521683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022]
Abstract
<b><i>Background:</i></b> There is a growing interest in the use of cannabis (and its extracts), as well as CBD oil (hemp extracts containing cannabidiol), for therapeutic purposes. While there is reason to believe that cannabinoids may be efficacious for a number of different diseases and syndromes, there exist limited objective data supporting the use of crude materials (CBD oil, cannabis extracts, and/or cannabis itself). <b><i>Summary:</i></b> In the present review, we examined data for pure cannabinoid compounds (dronabinol, nabilone, and CBD), as well as partially purified medicinal cannabis extracts (nabiximols), to provide guidance on the potential therapeutic uses of high-THC cannabis and CBD oil. In general, data support a role for cannabis/cannabinoids in pain, seizure disorders, appetite stimulation, muscle spasticity, and treatment of nausea/vomiting. Given the biological activities of the cannabinoids, there may be utility in treatment of central nervous system disorders (such as neurodegenerative diseases, PTSD, and addiction) or for the treatment of cancer. However, those data are much less compelling. <b><i>Key Message:</i></b> On balance, there are reasons to support the potential use of medical cannabis and cannabis extract (Δ<sup>9</sup>-THC-dominant or CBD-dominant), but much more careful research is required.
Collapse
|
17
|
Abrams DI. Cannabis, Cannabinoids and Cannabis-Based Medicines in Cancer Care. Integr Cancer Ther 2022; 21:15347354221081772. [PMID: 35225051 PMCID: PMC8882944 DOI: 10.1177/15347354221081772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
As medical cannabis becomes legal in more states, cancer patients are increasingly interested in the potential utility of the ancient botanical in their treatment regimen. Although eager to discuss cannabis use with their oncologist, patients often find that their provider reports that they do not have adequate information to be helpful. Oncologists, so dependent on evidence-based data to guide their treatment plans, are dismayed by the lack of published literature on the benefits of medical cannabis. This results largely from the significant barriers that have existed to effectively thwart the ability to conduct trials investigating the potential therapeutic efficacy of the plant. This is a narrative review aimed at clinicians, summarizing cannabis phytochemistry, trials in the areas of nausea and vomiting, appetite, pain and anticancer activity, including assessment of case reports of antitumor use, with reflective assessments of the quality and quantity of evidence. Despite preclinical evidence and social media claims, the utility of cannabis, cannabinoids or cannabis-based medicines in the treatment of cancer remains to be convincingly demonstrated. With an acceptable safety profile, cannabis and its congeners may be useful in managing symptoms related to cancer or its treatment. Further clinical trials should be conducted to evaluate whether the preclinical antitumor effects translate into benefit for cancer patients. Oncologists should familiarize themselves with the available database to be able to better advise their patients on the potential uses of this complementary botanical therapy.
Collapse
|
18
|
Nkune NW, Kruger CA, Abrahamse H. Synthesis of a novel nanobioconjugate for targeted photodynamic therapy of colon cancer enhanced with cannabidiol. Oncotarget 2022; 13:156-172. [PMID: 35070080 PMCID: PMC8768846 DOI: 10.18632/oncotarget.28171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising primary treatment option for colorectal cancer (CRC), however CRC is accelerated by resilient CRC stem-like cells, which decrease its efficacy. In recent years, researchers have shown an emerging interest in the anticancer stem cell effects of cannabidiol (CBD). This study developed a targeted nanobioconjugate for specific ZnPcS4 photosensitizer intracellular accumulation within in vitro cultured human CRC cells (CaCo-2) for enhanced PDT primary treatment, as well as limited its secondary spread by combining this treatment with CBD. The final nanobioconjugate (FNBC) was successfully synthesized and characterized using various methods. The cytotoxicity of the FNBC and CBD were tested on CRC cells using laser irradiation at 673 nm with a fluency of 10 J/cm2. 24 h post treatment, morphological changes were assessed via microscopy, cell viability was measured using Annexin V-FITC and cellular nuclear DNA was visualized under fluorescent microscopy, following Hoechst staining. FNBC and CBD combinative treatment induced the most significant photodamage, leaving a staggering 6%*** viable cells. Overall, through active targeting of CRC cells using the FNBC, the enhanced PDT primary treatment of CRC was achieved, and the combinative treatment with CBD noted significant limitations on its secondary spread.
Collapse
Affiliation(s)
- Nkune Williams Nkune
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
19
|
Innovative and emerging applications of cannabis in food and beverage products: From an illicit drug to a potential ingredient for health promotion. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Cherkasova V, Kovalchuk O, Kovalchuk I. Cannabinoids and Endocannabinoid System Changes in Intestinal Inflammation and Colorectal Cancer. Cancers (Basel) 2021; 13:4353. [PMID: 34503163 PMCID: PMC8430689 DOI: 10.3390/cancers13174353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Despite the multiple preventive measures and treatment options, colorectal cancer holds a significant place in the world's disease and mortality rates. The development of novel therapy is in critical need, and based on recent experimental data, cannabinoids could become excellent candidates. This review covered known experimental studies regarding the effects of cannabinoids on intestinal inflammation and colorectal cancer. In our opinion, because colorectal cancer is a heterogeneous disease with different genomic landscapes, the choice of cannabinoids for tumor prevention and treatment depends on the type of the disease, its etiology, driver mutations, and the expression levels of cannabinoid receptors. In this review, we describe the molecular changes of the endocannabinoid system in the pathologies of the large intestine, focusing on inflammation and cancer.
Collapse
Affiliation(s)
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 7X8, Canada;
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 7X8, Canada;
| |
Collapse
|
21
|
Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System-Implications for Health and Disease. Int J Mol Sci 2021; 22:ijms22073661. [PMID: 33915889 PMCID: PMC8036872 DOI: 10.3390/ijms22073661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.
Collapse
|
22
|
Lal S, Shekher A, Puneet, Narula AS, Abrahamse H, Gupta SC. Cannabis and its constituents for cancer: History, biogenesis, chemistry and pharmacological activities. Pharmacol Res 2020; 163:105302. [PMID: 33246167 DOI: 10.1016/j.phrs.2020.105302] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/03/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Cannabis has long been used for healing and recreation in several regions of the world. Over 400 bioactive constituents, including more than 100 phytocannabinoids, have been isolated from this plant. The non-psychoactive cannabidiol (CBD) and the psychoactive Δ9-tetrahydrocannabinol (Δ9-THC) are the major and widely studied constituents from this plant. Cannabinoids exert their effects through the endocannabinoid system (ECS) that comprises cannabinoid receptors (CB1, CB2), endogenous ligands, and metabolizing enzymes. Several preclinical studies have demonstrated the potential of cannabinoids against leukemia, lymphoma, glioblastoma, and cancers of the breast, colorectum, pancreas, cervix and prostate. Cannabis and its constituents can modulate multiple cancer related pathways such as PKB, AMPK, CAMKK-β, mTOR, PDHK, HIF-1α, and PPAR-γ. Cannabinoids can block cell growth, progression of cell cycle and induce apoptosis selectively in tumour cells. Cannabinoids can also enhance the efficacy of cancer therapeutics. These compounds have been used for the management of anorexia, queasiness, and pain in cancer patients. Cannabinoid based products such as dronabinol, nabilone, nabiximols, and epidyolex are now approved for medical use in cancer patients. Cannabinoids are reported to produce a favourable safety profile. However, psychoactive properties and poor bioavailability limit the use of some cannabinoids. The Academic Institutions across the globe are offering training courses on cannabis. How cannabis and its constituents exert anticancer activities is discussed in this article. We also discuss areas that require attention and more extensive research.
Collapse
Affiliation(s)
- Samridhi Lal
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, 122413, India
| | - Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Puneet
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | | | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
23
|
Moreno E, Cavic M, Krivokuca A, Canela EI. The Interplay between Cancer Biology and the Endocannabinoid System-Significance for Cancer Risk, Prognosis and Response to Treatment. Cancers (Basel) 2020; 12:cancers12113275. [PMID: 33167409 PMCID: PMC7694406 DOI: 10.3390/cancers12113275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
The various components of the endocannabinoid system (ECS), such as the cannabinoid receptors (CBRs), cannabinoid ligands, and the signalling network behind it, are implicated in several tumour-related states, both as favourable and unfavourable factors. This review analyses the ECS's complex involvement in the susceptibility to cancer, prognosis, and response to treatment, focusing on its relationship with cancer biology in selected solid cancers (breast, gastrointestinal, gynaecological, prostate cancer, thoracic, thyroid, CNS tumours, and melanoma). Changes in the expression and activation of CBRs, as well as their ability to form distinct functional heteromers affect the cell's tumourigenic potential and their signalling properties, leading to pharmacologically different outcomes. Thus, the same ECS component can exert both protective and pathogenic effects in different tumour subtypes, which are often pathologically driven by different biological factors. The use of endogenous and exogenous cannabinoids as anti-cancer agents, and the range of effects they might induce (cell death, regulation of angiogenesis, and invasion or anticancer immunity), depend in great deal on the tumour type and the specific ECS component that they target. Although an attractive target, the use of ECS components in anti-cancer treatment is still interlinked with many legal and ethical issues that need to be considered.
Collapse
Affiliation(s)
- Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
- Correspondence: (E.M.); (E.I.C.)
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; (M.C.); (A.K.)
| | - Ana Krivokuca
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; (M.C.); (A.K.)
| | - Enric I. Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
- Correspondence: (E.M.); (E.I.C.)
| |
Collapse
|
24
|
Seltzer ES, Watters AK, MacKenzie D, Granat LM, Zhang D. Cannabidiol (CBD) as a Promising Anti-Cancer Drug. Cancers (Basel) 2020; 12:E3203. [PMID: 33143283 PMCID: PMC7693730 DOI: 10.3390/cancers12113203] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022] Open
Abstract
Recently, cannabinoids, such as cannabidiol (CBD) and Δ9 -tetrahydrocannabinol (THC), have been the subject of intensive research and heavy scrutiny. Cannabinoids encompass a wide array of organic molecules, including those that are physiologically produced in humans, synthesized in laboratories, and extracted primarily from the Cannabis sativa plant. These organic molecules share similarities in their chemical structures as well as in their protein binding profiles. However, pronounced differences do exist in their mechanisms of action and clinical applications, which will be briefly compared and contrasted in this review. The mechanism of action of CBD and its potential applications in cancer therapy will be the major focus of this review article.
Collapse
Affiliation(s)
- Emily S. Seltzer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (E.S.S.); (A.K.W.); (D.M.J.)
| | - Andrea K. Watters
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (E.S.S.); (A.K.W.); (D.M.J.)
| | - Danny MacKenzie
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (E.S.S.); (A.K.W.); (D.M.J.)
| | - Lauren M. Granat
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (E.S.S.); (A.K.W.); (D.M.J.)
| |
Collapse
|
25
|
Landmesser ME, Raup-Konsavage WM, Lehman HL, Stairs DB. Loss of p120ctn causes EGFR-targeted therapy resistance and failure. PLoS One 2020; 15:e0241299. [PMID: 33112928 PMCID: PMC7592761 DOI: 10.1371/journal.pone.0241299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) plays a vital role in cell division and survival signaling pathways. EGFR is activated in nearly every cancer type, and its high expression in tumors is correlated with poor patient outcome. Altogether, EGFR is a prime candidate as a therapeutic target. While targeted EGFR therapy is initially effective in 75% of patients, a majority of patients relapse within the first year due to poorly understood mechanisms of resistance. p120-catenin (p120ctn) has recently been implicated as a biomarker for EGFR therapy. In previous studies, we demonstrated that p120ctn is a tumor suppressor and its loss is capable of inducing cancer. Furthermore, p120ctn down-regulation synergizes with EGFR overexpression to cause a highly invasive cell phenotype. The purpose of this present study was to investigate whether p120ctn down-regulation induced EGFR therapeutic resistance. Using human esophageal keratinocytes, we have found that EGFR-targeting compounds are toxic to cells overexpressing EGFR. Interestingly, these therapies do not cause toxicity in cells with EGFR overexpression and decreased p120ctn expression. These data suggest that decreased p120ctn causes resistance to EGFR therapy. We believe these findings are of utmost importance, as there is an unmet need to discover mechanisms of EGFR resistance.
Collapse
Affiliation(s)
- Mary E. Landmesser
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Wesley M. Raup-Konsavage
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Heather L. Lehman
- Department of Biology, Millersville University, Millersville, Pennsylvania, United States of America
| | - Douglas B. Stairs
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Raup-Konsavage WM, Carkaci-Salli N, Greenland K, Gearhart R, Vrana KE. Cannabidiol (CBD) Oil Does Not Display an Entourage Effect in Reducing Cancer Cell Viability in vitro. Med Cannabis Cannabinoids 2020; 3:95-102. [PMID: 34676344 DOI: 10.1159/000510256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/17/2020] [Indexed: 01/27/2023] Open
Abstract
Introduction Several studies have found that cannabinoids, particularly delta-9-tetrahydrocannabinol and cannabidiol (CBD), have the ability to reduce cancer cell viability. An ongoing debate regarding the use of medical Cannabis revolves around the effectiveness of pure compounds versus intact plant material for treatment. Proponents for the use of intact plant material or botanical extracts argue that there is a synergistic effect between the different cannabinoids, terpenoids, and flavonoids; this is commonly referred to as the "entourage effect." Our study was designed to test the validity of the proposed entourage effect in a narrow application using a cancer cell viability model. Materials and Methods Six cancer cell lines, from 3 different types of human cancer were treated with 10 μM pure CBD or 10 μM CBD from hemp (Cannabis sativa) oil (obtained from 3 different commercial sources) for 48 h, and cell viability was measured with the MTS assay. Dose-response curves were then performed to compare the potencies of pure CBD to CBD oils. CBD concentrations were independently confirmed in the commercial oils, and cannabinoid and terpene composition were also compared. Results CBD (10 μM) was able to reduce cell viability in 3 of the 6 cell lines tested, and this was found to be cell line specific and not specific to select cancers. None of the CBD oils tested were able to reduce viability to a greater extent than that of pure CBD. Additionally, dose-response curves found lower IC50 values for pure CBD compared to the most potent CBD oil tested. Interestingly, some oils actually appeared to protect cancer cells from the effects of CBD. Conclusions We found that pure CBD was as potent or more potent at reducing cancer cell viability as the most potent oil tested, suggesting that there is no "entourage" effect under these specific in vitro conditions.
Collapse
Affiliation(s)
| | - Nurgul Carkaci-Salli
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | | | | - Kent E Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
27
|
Potentilla alba Extracts Affect the Viability and Proliferation of Non-Cancerous and Cancerous Colon Human Epithelial Cells. Molecules 2020; 25:molecules25133080. [PMID: 32640760 PMCID: PMC7411782 DOI: 10.3390/molecules25133080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to determine the anti-tumor activity of extracts isolated from Potentilla alba L. on human colon cancer cells of the HT-29 line and on non-cancer colon epithelial cells of the CCD 841 CoTr line. The research methods we used to determine the cytotoxic and proliferative properties were 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red (NR) assays, the ability to produce nitric oxide, the Griess method, and the biochemical properties like 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods indicating reduction activity of tested samples. In order to obtain a phytochemical profile of the different extracts an analytical method based on liquid chromatography-photodiode array detection-electrospray ionization ion-trap time-of-flight mass spectrometry (LC-PDA-ESI-MS/TOF) was applied. Finally, the effects of the extracts on the morphology and cell counts were assessed by May–Grünwald–Giemsa staining. After a comprehensive analysis of all the experiments, the extracts were found to demonstrate cytotoxic properties, they stimulated the division of non-cancer cells, and they were able to scavenge free radicals. In the NR method, the cell viability dropped to approximately 80% compared to the control. In the MTT assay, tumor cell proliferation decreased to 9.5% compared to the control. Therefore, we concluded that this plant has medical potential.
Collapse
|
28
|
Laezza C, Pagano C, Navarra G, Pastorino O, Proto MC, Fiore D, Piscopo C, Gazzerro P, Bifulco M. The Endocannabinoid System: A Target for Cancer Treatment. Int J Mol Sci 2020; 21:ijms21030747. [PMID: 31979368 PMCID: PMC7037210 DOI: 10.3390/ijms21030747] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, the endocannabinoid system has received great interest as a potential therapeutic target in numerous pathological conditions. Cannabinoids have shown an anticancer potential by modulating several pathways involved in cell growth, differentiation, migration, and angiogenesis. However, the therapeutic efficacy of cannabinoids is limited to the treatment of chemotherapy-induced symptoms or cancer pain, but their use as anticancer drugs in chemotherapeutic protocols requires further investigation. In this paper, we reviewed the role of cannabinoids in the modulation of signaling mechanisms implicated in tumor progression.
Collapse
Affiliation(s)
- Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, 80131 Naples, Italy
- Correspondence: (C.L.); (M.B.)
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
| | - Olga Pastorino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Chiara Piscopo
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
- Correspondence: (C.L.); (M.B.)
| |
Collapse
|
29
|
Abstract
OPINION STATEMENT Cannabis is a useful botanical with a wide range of therapeutic potential. Global prohibition over the past century has impeded the ability to study the plant as medicine. However, delta-9-tetrahydrocannabinol (THC) has been developed as a stand-alone pharmaceutical initially approved for the treatment of chemotherapy-related nausea and vomiting in 1986. The indication was expanded in 1992 to include treatment of anorexia in patients with the AIDS wasting syndrome. Hence, if the dominant cannabinoid is available as a schedule III prescription medication, it would seem logical that the parent botanical would likely have similar therapeutic benefits. The system of cannabinoid receptors and endogenous cannabinoids (endocannabinoids) has likely developed to help us modulate our response to noxious stimuli. Phytocannabinoids also complex with these receptors, and the analgesic effects of cannabis are perhaps the best supported by clinical evidence. Cannabis and its constituents have also been reported to be useful in assisting with sleep, mood, and anxiety. Despite significant in vitro and animal model evidence supporting the anti-cancer activity of individual cannabinoids-particularly THC and cannabidiol (CBD)-clinical evidence is absent. A single intervention that can assist with nausea, appetite, pain, mood, and sleep is certainly a valuable addition to the palliative care armamentarium. Although many healthcare providers advise against the inhalation of a botanical as a twenty-first century drug-delivery system, evidence for serious harmful effects of cannabis inhalation is scant and a variety of other methods of ingestion are currently available from dispensaries in locales where patients have access to medicinal cannabis. Oncologists and palliative care providers should recommend this botanical remedy to their patients to gain first-hand evidence of its therapeutic potential despite the paucity of results from randomized placebo-controlled clinical trials to appreciate that it is both safe and effective and really does not require a package insert.
Collapse
Affiliation(s)
- Donald I Abrams
- Hematology-Oncology, Zuckerberg San Francisco General, Integrative Oncology, UCSF Osher Center for Integrative Medicine, Professor of Clinical Medicine, University of California San Francisco, Ward 84, 995 Potrero, San Francisco, CA, 94110, USA.
| |
Collapse
|