1
|
Dai L, Yu X, Huang S, Peng Y, Liu J, Chen T, Wang X, Liu Q, Zhu Y, Chen D, Li X, Ou Y, Zou Y, Pan Q, Cao K. The therapeutic potential of attenuated diphtheria toxin delivered by an adenovirus vector with survivin promoter on human lung cancer cells. Cancer Biol Ther 2020; 22:79-87. [PMID: 33377426 DOI: 10.1080/15384047.2020.1859870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adenoviral vectors are superior to plasmid vectors in their gene transport efficiency. The A subunit of the diphtheria toxin (DTA) gene is a popular suicide gene in cancer gene therapy. However, DTA is seldom used in adenoviral therapy due to its great toxicity. The toxicity of DTA is so great that even a single molecule of DTA is enough to kill one cell. To avoid this highly toxic effect on normal cells, DTA should be controlled by tumor-specific promoters. The survivin promoter is a widely used tumor-specific promoter. But genes driven by the survivin promoter show a low level of basal gene expression in non-cancer cells. DTA driven by the survivin promoter in adenoviral vectors may be highly toxic not only to cancer cells but also to normal cells. Therefore, DTA should be attenuated when it is used in adenoviral vectors driven by the survivin promoter. In this study, we compared the three kinds of recombinant adenoviruses that carry DTA or its attenuated forms (DTA176 and DTA197) in the treatment of human lung cancer. The results showed that in comparison with both DTA and DTA176, DTA197 is more suitable for adenoviral cancer therapy controlled by the survivin promoter. In addition, Adsur-DTA197 (DTA197 delivered by an adenoviral vector with the survivin promoter) sensitized human lung cancer cells to cisplatin both in vitro and in vivo. These results indicated that Adsur-DTA197 may be a potential chemosensitizer in cancer therapy.
Collapse
Affiliation(s)
- Lvxia Dai
- Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College , Chengdu, China.,Department of Experiment Teaching Center of Clinical Medicine,Chengdu Medical College , Chengdu, China
| | - Xiaoping Yu
- School of Public Health,Chengdu Medical College , Chengdu, China
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College , Chengdu, China
| | - Yanjuan Peng
- Department of Pharmacology,Chengdu Medical College , Chengdu, China
| | - Jianmin Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine , Guangzhou, China
| | - Tian Chen
- Department of Pathogen Biology,Chengdu Medical College , Chengdu, China
| | - Xin Wang
- Department of Pathogen Biology,Chengdu Medical College , Chengdu, China
| | | | - Yanfeng Zhu
- School of Public Health,Chengdu Medical College , Chengdu, China
| | - Dengbang Chen
- Department of Experiment Teaching Center of Clinical Medicine,Chengdu Medical College , Chengdu, China
| | - Xiaohua Li
- Department of Emergency, Dongfeng Maojian Hospital, Sinopharm Group Corporation , Shiyan, China
| | - Yu Ou
- School of Public Health,Chengdu Medical College , Chengdu, China
| | - Yi Zou
- Department of certification and evaluation of drug safety, Center for certification and evaluation, Guangdong Drug Administration, Guangzhou , China
| | - Qu Pan
- Department of Pathogen Biology,Chengdu Medical College , Chengdu, China
| | - Kang Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College , Chengdu, China.,Department of Pathogen Biology,Chengdu Medical College , Chengdu, China
| |
Collapse
|
2
|
Dai LX, Yang J, Liu JM, Huang S, Wang BN, Li H, Yang J, Zhao ZY, Cao K, Li MY. Adenovirus-Mediated CRM197 Sensitizes Human Glioma Cells to Gemcitabine by the Mitochondrial Pathway. Cancer Biother Radiopharm 2018; 34:171-180. [PMID: 30585767 DOI: 10.1089/cbr.2017.2363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The cross-reacting material 197 (CRM197) is a mutation of the diphtheria toxin. The protein of CRM197 was used successfully for the therapy of various tumors in the recent studies. In this study, the recombinant adenoviruses containing the CRM197gene(AdCRM197) were used to enhance the cellar toxicity of gemcitabine in human glioma U87, U251, and H4 cells. PROCEDURES MTT assay and flow cytometric analysis were performed to test the apoptosis of the U87, U251 and H4 cells with the combined treatment of AdCRM197 plus gemcitabine. Western blotting analyses were carried out to detect the cell apoptosis of the mitochondrial pathway. And the xenograft nude mice were used to observe the enhanced antitumor effect of AdCRM197 in vivo. RESULTS AdCRM197 sensitizes human glioma cells to gemcitabine in vitro by the mitochondrial pathway. Tumor volume was inhibited and survival time was prolonged in the U251 or U87 xenografted nude mice with gemcitabine plus AdCRM197. The enhanced antitumor effect of AdCRM197 was also detected by the immunohistochemical analyses and TUNEL staining. CONCLUSION The authors found that AdCRM197 sensitized the human glioma to gemcitabine not only in vitro but also in vivo. They provide the first evidence that adenovirus-mediated CRM197 may be a potential chemosensitizing agent for the treatment of cancer. The diphtheria toxin is of great toxicity that even one molecule of diphtheria toxin is enough to kill one cell. However, because of the high toxicity, the diphtheria toxin would kill the packing cells when it is being packaged into the recombinant viruses. Therefore, the diphtheria toxin is hard to be used in the gene therapy for virus vectors. The cross-reacting material 197 (CRM197) is a mutation of the diphtheria toxin. Unlike DTA, CRM197 exhibit a weak toxicity. The week toxicity of CRM197 is a good feature for the virus packaging. In the present study, we used a recombinant adenovirus which carried a CRM197 gene (AdCRM197) to enhance the cellar toxicity of gemcitabine in human glioma cells.
Collapse
Affiliation(s)
- Lv-Xia Dai
- 1 Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University , Chengdu, China .,2 Department of Pathogen Biology, Chengdu Medical College , Chengdu, China
| | - Jing Yang
- 3 Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine , Shiyan, China
| | - Jian-Min Liu
- 4 Department of Neurosurgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine , Guangzhou, China
| | - Sizhou Huang
- 2 Department of Pathogen Biology, Chengdu Medical College , Chengdu, China
| | - Bao-Ning Wang
- 1 Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University , Chengdu, China
| | - Hong Li
- 5 West China Second University Hospital, Sichuan University , Chengdu, China
| | - Jie Yang
- 6 Department of Neurology, The First Affiliated Hospital of Chengdu Medical College , Chengdu, China
| | - Zhong-Yi Zhao
- 1 Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University , Chengdu, China
| | - Kang Cao
- 2 Department of Pathogen Biology, Chengdu Medical College , Chengdu, China
| | - Ming-Yuan Li
- 1 Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University , Chengdu, China
| |
Collapse
|
3
|
Dai L, Pan Q, Peng Y, Huang S, Liu J, Chen T, Wang X, Chen D, Wang J, Zhu Y, Wang H, Liu Y, Ou Y, Yu X, Cao K. p53 Plays a Key Role in the Apoptosis of Human Ovarian Cancer Cells Induced by Adenovirus-Mediated CRM197. Hum Gene Ther 2018; 29:916-926. [PMID: 29620944 DOI: 10.1089/hum.2017.186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cross-reacting material 197 (CRM197) is a mutant form of the diphtheria toxin. Recent studies have found that CRM197 exerts an experimental antitumor effect on several types of tumors. This study applied a novel treatment of adenovirus-mediated CRM197 (AdCRM197) to human ovarian cancer cells. Interestingly, it was found that A2780 cells were sensitive to AdCRM197, but SKOV3 cells were resistant to it. Since SKOV3 cells are p53 deletion cells, while A2780 cells are p53 wild-type cells, it was postulated that p53 might play a key role in AdCRM197-induced apoptosis. This presumption was demonstrated by means of knockdown of p53 of the A2780 cells through lentivirus-mediated RNA interference. This knockdown resulted in the A2780 cells becoming resistant to AdCRM197. To verify this presumption further, the wild-type p53 gene in the SKOV3 cells was replaced with adenovirus-mediated p53 (Adp53). As expected, AdCRM197 plus Adp53 resulted in apoptosis of the SKOV3 cells. The combined treatment of AdCRM197 plus Adp53 also showed a good antitumor effect in the in vivo experiment on nude mice with xenograft tumors. Taking these results together, it is concluded that AdCRM197 induces apoptosis of human ovarian cancer cells via the p53 pathway. Moreover, it was found that Adp53 can reverse the resistance of p53-deletion human ovarian cancer cells to AdCRM197. The combination of AdCRM197 and Adp53 may be a potentially effective method for overcoming the resistance of p53-deficient human ovarian cancer to AdCRM197.
Collapse
Affiliation(s)
- Lvxia Dai
- 1 Experiment Teaching Center of Clinical Medicine, Chengdu Medical College , Chengdu, China
| | - Qu Pan
- 2 Department of Pathogen Biology, Chengdu Medical College , Chengdu, China
| | - Yanjuan Peng
- 3 Department of Pharmacology, Chengdu Medical College , Chengdu, China
| | - Sizhou Huang
- 4 Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College , Chengdu, China
| | - Jianmin Liu
- 5 Department of Neurosurgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine , Guangzhou, China
| | - Tian Chen
- 2 Department of Pathogen Biology, Chengdu Medical College , Chengdu, China
| | - Xin Wang
- 2 Department of Pathogen Biology, Chengdu Medical College , Chengdu, China
| | - Dengbang Chen
- 1 Experiment Teaching Center of Clinical Medicine, Chengdu Medical College , Chengdu, China
| | - Jiandong Wang
- 2 Department of Pathogen Biology, Chengdu Medical College , Chengdu, China
| | - Yanfeng Zhu
- 6 School of Public Health, Chengdu Medical College , Chengdu, China
| | - Hui Wang
- 2 Department of Pathogen Biology, Chengdu Medical College , Chengdu, China
| | - Yilun Liu
- 7 Center for Scientific Research , First Affiliated Hospital, Chengdu Medical College, Chengdu, China
| | - Yu Ou
- 6 School of Public Health, Chengdu Medical College , Chengdu, China
| | - Xiaoping Yu
- 6 School of Public Health, Chengdu Medical College , Chengdu, China
| | - Kang Cao
- 2 Department of Pathogen Biology, Chengdu Medical College , Chengdu, China
| |
Collapse
|
4
|
Yuan YG, Peng QL, Gurunathan S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomedicine 2017; 12:6487-6502. [PMID: 28919750 PMCID: PMC5592960 DOI: 10.2147/ijn.s135482] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Gemcitabine (GEM) is widely used as an anticancer agent in several types of solid tumors. Silver nanoparticles (AgNPs) possess unique cytotoxic features and can induce apoptosis in a variety of cancer cells. In this study, we investigated whether the combination of GEM and AgNPs can exert synergistic cytotoxic effects in the human ovarian cancer cell line A2780. Methods We synthesized AgNPs using resveratrol as a reducing and stabilizing agent. The synthesized nanomaterials were characterized using various analytical techniques. The anticancer effects of a combined treatment with GEM and AgNPs were evaluated using a series of cellular assays. The expression of pro- and antiapoptotic genes was measured using real-time reverse transcription polymerase chain reaction. Apoptosis was confirmed by TUNEL assay. Results In this study, combined treatment with GEM and AgNPs significantly inhibited viability and proliferation in A2780 cells. Moreover, the levels of apoptosis in cells treated with a combination of GEM and AgNPs were significantly higher compared with those in cells treated with GEM or AgNPs alone. Our data suggest that GEM and AgNPs exhibit potent apoptotic activity in human ovarian cancer cells. Combined treatment with GEM and AgNPs showed a significantly higher cytotoxic effect in ovarian cancer cells compared with that induced by either of these agents alone. Conclusion Our study demonstrated that the interaction between GEM and AgNPs was cytotoxic in ovarian cancer cells. Combined treatment with GEM and AgNPs caused increased cytotoxicity and apoptosis in A2780 cells. This treatment may have therapeutic potential as targeted therapy for the treatment of ovarian cancer. To our knowledge, this study could provide evidence that AgNPs can enhance responsiveness to GEM in ovarian cancer cells and that AgNPs can potentially be used as chemosensitizing agents in ovarian cancer therapy.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine/Animal Science and Technology/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Qiu-Ling Peng
- College of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi, People's Republic of China
| | - Sangiliyandi Gurunathan
- Department of Stem cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Zhang Q, Zhang Y, Li K, Wang H, Li H, Zheng J. A Novel Strategy to Improve the Therapeutic Efficacy of Gemcitabine for Non-Small Cell Lung Cancer by the Tumor-Penetrating Peptide iRGD. PLoS One 2015; 10:e0129865. [PMID: 26066322 PMCID: PMC4466375 DOI: 10.1371/journal.pone.0129865] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 05/13/2015] [Indexed: 01/17/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, comprising approximately 75–80% of all lung cancers. Gemcitabine is an approved chemotherapy drug for NSCLC. The objective of this study was to develop a novel strategy to improve the therapeutic efficacy of Gemcitabine for NSCLC by the co-administered iRGD peptide. We showed that the rates of positive expression of αvβ3, αvβ5 and NRP-1 in the A549 cell line were 68.5%, 35.3% and 94.5%, respectively. The amount of Evans Blue accumulated in the tumor of Evans Blue+iRGD group was 2.5 times that of Evans Blue group. The rates of growth inhibition of the tumors of the iRGD group, the Gemcitabine group and the Gemcitabine+iRGD group were 8%, 59.8% and 86.9%, respectively. The results of mechanism studies showed that PCNA expression in the Gemcitabine+iRGD group decreased 71.5% compared with that in Gemcitabine group. The rate of apoptosis in the Gemcitabine+iRGD group was 2.2 time that of the Gemcitabine group. Therefore, the tumor-penetrating Peptide iRGD can enhance the tumor-penetrating ability and therapeutic efficacy of Gemcitabine in the A549 xenograft. The combined application of Gemcitabine with iRGD may be a novel strategy to enhance the clinical therapeutic efficacy of Gemcitabine in patients with NSCLC.
Collapse
Affiliation(s)
- Qing Zhang
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| | - Yang Zhang
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, 221009, China
| | - Ke Li
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| | - Haiyu Wang
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
- * E-mail:
| |
Collapse
|