1
|
Gao X, Li Y, Dai Y, Li X, Huang C, Zhang S, Li F, Zhang H, Li G, Sun R, Song H, Zhang L, Chen Z, Zhang S. Identification of the MADS-Box Gene Family and the Key Role of BrAGL27 in the Regulation of Flowering in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). Int J Mol Sci 2025; 26:2635. [PMID: 40141277 PMCID: PMC11941923 DOI: 10.3390/ijms26062635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a key vegetable crop in Asia, but its commercial value is often reduced by premature flowering triggered by vernalization. The molecular mechanisms behind this process are not fully understood. MADS-box genes, as crucial transcriptional regulators, play vital roles in plant development, including flowering. In this study, 102 MADS-box genes were identified in Chinese cabbage through bioinformatics analyses, covering phylogeny, chromosomal localization, and gene structure. Real-time quantitative PCR and RNA-seq data analysis revealed that the expression level of AGL27 declined as vernalization time increased. To determine BrAGL27's functions, we obtained BrAGL27-overexpressed (OE) Arabidopsis thaliana lines that showed significantly later flowering compared with the wild type (WT). The expression levels of flowering suppressor genes AtFLC and AtTEM1 were significantly high-regulated in the BrAGL27-OE lines compared to WT plants, while the expression levels of the floral genes AtSPL15, AtSOC1, AtFT, and AtAP3 were significantly lower in the BrAGL27-overexpressed lines than in the wild type. These findings enhance understanding of MADS-box genes in vernalization and flowering regulation, offering a basis for further research on bolting resistance and flowering control in Chinese cabbage.
Collapse
Affiliation(s)
- Xinyu Gao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (Y.D.); (X.L.); (C.H.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Yang Li
- Guangxi Academy of Agricultural Sciences, 174 East University Road, Nanning 530007, China; (Y.L.); (H.S.); (L.Z.)
| | - Yun Dai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (Y.D.); (X.L.); (C.H.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Xiangqianchen Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (Y.D.); (X.L.); (C.H.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Can Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (Y.D.); (X.L.); (C.H.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Shifan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (Y.D.); (X.L.); (C.H.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Fei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (Y.D.); (X.L.); (C.H.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Hui Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (Y.D.); (X.L.); (C.H.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Guoliang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (Y.D.); (X.L.); (C.H.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Rifei Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (Y.D.); (X.L.); (C.H.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Huanzhong Song
- Guangxi Academy of Agricultural Sciences, 174 East University Road, Nanning 530007, China; (Y.L.); (H.S.); (L.Z.)
| | - Li Zhang
- Guangxi Academy of Agricultural Sciences, 174 East University Road, Nanning 530007, China; (Y.L.); (H.S.); (L.Z.)
| | - Zhendong Chen
- Guangxi Academy of Agricultural Sciences, 174 East University Road, Nanning 530007, China; (Y.L.); (H.S.); (L.Z.)
| | - Shujiang Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (Y.D.); (X.L.); (C.H.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| |
Collapse
|
2
|
Liu H, Li J, Xu C, Liu H, Zhao Z. Characterization and expression analysis of the B3 gene family during seed development in Akebia trifoliata. BMC Genomics 2024; 25:1060. [PMID: 39516780 PMCID: PMC11549857 DOI: 10.1186/s12864-024-10981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND B3 genes encode transcription factors that play key roles in plant growth and development. However, the specific B3 genes involved in the seed development of Akebia trifoliata remain unexplored. RESULTS A total of 72 AktB3 genes were identified and classified into five subfamilies (ARF, LAV, RAV, HSI, and REM) based on phylogenetic analysis. These 72 AktB3 genes were unevenly distributed across 16 chromosomes. Collinear analysis indicated that segmental duplication has played a significant role in the evolution of AktB3 genes, and underwent purification selection. Expression profiling across seed development stages revealed that seven AktB3 genes, particularly from the LAV subfamily (AktABI3, AktFUS3, AktLEC2), were up-regulated at 70 days after flowering (DAF). Notably, the expression of oleosin exhibited a strong positive correlation with LAV subfamily genes, highlighting their potential roles as hub genes in lipid metabolism and seed development. Yeast two-hybrid (Y2H) and yeast one-hybrid (Y1H) experiments confirmed that AktFUS3-1, AktFUS3-2, and AktLEC2 form protein complexes and individually bind to the AktOLE1 promoter, thereby regulating downstream gene expression. These results provide direct evidence of the cooperative role these transcription factors play in controlling lipid metabolism, particularly related to oleosin proteins. Additionally, miRNA sequencing across three seed developmental stages identified 591 miRNAs and 1,673 target gene pairs. A total of 23 AktB3 genes were predicted to be targets of 20 miRNAs, with 11 miRNAs specifically targeting the ARF subfamily genes. Particularly, miR160-x, miR160-z, and miR167-z were predicted to target ARF subfamily genes, potentially influencing seed development. Moreover, the miRNA-B3 regulatory modules, especially involving ARF genes and miR160/167, require further study to clarify their roles in seed development. CONCLUSIONS These findings contribute valuable resources for future functional studies of the molecular regulatory networks governing seed development in A. trifoliata.
Collapse
Affiliation(s)
- Huijuan Liu
- College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Jinling Li
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Cunbin Xu
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Hongchang Liu
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Zhi Zhao
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Zhang ZP, Wang Z, Lu JX, Yan S, He LQ, Wang PP, Qin C, Ren WC, Xu J, Wu JL, Liu XB, Ma W. In silico genome-wide analysis of homeodomain-leucine zipper transcription factors in Cannabis sativa L. Heliyon 2024; 10:e28045. [PMID: 38590863 PMCID: PMC10999869 DOI: 10.1016/j.heliyon.2024.e28045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
HD-Zip (Homeodomain-Leucine Zipper) is a family of transcription factors unique to higher plants and plays a vital role in plant growth and development. Increasing research results show that HD-Zip transcription factors are widely involved in many life processes in plants. However, the HD-Zip transcription factor for cannabis, a valuable crop, has not yet been identified. The sequence characteristics, chromosome localization, system evolution, conservative motif, gene structure, and gene expression of the HD-Zip transcription factor in the cannabis genome were systematically studied. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to verify its function. The results showed that cannabis contained 33 HD-Zip gene members. The number of amino acids is 136-849aa, the isoelectric point is 4.54-9.04, and the molecular weight is 23264.32-93147.87Da. Many cis-acting elements are corresponding to hormone and abiotic stress in the HD-Zip family promoter area of cannabis. Sequencing of the transcriptome at 5 tissue sites of hemp, stems, leaves, bracts, and seeds showed similar levels of expression of 33 members of the HD-Zip gene family at 5 tissue sites. Bioinformatics results show that HD-Zip expression is tissue-specific and may be influenced by hormones and environmental factors. This lays a foundation for further research on the gene function of HD-Zip.
Collapse
Affiliation(s)
- Zhan-Ping Zhang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia-Xin Lu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Song Yan
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lian-Qing He
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pan-Pan Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen Qin
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei-Chao Ren
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiao Xu
- Department of Chinese Medicine, Jiamusi Campus, Heilongjiang University of Chinese Medicine, Jiamusi, China
- Institute of Economic Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jian-Li Wu
- Academy of traditional Chinese medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiu-Bo Liu
- Department of Chinese Medicine, Jiamusi Campus, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|