1
|
Altıntop M, Cantürk Z, Özdemir A. Design, Synthesis, and Evaluation of a New Series of 2-Pyrazolines as Potential Antileukemic Agents. ACS OMEGA 2023; 8:42867-42877. [PMID: 38024728 PMCID: PMC10652261 DOI: 10.1021/acsomega.3c05860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
In an attempt to identify small molecules for the treatment of leukemia, 12 new pyrazolines (2a-l) were synthesized efficiently. WST-1 assay was performed to examine their cytotoxic features on HL-60 human acute promyelocytic leukemia (APL), K562 human chronic myeloid leukemia (CML), and THP-1 human acute monocytic leukemia cells. Four compounds (2e, 2f, 2g, and 2h) were determined as promising antileukemic agents on HL-60 and K562 cells. IC50 values of compounds 2f, 2h, 2e, 2g, and bortezomib for the HL-60 cell line were found as 33.52, 42.89, 48.02, 62.34, and 31.75 μM, while IC50 values of compounds 2h, 2g, 2f, 2e, and bortezomib for K562 cells were determined as 33.61, 50.23, 57.28, 76.90, and 42.69 μM, respectively. Further studies were carried out to shed light on the mechanism of antileukemic action. According to the data obtained by in vitro experiments, 1-(4-fluorophenyl)-3-(thiophen-3-yl)-5-(4-(4-methylpiperazin-1-yl)phenyl)-2-pyrazoline (2f) and 1-(3-bromophenyl)-3-(thiophen-3-yl)-5-(4-(4-methylpiperazin-1-yl)phenyl)-2-pyrazoline (2h) have proved to be potential antileukemic agents with remarkable cytotoxicity against HL-60 and K562 cells by activation of caspase 3, thereby inducing apoptosis.
Collapse
Affiliation(s)
- Mehlika
Dilek Altıntop
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Zerrin Cantürk
- Department
of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Ahmet Özdemir
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
2
|
Kalaycı B, Şimşek Özek N, Aysin F, Özbek H, Kazaz C, Önal M, Güvenalp Z. Evaluation of cytotoxic and apoptotic effects of the extracts and phenolic compounds of Astragalus globosus Vahl and Astragalus breviflorus DC. Saudi Pharm J 2023; 31:101682. [PMID: 37448848 PMCID: PMC10336577 DOI: 10.1016/j.jsps.2023.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Astragalus L. is a genus member of the Fabaceae family, representing about 3,000 species all over the world and 380 species in Turkey. Astragalus species have been used in traditional medicine for many years. Astragalus globosus Vahl, known as "top geven", is a dwarf, scapose, perennial herb, Astragalus breviflorus DC., known as "yünlü geven", is an extremely spiny dwarf shrub. These endemic species grow in the Turkish cities of Erzurum, Kars, and Van. This is the first phytochemical and cytotoxic investigation of Astragalus globosus Vahl and Astragalus breviflorus DC. The main extracts and sub-fractions from the plants were evaluated for in vitro cytotoxic and apoptotic activities. The IC50 values of dichloromethane, n-butanol, and water extracts of the aerial parts of A. globosus against the MCF-7 cell line were determined as 28.39, 868.60, and 1753.00 µg/mL. The values for the MDA-MB-231 cell line were 264.00, 620.30, and 1300.50 µg/mL, respectively. From A. globosus, the following were isolated: a flavone glycoside, diosmetin-7-O-rutinoside (1); and two flavonol glycosides, isorhamnetin-3-O-rutinoside (2) and quercetin-3-O-galactoside (3). From A. breviflorus, two phenolic acids, caffeic acid (4) and chlorogenic acid (5), and a flavan-3-ol, catechin (6), were isolated. Diosmetin-7-O-rutinoside was isolated from Astragalus species for the first time and showed the highest cytotoxic activities on the MCF-7 and MDA-MB-231 breast cancer cell lines with IC50 values of 13.65 and 12.89 μg/mL, respectively. Moreover, we observed that diosmin exerts cytotoxic effects by causing cell necrosis.
Collapse
Affiliation(s)
- Benan Kalaycı
- Department of Pharmacognosy, Faculty of Pharmacy, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Nihal Şimşek Özek
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Hilal Özbek
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
- Medicinal Aromatic Plant and Drug Research Center, Atatürk University, Erzurum 25240, Turkey
| | - Cavit Kazaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Mehmet Önal
- Non-wood Products Chief Engineering, Regional Directorate of Forestry, Erzurum, Turkey
| | - Zühal Güvenalp
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
- Medicinal Aromatic Plant and Drug Research Center, Atatürk University, Erzurum 25240, Turkey
| |
Collapse
|
3
|
Zhang QY, Xu SJ, Qian JC, Yang LB, Chen PQ, Wang Y, Hu X, Zhang YL, Luo W, Liang G. Pharmacological inhibition of MyD88 suppresses inflammation in tubular epithelial cells and prevents diabetic nephropathy in experimental mice. Acta Pharmacol Sin 2022; 43:354-366. [PMID: 34552217 PMCID: PMC8792016 DOI: 10.1038/s41401-021-00766-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Emerging evidence shows that chronic inflammation mediated by toll-like receptors (TLRs) contributes to diabetic nephropathy. Myeloid differentiation primary-response protein-88 (MyD88) is an essential adapter protein of all TLRs except TLR3 in innate immunity. It is unclear whether MyD88 could be a therapeutic target for diabetic nephropathy. Here, we used a new small-molecule MyD88 inhibitor, LM8, to examine the pharmacological inhibition of MyD88 in protecting kidneys from inflammatory injury in diabetes. We showed that MyD88 was significantly activated in the kidney of STZ-induced type 1 diabetic mice in tubular epithelial cells as well as in high glucose-treated rat tubular epithelial cells NRK-52E. In cultured tubular epithelial cells, we show that LM8 (2.5-10 μM) or MyD88 siRNA attenuated high-concentration glucose-induced inflammatory and fibrogenic responses through inhibition of MyD88-TLR4 interaction and downstream NF-κB activation. Treatment with LM8 (5, 10 mg/kg, i.g.) significantly reduced renal inflammation and fibrosis and preserved renal function in both type 1 and type 2 diabetic mice. These renoprotective effects were associated with reduced MyD88-TLR4 complex formation, suppressed NF-κB signaling, and prevention of inflammatory factor expression. Collectively, our results show that hyperglycemia activates MyD88 signaling cascade to induce renal inflammation, fibrosis, and dysfunction. Pharmacological inhibition of MyD88 may be a therapeutic approach to mitigate diabetic nephropathy and the inhibitor LM8 could be a potential candidate for such therapy.
Collapse
Affiliation(s)
- Qiu-yan Zhang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China ,grid.268099.c0000 0001 0348 3990Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035 China
| | - Su-jing Xu
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China ,grid.268099.c0000 0001 0348 3990School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027 China
| | - Jian-chang Qian
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Li-bin Yang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Peng-qin Chen
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Yi Wang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Xiang Hu
- grid.268099.c0000 0001 0348 3990Department of Endocrinology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035 China
| | - Ya-li Zhang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Wu Luo
- grid.268099.c0000 0001 0348 3990Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035 China
| | - Guang Liang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China ,grid.506977.a0000 0004 1757 7957School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399 China ,grid.410726.60000 0004 1797 8419Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001 China
| |
Collapse
|
4
|
Kutlu T, Yıldırım I, Karabıyık H, Kılınçlı A, Tekedereli İ, Gök Y, Dikmen M, Aktaş A. Cytotoxic activity and apoptosis induction by a series Ag(I)-NHC complexes on human breast cancer cells and non-tumorigenic epithelial cell line. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Kouhpeikar H, Butler AE, Bamian F, Barreto GE, Majeed M, Sahebkar A. Curcumin as a therapeutic agent in leukemia. J Cell Physiol 2019; 234:12404-12414. [PMID: 30609023 DOI: 10.1002/jcp.28072] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
Leukemia comprises a group of hematological malignancies responsible for 8% of all cancers and is the most common cancer in children. Despite significant improvements in leukemia treatment, the efficacy of conventional chemotherapeutic agents is low and the disease carries a poor prognosis with frequent relapses and high mortality. Curcumin is a yellow polyphenol compound with diverse pharmacological actions including anticancer, antioxidant, antidiabetic, anti-inflammatory, immunomodulatory, hepatoprotective, lipid-regulating, antidepressant, and antiarthritic. Many cellular and experimental studies have reported the benefits of curcumin in treating leukemia. Curcumin's anticancer effects are exerted via various mechanisms. Here, we review the effects of curcumin on various types of leukemia whilst considering its mechanisms of action.
Collapse
Affiliation(s)
- Hamideh Kouhpeikar
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Faeze Bamian
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Edrees NE, Galal AA, Abdel Monaem AR, Beheiry RR, Metwally MM. Curcumin alleviates colistin-induced nephrotoxicity and neurotoxicity in rats via attenuation of oxidative stress, inflammation and apoptosis. Chem Biol Interact 2018; 294:56-64. [DOI: 10.1016/j.cbi.2018.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/13/2018] [Accepted: 08/15/2018] [Indexed: 12/29/2022]
|
7
|
Engür S, Dikmen M. The evaluation of the anti-cancer activity of ixazomib on Caco2 colon solid tumor cells, comparison with bortezomib. Acta Clin Belg 2017; 72:391-398. [PMID: 28327055 DOI: 10.1080/17843286.2017.1302623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteasome inhibition has recently emerged as a clinically effective anticancer therapeutic approach. The first proteasome inhibitor, bortezomib (Velcade, PS-341), and new proteasome inhibitors including ixazomib have become more important in the development of targeted cancer therapies. Under physiological conditions, MLN9708 (ixazomib citrate), the stable citrate ester drug substance, hydrolyzes rapidly to MLN2238 (ixazomib), the biologically active boronic acid. It is a second-generation proteasome inhibitor, similar to the well-known proteasome inhibitor bortezomib, which is currently being investigated in phase 3 trials as a treatment for multiple Myeloma. Despite the proven efficacy of these drugs in hematologic malignancies, clinical activity is limited to solid tumors such as colon adenocarcinoma. This study is the first to investigate and compare the antiproliferative and apoptotic effects of MLN2238 and bortezomib on human colon adenocarcinoma Caco2 cells. The antiproliferative effects of MLN2238 and bortezomib were determined using WST-1; apoptotic effects of this drug were determined by caspase-3 and a mitochondrial membrane potential (JC-1) activity assay. Expression levels associated with proteasome inhibition and apoptosis of NF-κB and c-myc mRNA were evaluated by RT-PCR. At 24 and 48 h, MLN2238 showed significant time- and concentration-dependent antiproliferative and apoptotic effects on Caco2 cells. Depending on increasing mitochondrial depolarization and caspase-3 activation, MLN2238 induced apoptosis at level similar to that of bortezomib. In addition, MLN2238 downregulated NF-κB and c-myc mRNA expression levels. For the first time, MLN2238 was shown to induce antiproliferative and apoptotic effects on human colon adenocarcinoma cells that are comparable with those of bortezomib; these in vitro data in Caco2 cells support the development of MLN2238 for colon cancer.
Collapse
Affiliation(s)
- Selin Engür
- Graduate School of Health Sciences, Anadolu University, Eskisehir, Turkey
| | - Miriş Dikmen
- Faculty of Pharmacy, Department of Pharmacology, Anadolu University, Eskisehir, Turkey
- Faculty of Pharmacy, Department of Clinical Pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
8
|
Er S, Dikmen M. Camellia sinensis increased apoptosis on U2OS osteosarcoma cells and wound healing potential on NIH3T3 fibroblast cells. Cytotechnology 2017; 69:901-914. [PMID: 28509991 DOI: 10.1007/s10616-017-0105-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/03/2017] [Indexed: 01/27/2023] Open
Abstract
Camellia sinensis (Cs) is a plant which is rich in polyphenols and has antioxidant, antiinflammatory, antimutagenic, anticarcinogenic and antibacterial activities. In this study, two different methanol extracts (Cs-I and Cs-II) were prepared from the leaf of C. sinensis in order to investigate the wound healing and anticancer activities. Total phenolic content and antioxidant activity of the extracts were determined. Wound healing effects of Cs extracts were evaluated by using Masson's Trichrome Tecnique on NIH3T3 fibroblast cells. Cytotoxic and apoptotic effects of the extracts were determined by MTT and AnnexinV-PI assays on U2OS osteosarcoma cells. Total phenolic contents and antioxidant activities of the extracts were almost the same. The highest concentration (60 µg/mL) of the extracts showed significant cytotoxic and apoptotic effects on U2OS cells. Especially, the highest apoptotic effect was determined with 60 µg/mL Cs-I extract. Significant wound healing potential on NIH3T3 fibroblast cells were determined especially with low extract concentrations (0.5, 1 and 5 µg/mL), while high extract concentrations showed significant anticancer effects. As a result, two Cs leaf extracts exhibited important apoptotic properties and both have wound healing potential. However, the Cs-I extract was found more effective on apoptotic osteosarcoma cell death and has an increased wound healing potential than the Cs-II extract.
Collapse
Affiliation(s)
- Sinem Er
- Tepebası Municipality Environmental Protection and Control Directorate, Eskisehir, Turkey
| | - Miriş Dikmen
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey. .,Department of Clinical Pharmacy, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey.
| |
Collapse
|
9
|
Dikmen M, Canturk Z, Artagan O, Ozturk N. Antioxidant, Antiproliferative and Apoptotic Effects of Secondary Metabolites of Halotolerant Aspergillus terreus on Colon Adenocarcinoma Caco-2 Cells. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.227.236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Engür S, Dikmen M, Öztürk Y. Comparison of antiproliferative and apoptotic effects of a novel proteasome inhibitor MLN2238 with bortezomib on K562 chronic myeloid leukemia cells. Immunopharmacol Immunotoxicol 2015; 38:87-97. [DOI: 10.3109/08923973.2015.1122616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Comparative Studies on Phenolic Composition, Antioxidant, Wound Healing and Cytotoxic Activities of Selected Achillea L. Species Growing in Turkey. Molecules 2015; 20:17976-8000. [PMID: 26437391 PMCID: PMC6332372 DOI: 10.3390/molecules201017976] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
Turkey is one of the most important centers of diversity for the genus Achillea L. in the world. Keeping in mind the immense medicinal importance of phenols, in this study, three species growing in Turkey, A. coarctata Poir. (AC), A. kotschyi Boiss. subsp. kotschyi (AK) and A. lycaonica Boiss. & Heldr. (AL) were evaluated for their phenolic compositions, total phenolic contents (TPC), antioxidant properties, wound healing potencies on NIH-3T3 fibroblasts and cytotoxic effects on MCF-7 human breast cancer cells. Comprehensive LC-MS/MS analysis revealed that AK was distinctively rich in chlorogenic acid, hyperoside, apigenin, hesperidin, rutin, kaempferol and luteolin (2890.6, 987.3, 797.0, 422.5, 188.1, 159.4 and 121.2 µg analyte/g extract, respectively). The findings exhibited a strong correlation between TPC and both free radical scavenging activity and total antioxidant capacity (TAC). Among studied species, the highest TPC (148.00 mg GAE/g extract) and TAC (2.080 UAE), the strongest radical scavenging (EC50 = 32.63 μg/mL), the most prominent wound healing and most abundant cytotoxic activities were observed with AK. The results suggested that AK is a valuable source of flavonoids and chlorogenic acid with important antioxidant, wound healing and cytotoxic activities. These findings warrant further studies to assess the potential of AK as a bioactive source that could be exploited in pharmaceutical, cosmetics and food industries.
Collapse
|
12
|
Çiftçi GA, Yıldırım ŞU, Altıntop MD, Kaplancıklı ZA. Induction of apoptosis in lung adenocarcinoma and glioma cells by some oxadiazole derivatives. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0912-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66:222-307. [PMID: 24368738 DOI: 10.1124/pr.110.004044] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin's distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C-C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin's (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin's poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin's direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.
Collapse
Affiliation(s)
- Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
14
|
Dikmen M, Ozturk N, Ozturk Y. The Antioxidant Potency of Punica granatum L. Fruit Peel Reduces Cell Proliferation and Induces Apoptosis on Breast Cancer. J Med Food 2011; 14:1638-46. [DOI: 10.1089/jmf.2011.0062] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Miris Dikmen
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Nilgün Ozturk
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Yusuf Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|