1
|
Okada M, Nakagawa-Saito Y, Mitobe Y, Sugai A, Togashi K, Suzuki S, Kitanaka C. Inhibition of the Phospholipase Cε-c-Jun N-Terminal Kinase Axis Suppresses Glioma Stem Cell Properties. Int J Mol Sci 2022; 23:ijms23158785. [PMID: 35955917 PMCID: PMC9369372 DOI: 10.3390/ijms23158785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Glioma stem cells (GSCs), the cancer stem cells of glioblastoma multiforme (GBM), contribute to the malignancy of GBM due to their resistance to therapy and tumorigenic potential; therefore, the development of GSC-targeted therapies is urgently needed to improve the poor prognosis of GBM patients. The molecular mechanisms maintaining GSCs need to be elucidated in more detail for the development of GSC-targeted therapy. In comparison with patient-derived GSCs and their differentiated counterparts, we herein demonstrated for the first time that phospholipase C (PLC)ε was highly expressed in GSCs, in contrast to other PLC isoforms. A broad-spectrum PLC inhibitor suppressed the viability of GSCs, but not their stemness. Nevertheless, the knockdown of PLCε suppressed the survival of GSCs and induced cell death. The stem cell capacity of residual viable cells was also suppressed. Moreover, the survival of mice that were transplanted with PLCε knockdown-GSCs was longer than the control group. PLCε maintained the stemness of GSCs via the activation of JNK. The present study demonstrated for the first time that PLCε plays a critical role in maintaining the survival, stemness, and tumor initiation capacity of GSCs. Our study suggested that PLCε is a promising anti-GSC therapeutic target.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Correspondence: ; Tel.: +81-23-628-5214
| | - Yurika Nakagawa-Saito
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yuta Mitobe
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
2
|
Cui X, Xin H, Peng H, Chen Y. Comprehensive bioinformatics analysis of the mRNA profile of PLCE1 knockdown in esophageal squamous cell carcinoma. Mol Med Rep 2017; 16:5871-5880. [PMID: 28849204 PMCID: PMC5865764 DOI: 10.3892/mmr.2017.7318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022] Open
Abstract
The authors previously reported that Phospholipase C epsilon 1 (PLCE1) exacerbated esophageal squamous cell carcinoma (ESCC), however, the underlying mechanism remains to be fully elucidated. The present study aimed to identify key differentially expressed genes (DEGs) and signaling pathways regulated by PLCE1 in ESCC. EC9706 and Eca109 cell lines were transfected with the specific small interfering (si) RNA of PLCE1, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting were performed to detect the expression levels of PLCE1, and subsequently, mRNA array and multiple bioinformatics analysis were conducted. RT‑qPCR was used to verify gene expression array results. The findings of the present study indicated that PLCE1 mRNA and protein expression were significantly suppressed (P<0.05) in the PLCE1 siRNA‑transfected cells. In addition, a total of 223 DEGs with >2‑fold alterations were screened between the PLCE1 siRNA‑treated cells, including 168 upregulated and 53 downregulated DEGs. In particular, inflammation or immune‑associated molecules, including Toll‑like receptor (TLR)‑4 interleukin‑6, ‑8 and chemokine C‑X‑C motif ligand 2 were significantly increased following PLCE1 knockdown. Furthermore, Gene Ontology enrichment revealed terms associated with cell proliferation, differentiation, apoptosis, signal transduction, invasion and metastasis, which may potentially be associated with PLCE1 function. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated 46 pathways were disturbed by DEGs, including focal adhesion, mitogen activated protein kinase, TLR, p53 and janus kinase/signal transducer and activator of transcription signaling pathways. The RT‑qPCR results for validation of the selected DEGs were consistent with that of the microarray data. Overall, the results of the multiple bioinformatic analysis contributes to a systematic understanding of the roles of PLCE1 in ESCC.
Collapse
Affiliation(s)
- Xiaobin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Huahua Xin
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Yunzhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
3
|
Zhou RM, Li Y, Wang N, Huang X, Cao SR. Phospholipase C ε-1 gene polymorphisms and prognosis of esophageal cancer patients from a high-incidence region in northern China. Mol Clin Oncol 2017; 8:170-174. [PMID: 29387411 DOI: 10.3892/mco.2017.1475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
Recent genome-wide association studies identified susceptibility loci for esophageal squamous cell carcinoma (ESCC), the most common histological type of esophageal cancer, in the phospholipase C ε-1 gene (PLCE1). The aim of the present study was to investigate whether polymorphisms of PLCE1 were associated with the prognosis of ESCC patients in a high-incidence region of northern China. The PLCE1 rs2274223 A/G and rs11599672T/G single-nucleotide polymorphisms (SNPs) were genotyped by polymerase chain reaction-ligase detection reaction method in 207 ESCC patients with survival information. The mean age ± standard deviation of the 207 ESCC patients was 60.3±7.9 years. Sex, age, smoking status and family history of upper gastrointestinal cancer were not found to be associated with the survival time of ESCC patients. The mean survival time of rs2274223 SNP A/A, A/G and G/G genotype carriers were 42.9, 43.4 and 46.3 months, respectively; for rs11599672 SNP T/T, T/G and G/G genotype carriers the survival time were 42.8, 43.8 and 42.7 months, respectively. There was no significant difference in survival time among the ESCC patients with different genotypes of rs2274223 and rs11599672 SNPs. In conclusion, PLCE1 rs227423 and rs11599672 SNPs cannot be used as predictive markers for the survival of ESCC patients from a high-incidence region of northern China.
Collapse
Affiliation(s)
- Rong-Miao Zhou
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yan Li
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Na Wang
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xi Huang
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shi-Ru Cao
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
4
|
Cytotoxic and toxicogenomic effects of silibinin in bladder cancer cells with different TP53 status. J Biosci 2017; 42:91-101. [PMID: 28229968 DOI: 10.1007/s12038-016-9654-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Silibinin is a natural phenol found in the seeds of the milk thistle plant. Recent data have shown its effectiveness for preventing/treating bladder tumours. Therefore, in this study we investigated the cytotoxic and toxicogenetic activity of silibinin in bladder cancer cells with different TP53 statuses. Two bladder urothelial carcinoma cell lines were used: RT4 (wild-type TP53 gene) and T24 (mutated TP53 gene). Cell proliferation, clonogenic survival, apoptosis rates, genotoxicity and relative expression profile of FRAP/mTOR, FGFR3, AKT2 and DNMT1 genes and of miR100 and miR203 were evaluated. Silibinin promoted decreased proliferation and increased late apoptosis in TP53 mutated cells. Increased early apoptosis rates, primary DNA damage, and decrease of cell colonies in the clonogenic survival assay were detected in both RT4 and T24 cell lines. Down-regulation of FRAP/mTOR, AKT2, FGFR3, DNMT1 and miR100 expression occurred in RT4 cells. Modulation of miR203 was observed in both cell lines. In conclusion, despite the reduction of clone formation in both cell lines, the toxicogenomic effect of silibinin on FRAP/mTOR, AKT2, FGFR3, DNMT1 and miR100 was dependent on the TP53 status. Taken together, the data confirmed the role of silibinin as an antiproliferative compound, whose mechanism of action was related to the TP53 status.
Collapse
|
5
|
Zhang RY, Du WQ, Zhang YC, Zheng JN, Pei DS. PLCε signaling in cancer. J Cancer Res Clin Oncol 2016; 142:715-22. [PMID: 26109147 DOI: 10.1007/s00432-015-1999-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/09/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE As one of the members of the PLC family, the phosphoinositide-specific phospholipase Cε (PLCε) has been shown to play pivotal roles in multiple signal pathways and control a variety of cellular functions. A number of studies have shown that aberrant regulation of PLCε was involved in various types of animal and human cancer. However, the role of PLCε in cancer remains elusive. In this review, we provide an overview of the PLCε, especially its roles in multiple signal pathways, and summarize the recent findings that highlight the roles of PLCε in carcinogenesis and cancer progression, making an avenue to provide a novel therapeutic strategy for the treatment of cancer. METHODS A literature search mainly paying attention to the network of PLCε involved in tumorigenesis and development was performed in electronic databases. RESULTS PLCε plays a key role in medicating the development and progression of human cancers with highest potency to be a target of cancer prevention and treatment.
Collapse
Affiliation(s)
- Rui-Yan Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Wen-Qi Du
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Ying-Chun Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, People's Republic of China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China.
| | - Dong-Sheng Pei
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Lo Vasco VR, Leopizzi M, Di Maio V, Della Rocca C. U-73122 reduces the cell growth in cultured MG-63 ostesarcoma cell line involving Phosphoinositide-specific Phospholipases C. SPRINGERPLUS 2016; 5:156. [PMID: 27026853 PMCID: PMC4766154 DOI: 10.1186/s40064-016-1768-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/12/2016] [Indexed: 11/24/2022]
Abstract
The definition of the number and nature of the signal transduction pathways involved in the pathogenesis and the identification of the molecules promoting metastasis spread might improve the knowledge of the natural history of osteosarcoma, also allowing refine the prognosis and opening the way to novel therapeutic strategies. Phosphatydil inositol (4,5) bisphosphate (PIP2), belonging to the Phosphoinositide (PI) signal transduction pathway, was related to the regulation of ezrin, an ezrin-radixin-moesin protein involved in metastatic osteosarcoma spread. The levels of PIP2 are regulated by means of the PI-specific Phospholipase C (PLC) enzymes. Recent literature data suggested that in osteosarcoma the panel of expression of PLC isoforms varies in a complex and unclear manner and is related to ezrin, probably networking with Ras GTPases, such as RhoA and Rac1. We analyzed the expression and the subcellular localization of PLC enzymes in cultured human osteosarcoma MG-63 cells, commonly used as an experimental model for human osteoblasts, using U-73122 PLC inhibitor, U-73343 inactive analogue, and by silencing ezrin. The treatment with U-73122 significantly reduces the number of MG-63 viable cells and contemporarily modifies the expression and the subcellular localization of selected PLC isoforms. U-73122 reduces the cell growth in cultured MG-63 ostesarcoma cell line involving PI-specific Phospholipases C.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- />Sensory Organs Department, Policlinico Umberto I, Faculty of Medicine and Dentistry, Sapienza University of Rome, viale dell’Università, 33, 00157 Rome, Italy
| | - Martina Leopizzi
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| | - Valeria Di Maio
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| | - Carlo Della Rocca
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
7
|
Knockdown of PLCε inhibits inflammatory cytokine release via STAT3 phosphorylation in human bladder cancer cells. Tumour Biol 2015; 36:9723-32. [PMID: 26156799 DOI: 10.1007/s13277-015-3712-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/23/2015] [Indexed: 01/05/2023] Open
Abstract
Phospholipase Cε (PLCε) is a multifunctional enzyme implicated in inflammatory functions. There are limited data, however, on how PLCε can alter inflammatory cytokine by affecting downstream pathways. Recent studies suggest that inflammation is likely to have an important role in transitional cell carcinoma of bladder (TCCB) and cancer disease progression. Here, we showed that PLCε and p-STAT3 expression were both elevated in TCCB tissues compared to adjacent tissues, and the increase of PLCε level was associated with the increase of p-STAT3 level. Then, knockdown of PLCε using adenovirus-shPLCε significantly decreased inflammatory cytokine (IL-6, TNF-α, IL-1β) expression and inflammation-associated gene (TLR4, MyD88, p-STAT3) expression. Furthermore, we demonstrated that PLCε knockdown blocked LPS-induced inflammatory cytokine and p-STAT3 expression. Additionally, we found that combined treatment of STAT3 inhibitor S3I-201 with adenovirus-shPLCε exhibited synergistic inhibitory effects on expression of p-STAT3. Our results suggested that STAT3 phosphorylation is involved in PLCε-mediated inflammatory cytokine release. Our research is of potential importance in drug development programs using PLCε as a therapeutic target for TCCB.
Collapse
|
8
|
Cui XB, Chen YZ, Pang XL, Liu W, Hu JM, Li SG, Yang L, Zhang WJ, Liu CX, Cao YW, Jiang JF, Gu WY, Pang J, Yang L, Yuan XL, Yu SY, Li F. Multiple polymorphisms within the PLCE1 are associated with esophageal cancer via promoting the gene expression in a Chinese Kazakh population. Gene 2013; 530:315-22. [PMID: 23981775 DOI: 10.1016/j.gene.2013.08.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/26/2013] [Accepted: 08/16/2013] [Indexed: 01/16/2023]
Abstract
Although recent genome-wide association studies of esophageal squamous cell carcinoma (ESCC) identified a susceptibility locus in phospholipase C epsilon 1 (PLCE1) in Chinese Han populations, few studies further confirmed these findings in pure Kazakh population in which there are higher incidence and mortality of ESCC. Here, we investigated the potential associations between 19 SNPs of PLCE1 and susceptibility to ESCC in 222 cases and 326 controls from a pure ethnic population of Kazakh. Real-time PCR and immunohistochemistry were performed to detect the PLCE1 expression levels and evaluate their association with PLCE1 polymorphism. We found that only 4 SNPs (rs753724, rs11187842, rs2274223, and rs12263737) with moderate linkage disequilibrium (LD) confer significantly increased risk of ESCC, with the ORs ranging from 1.43 to 2.04, and there was a risk allele dose-dependent increase in ESCC risk (P-trend=0.043). Especially, the risk effects of rs2274223 were more evident in poor differentiation and advanced clinical stages of Kazakh ESCC. Additionally, the significantly lowest PLCE1 mRNA expression was found in the KYSE-150 cell line having no risk alleles compared with other three cell lines having risk alleles, and the normal tissues of both homozygous mutant type of PLCE1 rs12263737 and rs2274223 had a higher PLCE1 staining score than that of homozygous wild type. Our findings suggested that genetic variants in PLCE1 might serve as candidate markers for Kazakh ESCC susceptibility, and these LD variants might influence ESCC risk individually and jointly by promoting the messenger RNA and protein expression of the gene.
Collapse
Affiliation(s)
- Xiao-Bin Cui
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi 832002, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|