1
|
Hardiansyah D, Riana A, Beer AJ, Glatting G. Single-time-point estimation of absorbed doses in PRRT using a non-linear mixed-effects model. Z Med Phys 2023; 33:70-81. [PMID: 35961809 PMCID: PMC10082376 DOI: 10.1016/j.zemedi.2022.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Estimation of accurate time-integrated activity coefficients (TIACs) and radiation absorbed doses (ADs) is desirable for treatment planning in peptide-receptor radionuclide therapy (PRRT). This study aimed to investigate the accuracy of a simplified dosimetry using a physiologically-based pharmacokinetic (PBPK) model, a nonlinear mixed effect (NLME) model, and single-time-point imaging to calculate the TIACs and ADs of 90Y-DOTATATE in various organs of dosimetric interest and tumors. MATERIALS & METHODS Biokinetic data of 111In-DOTATATE in tumors, kidneys, liver, spleen, and whole body were obtained from eight patients using planar scintigraphic imaging at T1 = (2.9 ± 0.6), T2 = (4.6 ± 0.4), T3 = (22.8 ± 1.6), T4 = (46.7 ± 1.7) and T5 = (70.9 ± 1.0) h post injection. Serum activity concentration was measured at 5 and 15 min; 0.5, 1, 2, and 4 h; and 1, 2, and 3 d p.i.. A published PBPK model for PRRT, NLME, and a single-time-point imaging datum at different time points were used to calculate TIACs in tumors, kidneys, liver, spleen, whole body, and serum. Relative deviations (RDs) (median [min, max]) between the calculated TIACs from single-time-point imaging were compared to the TIACs calculated from the all-time-points fit. The root mean square error (RMSE) of the difference between the computed ADs from the single-time-point imaging and reference ADs from the all-time point fittings were analyzed. A joint root mean square error RMSEjoint of the ADs was calculated with the RSME from both the tumor and kidneys to sort the time points concerning accurate results for the kidneys and tumor dosimetry. The calculations of TIACs and ADs from the single-time-point dosimetry were repeated using the sum of exponentials (SOE) approach introduced in the literature. The RDs and the RSME of the PBPK approach in our study were compared to the SOE approach. RESULTS Using the PBPK and NLME models and the biokinetic measurements resulted in a good fit based on visual inspection of the fitted curves and the coefficient of variation CV of the fitted parameters (<50%). T4 was identified being the time point with a relatively low median and range of TIACs RDs, i.e., 5 [1, 21]% and 2 [-15, 21]% for kidneys and tumors, respectively. T4 was found to be the time point with the lowest joint root mean square error RMSEjoint of the ADs. Based on the RD and RMSE, our results show a similar performance as the SOE and NLME model approach. SUMMARY In this study, we introduced a simplified calculation of TIACs/ADs using a PBPK model, an NLME model, and a single-time-point measurement. Our results suggest a single measurement might be used to calculate TIACs/ADs in the kidneys and tumors during PRRT.
Collapse
Affiliation(s)
- Deni Hardiansyah
- Medical Physics and Biophysics, Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Ade Riana
- Medical Physics and Biophysics, Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Ambros J Beer
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Gerhard Glatting
- Department of Nuclear Medicine, Ulm University, Ulm, Germany; Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany.
| |
Collapse
|
2
|
Hardiansyah D, Kletting P, Begum NJ, Eiber M, Beer AJ, Pawiro SA, Glatting G. Important pharmacokinetic parameters for individualization of 177 Lu-PSMA therapy: A global sensitivity analysis for a physiologically-based pharmacokinetic model. Med Phys 2020; 48:556-568. [PMID: 33244792 DOI: 10.1002/mp.14622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/26/2020] [Accepted: 11/13/2020] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The knowledge of the contribution of anatomical and physiological parameters to interindividual pharmacokinetic differences could potentially be used to improve individualized treatment planning for radionuclide therapy. The aim of this study was therefore to identify the physiologically based pharmacokinetic (PBPK) model parameters that determine the interindividual variability of absorbed doses (ADs) to kidneys and tumor lesions in therapy with 177 Lu-labeled PSMA-targeting radioligands. METHODS A global sensitivity analysis (GSA) with the extended Fourier Amplitude Sensitivity Test (eFAST) algorithm was performed. The whole-body PBPK model for PSMA-targeting radioligand therapy from our previous studies was used in this study. The model parameters of interest (input of the GSA) were the organ receptor densities [R0 ], the organ blood flows f, and the organ release rates λ. These parameters were systematically sampled NE times according to their distribution in the patient population. The corresponding pharmacokinetics were simulated and the ADs (model output) to kidneys and tumor lesions were collected. The main effect S i and total effect S Ti were calculated using the eFAST algorithm based on the variability of the model output: The main effect S i of input parameter i represents the reduction in variance of the output if the "true" value of parameter i would be known. The total effect S Ti of an input parameter i represents the proportion of variance remaining if the "true" values of all other input parameters except for i are known. The numbers of samples NE were increased up to 8193 to check the stability (i.e., convergence) of the calculated main effects S i and total effects S Ti . RESULTS From the simulations, the relative interindividual variability of ADs in the kidneys (coefficient of variation CV = 31%) was lower than that of ADs in the tumors (CV up to 59%). Based on the GSA, the most important parameters that determine the ADs to the kidneys were kidneys flow ( S i = 0.36, S Ti = 0.43) and kidneys receptor density ( S i = 0.25, S Ti = 0.30). Tumor receptor density was identified as the most important parameter determining the ADs to tumors ( S i and S Ti up to 0.72). CONCLUSIONS The results suggest that an accurate measurement of receptor density and flow before therapy could be a promising approach for developing an individualized treatment with 177 Lu-labeled PSMA-targeting radioligands.
Collapse
Affiliation(s)
- Deni Hardiansyah
- Medical Physics and Biophysics, Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Peter Kletting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, 89081, Germany.,Department of Nuclear Medicine, Ulm University, Ulm, 89081, Germany
| | - Nusrat J Begum
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, 89081, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, München, 81675, Germany
| | - Ambros J Beer
- Department of Nuclear Medicine, Ulm University, Ulm, 89081, Germany
| | - Supriyanto A Pawiro
- Medical Physics and Biophysics, Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, 89081, Germany.,Department of Nuclear Medicine, Ulm University, Ulm, 89081, Germany
| |
Collapse
|
3
|
Gruber L, Jiménez-Franco LD, Decristoforo C, Uprimny C, Glatting G, Hohenberger P, Schoenberg SO, Reindl W, Orlandi F, Mariani M, Jaschke W, Virgolini I. MITIGATE-NeoBOMB1, a Phase I/IIa Study to Evaluate Safety, Pharmacokinetics, and Preliminary Imaging of 68Ga-NeoBOMB1, a Gastrin-Releasing Peptide Receptor Antagonist, in GIST Patients. J Nucl Med 2020; 61:1749-1755. [PMID: 32332143 DOI: 10.2967/jnumed.119.238808] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/28/2020] [Indexed: 12/13/2022] Open
Abstract
Gastrin-releasing peptide receptors (GRPRs) are potential molecular imaging targets in a variety of tumors. Recently, a 68Ga-labeled antagonist to GRPRs, NeoBOMB1, was developed for PET. We report on the outcome of a phase I/IIa clinical trial (EudraCT 2016-002053-38) within the EU-FP7 project Closed-loop Molecular Environment for Minimally Invasive Treatment of Patients with Metastatic Gastrointestinal Stromal Tumors ('MITIGATE') (grant agreement no. 602306) in patients with oligometastatic gastrointestinal stromal tumors (GIST). Methods: The main objectives were evaluation of safety, biodistribution, dosimetry, and preliminary tumor targeting of 68Ga-NeoBOMB1 in patients with advanced tyrosine-kinase inhibitors-treated GIST using PET/CT. Six patients with histologically confirmed GIST and unresectable primary lesion or metastases undergoing an extended protocol for detailed pharmacokinetic analysis were included. 68Ga-NeoBOMB1 was prepared using a kit procedure with a licensed 68Ge/68Ga generator. 68Ga-NeoBOMB1 (3 MBq/kg of body weight) was injected intravenously, and safety parameters were assessed. PET/CT included dynamic imaging at 5, 11, and 19 min as well as static imaging at 1, 2, and 3-4 h after injection for dosimetry calculations. Venous blood samples and urine were collected for pharmacokinetic analysis. Tumor targeting was assessed on a per-lesion and per-patient basis. Results: 68Ga-NeoBOMB1 (50 μg) was prepared with high radiochemical purity (yield > 97%). Patients received 174 ± 28 MBq of the radiotracer, which was well tolerated in all patients over a follow-up period of 4 wk. Dosimetry calculations revealed a mean effective dose of 0.029 ± 0.06 mSv/MBq, with the highest organ dose to the pancreas (0.274 ± 0.099 mSv/MBq). Mean plasma half-life was 27.3 min with primarily renal clearance (mean 25.7% ± 5.4% of injected dose 4 h after injection). Plasma metabolite analyses revealed high stability; metabolites were detected only in the urine. In 3 patients, a significant uptake with increasing maximum SUVs (SUVmax at 2 h after injection: 4.3-25.9) over time was found in tumor lesions. Conclusion: This phase I/IIa study provides safety data for 68Ga-NeoBOMB1, a promising radiopharmaceutical for targeting GRPR-expressing tumors. Safety profiles and pharmacokinetics are suitable for PET imaging, and absorbed dose estimates are comparable to those of other 68Ga-labeled radiopharmaceuticals used in clinical routine.
Collapse
Affiliation(s)
- Leonhard Gruber
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Luis David Jiménez-Franco
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Uprimny
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Gerhard Glatting
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Peter Hohenberger
- Division of Surgical Oncology and Thoracic Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan O Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Klinikum Mannheim II, Medizinische Klinik, Mannheim, Germany; and
| | - Francesca Orlandi
- Advanced Accelerator Applications, a Novartis Company, Colleretto Giacosa TO, Italy
| | - Maurizio Mariani
- Advanced Accelerator Applications, a Novartis Company, Colleretto Giacosa TO, Italy
| | - Werner Jaschke
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Karimian A, Ji NT, Song H, Sgouros G. Mathematical Modeling of Preclinical Alpha-Emitter Radiopharmaceutical Therapy. Cancer Res 2019; 80:868-876. [PMID: 31772036 DOI: 10.1158/0008-5472.can-19-2553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/30/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022]
Abstract
Preclinical studies, in vivo, and in vitro studies, in combination with mathematical modeling can help optimize and guide the design of clinical trials. The design and optimization of alpha-particle emitter radiopharmaceutical therapy (αRPT) is especially important as αRPT has the potential for high efficacy but also high toxicity. We have developed a mathematical model that may be used to identify trial design parameters that will have the greatest impact on outcome. The model combines Gompertzian tumor growth with antibody-mediated pharmacokinetics and radiation-induced cell killing. It was validated using preclinical experimental data of antibody-mediated 213Bi and 225Ac delivery in a metastatic transgenic breast cancer model. In modeling simulations, tumor cell doubling time, administered antibody, antibody specific-activity, and antigen-site density most impacted median survival. The model was also used to investigate treatment fractionation. Depending upon the time-interval between injections, increasing the number of injections increased survival time. For example, two administrations of 200 nCi, 225Ac-labeled antibody, separated by 30 days, resulted in a simulated 31% increase in median survival over a single 400 nCi administration. If the time interval was 7 days or less, however, there was no improvement in survival; a one-day interval between injections led to a 10% reduction in median survival. Further model development and validation including the incorporation of normal tissue toxicity is necessary to properly balance efficacy with toxicity. The current model is, however, useful in helping understand preclinical results and in guiding preclinical and clinical trial design towards approaches that have the greatest likelihood of success. SIGNIFICANCE: Modeling is used to optimize αRPT.
Collapse
Affiliation(s)
- Alireza Karimian
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Nathan T Ji
- Radiologic Physics Division, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Hong Song
- Radiologic Physics Division, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - George Sgouros
- Radiologic Physics Division, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, Maryland.
| |
Collapse
|
5
|
Hardiansyah D, Guo W, Attarwala AA, Kletting P, Mottaghy FM, Glatting G. Treatment planning in PRRT based on simulated PET data and a PBPK model. Nuklearmedizin 2018; 56:23-30. [DOI: 10.3413/nukmed-0819-16-04] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/07/2016] [Indexed: 11/20/2022]
Abstract
SummaryAim: To investigate the accuracy of treatment planning in peptide-receptor radionuclide therapy (PRRT) based on simulated PET data (using a PET noise model) and a physiologically based pharmacokinetic (PBPK) model. Methods: The parameters of a PBPK model were fitted to the biokinetic data of 15 patients. True mathematical phantoms of patients (MPPs) were the PBPK model with the fitted parameters. PET measurements after bolus injection of 150 MBq 68Ga-DOTATATE were simulated for the true MPPs. PET noise with typical noise levels was added to the data (i.e. c=0.3 [low], 3, 30 and 300 [high]). Organ activity data in the kidneys, tumour, liver and spleen were simulated at 0.5, 1 and 4 h p.i. PBPK model parameters were fitted to the simulated noisy PET data to derive the PET-predicted MPPs. Therapy was simulated assuming an infusion of 3.3 GBq of 90Y-DOTATATE over 30 min. Time-integrated activity coefficients (TIACs) of simulated therapy in tumour, kidneys, liver, spleen and remainder were calculated from both, true MPPs (true TIACs) and predicted MPPs (predicted TIACs). Variability v between true TIACs and predicted TIACs were calculated and analysed. Variability< 10 % was considered to be an accurate prediction. Results: For all noise level, variabilities for the kidneys, liver, and spleen showed an accurate prediction for TIACs, e.g. c=300: vkidney=(5 ± 2)%, vliver=(5 ± 2)%, vspleen=(4 ± 2)%. However, tumour TIAC predictions were not accurate for all noise levels, e.g. c=0.3: vtumour=(8 ± 5)%. Conclusion: PET based treatment planning with kidneys as the dose limiting organ seems possible for all reported noise levels using an adequate PBPK model and previous knowledge about the individual patient.
Collapse
|
6
|
Hardiansyah D, Guo W, Kletting P, Mottaghy FM, Glatting G. Time-integrated activity coefficient estimation for radionuclide therapy using PET and a pharmacokinetic model: A simulation study on the effect of sampling schedule and noise. Med Phys 2017; 43:5145. [PMID: 27587044 DOI: 10.1118/1.4961012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the accuracy of PET-based treatment planning for predicting the time-integrated activity coefficients (TIACs). METHODS The parameters of a physiologically based pharmacokinetic (PBPK) model were fitted to the biokinetic data of 15 patients to derive assumed true parameters and were used to construct true mathematical patient phantoms (MPPs). Biokinetics of 150 MBq (68)Ga-DOTATATE-PET was simulated with different noise levels [fractional standard deviation (FSD) 10%, 1%, 0.1%, and 0.01%], and seven combinations of measurements at 30 min, 1 h, and 4 h p.i. PBPK model parameters were fitted to the simulated noisy PET data using population-based Bayesian parameters to construct predicted MPPs. Therapy simulations were performed as 30 min infusion of (90)Y-DOTATATE of 3.3 GBq in both true and predicted MPPs. Prediction accuracy was then calculated as relative variability vorgan between TIACs from both MPPs. RESULTS Large variability values of one time-point protocols [e.g., FSD = 1%, 240 min p.i., vkidneys = (9 ± 6)%, and vtumor = (27 ± 26)%] show inaccurate prediction. Accurate TIAC prediction of the kidneys was obtained for the case of two measurements (1 and 4 h p.i.), e.g., FSD = 1%, vkidneys = (7 ± 3)%, and vtumor = (22 ± 10)%, or three measurements, e.g., FSD = 1%, vkidneys = (7 ± 3)%, and vtumor = (22 ± 9)%. CONCLUSIONS (68)Ga-DOTATATE-PET measurements could possibly be used to predict the TIACs of (90)Y-DOTATATE when using a PBPK model and population-based Bayesian parameters. The two time-point measurement at 1 and 4 h p.i. with a noise up to FSD = 1% allows an accurate prediction of the TIACs in kidneys.
Collapse
Affiliation(s)
- Deni Hardiansyah
- Medical Radiation Physics/Radiation Protection, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim 68167, Germany and Department of Radiation Oncology, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Wei Guo
- Medical Radiation Physics/Radiation Protection, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Peter Kletting
- Department of Nuclear Medicine, Ulm University, Ulm 89081, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, Aachen 52074, Germany and Department of Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht 6229, The Netherlands
| | - Gerhard Glatting
- Medical Radiation Physics/Radiation Protection, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim 68167, Germany
| |
Collapse
|