1
|
Wu T, Dong Y, Yang X, Mo L, You Y. Crosstalk between lncRNAs and Wnt/β-catenin signaling pathways in lung cancers: From cancer progression to therapeutic response. Noncoding RNA Res 2024; 9:667-677. [PMID: 38577016 PMCID: PMC10987302 DOI: 10.1016/j.ncrna.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
Lung cancer (LC) is considered to have the highest mortality rate around the world. Because there are no early diagnostic signs or efficient clinical alternatives, distal metastasis and increasing numbers of recurrences are a challenge in the clinical management of LC. Long non-coding RNAs (lncRNAs) have recently been recognized as a critical regulator involved in the progression and treatment response to LC. The Wnt/β-catenin pathway has been shown to influence LC occurrence and progress. Therefore, discovering connections between Wnt signaling pathway and lncRNAs may offer new therapeutic targets for improving LC treatment and management. In this review, the purpose of this article is to present possible therapeutic approaches by reviewing particular relationships, key processes, and molecules associated to the beginning and development of LC.
Collapse
Affiliation(s)
- Ting Wu
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - YiRan Dong
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - XinZhi Yang
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liang Mo
- Department of Thoracic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yong You
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
2
|
Long Noncoding RNAs and Circular RNAs Regulate AKT and Its Effectors to Control Cell Functions of Cancer Cells. Cells 2022; 11:cells11192940. [PMID: 36230902 PMCID: PMC9563963 DOI: 10.3390/cells11192940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of these functions by numerous pathways. However, the impact on cell functions by lncRNAs and circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2, S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions through modulating AKT and AKT effectors. This review provides insights into a comprehensive network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer cell functions.
Collapse
|
3
|
Wang Y, Wang X, Xu Q, Yin J, Wang H, Zhang L. CircRNA, lncRNA, and mRNA profiles of umbilical cord blood exosomes from preterm newborns showing bronchopulmonary dysplasia. Eur J Pediatr 2022; 181:3345-3365. [PMID: 35790551 PMCID: PMC9395505 DOI: 10.1007/s00431-022-04544-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
Bronchopulmonary dysplasia (BPD) represents a multifactorial chronic pulmonary pathology and a major factor causing premature illness and death. The therapeutic role of exosomes in BPD has been feverishly investigated. Meanwhile, the potential roles of exosomal circRNAs, lncRNAs, and mRNAs in umbilical cord blood (UCB) serum have not been studied. This study aimed to detect the expression profiles of circRNAs, lncRNAs, and mRNAs in UCB-derived exosomes of infants with BPD. Microarray analysis was performed to compare the RNA profiles of UCB-derived exosomes of a preterm newborn with (BPD group) and without (non-BPD, NBPD group) BPD. Then, circRNA/lncRNA-miRNA-mRNA co-expression networks were built to determine their association with BPD. In addition, cell counting kit-8 (CCK-8) assay was used to evaluate the proliferation of lipopolysaccharide (LPS)-induced human bronchial epithelial cells (BEAS-2B cells) and human umbilical vein endothelial cells (HUVECs). The levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in LPS-induced BEAS-2B cells and HUVECs were assessed through Western blot analysis. Then, quantitative reverse transcription-polymerase chain reaction assay was used to evaluate the expression levels of four differentially expressed circRNAs (hsa_circ_0086913, hsa_circ_0049170, hsa_circ_0087059, and hsa_circ_0065188) and two lncRNAs (small nucleolar RNA host gene 20 (SNHG20) and LINC00582) detected in LPS-induced BEAS-2B cells or HUVECs. A total of 317 circRNAs, 104 lncRNAs, and 135 mRNAs showed significant differential expression in UCB-derived exosomes of preterm infants with BPD compared with those with NBPD. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to examine differentially expressed exosomal circRNAs, lncRNAs, and mRNAs. The results showed that the GO terms and KEGG pathways mostly involving differentially expressed exosomal RNAs were closely associated with endothelial or epithelial cell development. In vitro, CCK-8 and Western blot assays revealed that LPS remarkably inhibited the viability and promoted inflammatory responses (TNF-α and IL-1β) of BEAS-2B cells or HUVECs. The expression levels of circRNAs hsa_circ_0049170 and hsa_circ_0087059 were upregulated in LPS-induced BEAS-2B cells; the expression level of hsa_circ_0086913 was upregulated and that of hsa_circ_0065188 was downregulated in LPS-induced HUVECs. Moreover, the expression level of lncRNA SNHG20 was upregulated and that of LINC00582 was downregulated in LPS-induced BEAS-2B cells. Further, 455 circRNA/lncRNA-miRNA-mRNA interaction networks were predicted, including hsa_circ_0086913/hsa-miR-103a-3p/transmembrane 4 L six family member 1 (TM4SF1) and lncRNA-SNHG20/hsa-miR-6720-5p/spermine synthase (SMS) networks, which may take part in BPD. CONCLUSION This study provided a systematic perspective on UCB-derived exosomal circRNAs and lncRNAs and laid an important foundation for further investigating the potential biological functions of exosomal circRNAs and lncRNAs in BPD. WHAT IS KNOWN • BPD represents a multifactorial chronic pulmonary pathology and a major factor causing premature illness and death. • The therapeutic role of exosomes in BPD has been feverishly investigated, and exosomal RNAs were ignored. WHAT IS NEW • The profiles of UCB-derived exosomal circRNAs, lncRNAs, and mRNAs were performed. • Several differentially expressed circRNAs and lncRNAs were identified in LPS-induced BEAS-2B cells and HUVECs.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Xuan Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Qiushi Xu
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Jiao Yin
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Huaiyan Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Lin Zhang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| |
Collapse
|
4
|
lncRNA MIR4435-2HG Accelerates the Development of Bladder Cancer through Enhancing IQGAP3 and CDCA5 Expression. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3858249. [PMID: 35993042 PMCID: PMC9391195 DOI: 10.1155/2022/3858249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/10/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
Background. Bladder cancer (BCa) is one of the most prevalent cancers occurring in the urinary system. Long noncoding RNAs (lncRNAs), in recent years, have emerged as crucial regulators in various biological processes of tumors. Aim. To identify the role of MIR4435-2 host gene (MIR4435-2HG) and uncover its molecular mechanism in BCa. Methods. Firstly, quantitative real-time PCR (RT-qPCR) analysis was used to examine MIR4435-2HG expression in BCa cells. Cell Counting Kit-8 (CCK-8), 5-ethynyl-2
-deoxyuridine (EdU), wound healing, and transwell assays were implemented to identify the role of MIR4435-2HG in BCa. RNA-binding protein immunoprecipitation (RIP), RNA pull down, and luciferase reporter assays were applied to explore the potential mechanism of MIR4435-2HG in BCa. Results. MIR4435-2HG was highly expressed in BCa. Moreover, MIR4435-2HG silencing abrogated BCa cell proliferation, migration, and invasion. In terms of underlying mechanism, MIR44352HG acted as a microRNA-2467-3p (miR-2467-3p) sponge to control the expression of IQ motif containing GTPase activating protein 3 (IQGAP3) and cell division cycle associated 5 (CDCA5), resulting in activation of the rat sarcoma virus (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and PI3K/AKT/mTOR signaling pathways. Conclusion. MIR4435-2HG involves in the progression of BCa, which might provide novel insights for BCa treatment.
Collapse
|
5
|
Cao W, Zhang B, Liu Y. Expression of Long Nonencoding Ribonucleic Acid SNHG20 in Colon Cancer Tissue in Its Influences on Chemotherapeutic Sensitivity of Colon Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4752782. [PMID: 35915794 PMCID: PMC9338858 DOI: 10.1155/2022/4752782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Noncoding RNA (ncRNA) is a kind of RNA that plays a key role in a variety of biological processes, illnesses, and tumours despite the fact that it cannot be translated into proteins. The HT29 colon cancer cell line was utilized to create a 5-FU drug-resistant cell strain (control group), a lentivirus SNHG20 carrier (OE-SNHG20 group), and an SNHG20 shRNA carrier (SNHG20 shRNA carrier group) (SE-SNHG20 group). To determine the expression of cell SNHG20, a real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was utilized, and cholecystokinin-octapeptide (CCK-8) was used to detect the difference in 5-FU inhibitory concentration 50. The goal of the study was to see how variations in long nonencoding ribonucleic acid (lncRNA) SNHG20 expression affect colon cancer cell 5-fluorouracil (5-FU) chemotherapeutic sensitivity by collecting colon cancer and normal para cancer tissues and analysing the differences in SNHG20 expression. The ability of cell cladogenesis was tested using platform cladogenesis. Cell apoptosis was detected using flow cytometry. Western blots revealed the presence of protein phosphatidylinositol kinase (PI3K), protein kinase B (AKT), caspase-3, e-cadherin, and matrix metalloproteinase 9 (MMP-9) enzymes. The findings revealed that SNHG20 expression was considerably upregulated (P < 0.05) in colon cancer tissue and 5-FU drug-resistant colon cancer cells. Cell 5-FU IC50, cell cladogenesis, cell survival rate, and MMP-9, P-PI3K, and P-AKT expression were all significantly improved. Cell apoptosis and expressions of E-cadherin and caspase-3, on the other hand, were considerably decreased (P < 0.05). Cell 5-FU IC50, cell cladogenesis, cell survival rate, and the expressions of MMP-9, P-PI3K, and P-AKT were all significantly lower in the SE-SNHG20 group, although cell apoptosis and the expressions of E-cadherin and caspase-3 were significantly higher (P < 0.05). The results revealed that lncRNA SNHG20 could inhibit the chemotherapeutic sensitivity of colon cancer cells to 5-FU by regulating PI3K/AKT pathways. The inhibition of lncRNA SNHG20 expression could promote the apoptosis and proliferation of 5-FU-resistant colon cancer cells.
Collapse
Affiliation(s)
- Wenbin Cao
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000 Hebei, China
| | - Bo Zhang
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000 Hebei, China
| | - Yang Liu
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000 Hebei, China
| |
Collapse
|
6
|
Gao SL, Fan Y, Liu XD, Liu W, Zhao M. circ_0089153 exacerbates breast cancer cells proliferation and metastasis via sponging miR-2467-3p/E2F6. ENVIRONMENTAL TOXICOLOGY 2022; 37:1458-1471. [PMID: 35225430 DOI: 10.1002/tox.23498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/12/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The role of circ_0089153 in breast cancer (BCa) malignancy development was explored. circ_0089153 expression in BCa was analyzed by Gene Expression Omnibus database. Clinical tissues were obtained from 90 BCa patients. Cell counting kit-8 assay, 5-ethnyl-2 deoxyuridine assay and colony formation experiment were applied for proliferation detection. Wound healing assay and Transwell experiment were used for migration and invasion detection. Dual luciferase reporter gene assay, RNA immunoprecipitation assay and RNA pull-down assay were conducted. In vivo growth and metastasis of BCa cells were performed. Quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry were applied for RNAs and proteins expression. The up-modulated circ_0089153 indicated an unfavorable survival of BCa patients. circ_0089153 knockdown attenuated BCa cells proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) (P < .01). circ_0089153 was miR-2467-3p sponge. Low miR-2467-3p expression indicated a worse survival of BCa patients. miR-2467-3p overexpression reduced BCa cells proliferation, migration, invasion and EMT (P < .05). circ_0089153 enhanced BCa cells proliferation, migration, invasion and EMT by sponging miR-2467-3p (P < .05). E2F6 was directly suppressed by miR-2467-3p. E2F6 high expression in BCa patients associated with worse survival. circ_0089153 knockdown suppressed in vivo BCa cells growth and lung metastasis (P < .01). circ_0089153 was an oncogene in breast cancer, which enhanced proliferation and metastasis through sponging miR-2467-3p/E2F6. circ_0089153 was suggested to be a potential target for BCa target treatment.
Collapse
Affiliation(s)
- Shu-Lan Gao
- Department of Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Fan
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Dan Liu
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Liu
- Department of Geriatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Man Zhao
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Yang Q, Dong YJ. LncRNA SNHG20 promotes migration and invasion of ovarian cancer via modulating the microRNA-148a/ROCK1 axis. J Ovarian Res 2021; 14:168. [PMID: 34836544 PMCID: PMC8626962 DOI: 10.1186/s13048-021-00889-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is characterized by early metastasis and poor prognosis, which threatens the health of women worldwide. Small nucleolar RNA host gene 20 (SNHG20), a long noncoding RNA (lncRNA), has been verified to be significantly up-regulated in several tumors, including OC. MicroRNA-148a (miR-148a)/rho-kinase1 (ROCK1) axis plays an important role in the modulation of tumor development. However, whether SNHG20 can regulate OC progression through miR-148a/ROCK1 axis remains unclear. Normal human ovarian epithelial cell line and four OC cell lines were adopted for in vitro experiments. Real-time PCR was performed to assess the levels of SNHG20 and miR-148a. OC cell proliferation, apoptosis, invasion and migration were detected using clone formation, flow cytometry, transwell, and wound healing assays, respectively. Tumor xenograft assay was applied to evaluate the effect of SNHG20 on tumor growth in vivo. RESULTS Significant higher expression of SNHG20 was observed in OC cell lines. SNHG20 markedly promoted the invasion, migration, proliferation and inhibited the apoptosis of OC cells. SNHG20 enhanced ROCK1 expression by sponging miR-148a, and the direct binding between SNHG20/ROCK1 and miR-148a was identified. CONCLUSION SNHG20 promoted invasion and migration of OC via targeting miR-148a/ROCK1 axis. The present research may provide a novel insight for the therapeutic strategies of OC.
Collapse
Affiliation(s)
- Qi Yang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, Jilin Province, P. R. China.
| | - Yu-Jie Dong
- Department of Emergency, China-Japan Union Hospital of Jilin University, Changchun, 130000, P. R. China
| |
Collapse
|
8
|
Xiao S, Sun L, Ruan B, Li J, Chen J, Xiong J, Jiang Y, Song Z. Long non-coding RNA LINC01224 promotes progression and cisplatin resistance in non-small lung cancer by sponging miR-2467. Pulm Pharmacol Ther 2021; 70:102070. [PMID: 34403779 DOI: 10.1016/j.pupt.2021.102070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/24/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023]
Abstract
Copious evidence reveals that long non-coding RNAs (lncRNAs) exert great regulatory functions in various human cancers. LINC01224 is a novel lncRNA, identified as a cancer regulator of HCC. However, the underlying mechanisms and clinical significance of LINC01224 in other types of cancers need further researches to explore. In this study, we aimed to elucidate the biological role of LINC01224 in NSCLC progression. Presently, LINNC01224 expression was elevated and miR-2467 expression was down-regulated in NSCLC, compared with standard control. Then we described the reciprocal correlation between LINC01224 and miR 2467. Afterward, the dual-luciferase reporter assay, RIP assay and RNA pull-down assay validated the base-pair interaction between LINC01224 and miR-2467. Moreover, our findings demonstrated that the silence of LINC01224 inhibited cell proliferation and invasion in NSCLC and enhanced cisplatin (CDDP) sensitivity in vitro. Besides, rescue assays verified that miR-2467 inhibitor could reverse the effects on cell biological activities and CDDP resistance caused by knockdown of LINC01224. Finally, in vivo experiments implicated that knockdown of LINC01224 could inhibit NSCLC tumor growth. To sum up, LINC01224 can promote tumor progression and CDDP resistance in NSCLC via sponging miR-2467, suggesting a promising therapeutic target for better diagnosis and prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Shumei Xiao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China; Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi, People's Republic of China
| | - Longhua Sun
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Bin Ruan
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China; Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi, People's Republic of China
| | - Junhe Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China; Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi, People's Republic of China
| | - Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China; Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi, People's Republic of China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China; Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi, People's Republic of China
| | - Yanxia Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| | - Zhiwang Song
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China; Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
9
|
Ghafouri-Fard S, Aghabalazade A, Shoorei H, Majidpoor J, Taheri M, Mokhtari M. The Impact of lncRNAs and miRNAs on Apoptosis in Lung Cancer. Front Oncol 2021; 11:714795. [PMID: 34367998 PMCID: PMC8335161 DOI: 10.3389/fonc.2021.714795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a coordinated cellular process that occurs in several physiological situations. Dysregulation of apoptosis has been documented in numerous pathological situations, particularly cancer. Non-coding RNAs regulate apoptosis via different mechanisms. Lung cancer is among neoplastic conditions in which the role of non-coding RNAs in the regulation of apoptosis has been investigated. Non-coding RNAs that regulate apoptosis in lung cancer have functional interactions with PI3K/Akt, PTEN, GSK-3β, NF-κB, Bcl-2, Bax, p53, mTOR and other important cancer-related pathways. Globally, over-expression of apoptosis-blocking non-coding RNAs has been associated with poor prognosis of patients, while apoptosis-promoting ones have the opposite effect. In the current paper, we describe the impact of lncRNAs and miRNAs on cell apoptosis in lung cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Aghabalazade
- Department of Pharmacology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomical Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Mokhtari
- Critical Care Quality improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Duan Z, Wei S, Liu Y. Circ_0074027 contributes to non-small cell lung cancer progression through positively modulating RHOA via sequestering miR-2467-3p. J Bioenerg Biomembr 2021; 53:223-233. [PMID: 33687619 DOI: 10.1007/s10863-021-09876-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/25/2021] [Indexed: 11/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a common cancer with an unfavorable 5-year survival rate. We intended to explore the role of circular RNA_0074027 (circ_0074027) in NSCLC progression. The levels of circ_0074027, messenger RNA (mRNA) of its linear form paired like homeodomain 1 (PITX1), microRNA-2467-3p (miR-2467-3p) and ras homolog family member A (RHOA) mRNA were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK8) assay and plate colony assay were conducted to measure the proliferation ability of NSCLC cells. Transwell assays were used to assess cell migration and invasion abilities. Flow cytometry was utilized to analyze cell apoptosis rate. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to test the interaction between miR-2467-3p and circ_0074027 or RHOA. Western blot assay was performed to evaluate the protein level of RHOA in NSCLC cells. Murine xenograft model was built to evaluate the role of circ_0074027 in tumor growth in vivo. Circ_0074027 expression was prominently elevated in NSCLC tissues and cell lines. Circ_0074027 knockdown or miR-2467-3p overexpression suppressed cell proliferation, migration and invasion and facilitated cell apoptosis of NSCLC cells. Circ_0074027 interacted with miR-2467-3p, and RHOA was a target of miR-2467-3p in NSCLC cells. RHOA silencing blocked the malignant potential of NSCLC cells. Circ_0074027 silencing restrained the malignant phenotypes of NSCLC cells largely through up-regulating miR-2467-3p. Circ_0074027 knockdown notably blocked xenograft tumor growth in vivo. In conclusion, circ_0074027 accelerated NSCLC progression by binding to miR-2467-3p to induce RHOA expression.
Collapse
Affiliation(s)
- Zhihui Duan
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, 030013, Shanxi, China
| | - Shuqing Wei
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, 030013, Shanxi, China
| | - Ying Liu
- Department of Head and Neck Radiotherapy Combined, Shanxi Provincial Cancer Hospital, No. 3 Worker's New Street, Xinhualing District, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
11
|
Chen L, Chen W, Zhao C, Jiang Q. LINC01224 Promotes Colorectal Cancer Progression by Sponging miR-2467. Cancer Manag Res 2021; 13:733-742. [PMID: 33542656 PMCID: PMC7851399 DOI: 10.2147/cmar.s281625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Colorectal cancer (CRC) is one of the most common human cancers and a leading cause of cancer-related death. Accumulating evidence has confirmed that long non-coding RNA (lncRNA) plays crucial roles in CRC development. Methods qRT-PCR was performed to examine the expressions of LINC01224 and miR-2467. CCK-8 assay, colony formation assay and transwell invasion assay were used to examine the progression of breast cancer cells. Luciferase and RNA-binding protein immunoprecipitation (RIP) assay were applied to verify the binding site. Correlation analysis of miR-2467 and LINC01224 expression in lung cancer tissues was shown. Pancreatic cancer cells growth in vivo was evaluated using xenograft tumor assay. Results LINC01224 expression was observed to be up-regulated in CRC tissues and cell lines. Functional studies suggested that LINC01224 silence inhibited CRC cells proliferation and invasion of CRC cells, while co-transfection with a miR-2467 inhibitor reversed these biological effects. Luciferase reporter assays illustrated that LINC01224 regulated miR-2467 directly, and RNA-binding protein immunoprecipitation (RIP) further confirmed that the suppression of LINC01224 by miR-2467 was in an RISC-dependent manner. Finally, LINC01224 silence inhibited the growth CRC cells in vivo. Conclusion In conclusion, our findings showed that LINC01224 promoted CRC progression through sponging miR-2467. LINC01224 may serve as a potential diagnostic biomarker and therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Lin Chen
- Department of Gastroenterology, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, People's Republic of China
| | - Wei Chen
- Department of Gastroenterology, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, People's Republic of China
| | - Changjie Zhao
- Endoscopy Center, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, People's Republic of China
| | - Qi Jiang
- Department of Gastroenterology, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, People's Republic of China
| |
Collapse
|
12
|
Wang X, Gu G, Zhu H, Lu S, Abuduwaili K, Liu C. LncRNA SNHG20 promoted proliferation, invasion and inhibited cell apoptosis of lung adenocarcinoma via sponging miR-342 and upregulating DDX49. Thorac Cancer 2020; 11:3510-3520. [PMID: 33089952 PMCID: PMC7705913 DOI: 10.1111/1759-7714.13693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background There is increasing evidence that long non‐coding RNA (lncRNA) small nucleolar RNA host gene 20 (SNHG20) plays an important role in cancer. However, the function of SNHG20 in lung adenocarcinoma is unclear. The aim of our study was to investigate the roles of SNHG20 in lung adenocarcinoma. Methods Real‐time quantitative polymerasechain reaction (RT‐qPCR) was used to calculate the expression of SNHG20, miR‐342 and DEAD‐box helicase 49 (DDX49). Dual luciferase reporter gene assay was applied to verify whether miR‐342 binding to SNHG20 and DDX49. The expression correlation between miR‐342 and SNHG20 or DDX49 was assessed using Pearson's correlation analysis. Results SNHG20 and DDX49 were overexpressed, while miR‐342 was lowly expressed in lung adenocarcinoma tissues and cell lines. Knockdown of SNHG20 suppressed cell proliferation, invasion and enhanced cell apoptosis. SNHG20 was found to directly bind to miR‐342 and regulate the expression of miR‐342. MiR‐342 directly targeted DDX49 and the expression of miR‐342 had negative connection with DDX49 in lung adenocarcinoma tissues. Knockdown of DDX49 inhibited the progression of lung adenocarcinoma. DDX49 partially restored the functions of SNHG20 in A549 cells. Conclusions SNHG20 regulated lung adenocarcinoma cell proliferation, invasion and promoted cell apoptosis via miR‐342/DDX49 axis. Our findings demonstrate that SNHG20/miR‐342/DDX49 axis plays an important role in lung adenocarcinoma, providing a novel insight into the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiuli Wang
- Pulmonary Medicine Department, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guomin Gu
- Pulmonary Medicine Department, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hongge Zhu
- Pulmonary Medicine Department, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Suqiong Lu
- Pulmonary Medicine Department, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Kahaerjiang Abuduwaili
- Pulmonary Medicine Department, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chunling Liu
- Pulmonary Medicine Department, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
13
|
Shi W, Song J, Gao Z, Liu X, Wang W. Downregulation of miR-7-5p Inhibits the Tumorigenesis of Esophagus Cancer via Targeting KLF4. Onco Targets Ther 2020; 13:9443-9453. [PMID: 33061430 PMCID: PMC7522318 DOI: 10.2147/ott.s251508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Background Esophageal cancer (EC) is one of the aggressive gastrointestinal malignancies. It has been reported that microRNAs (miRNAs) play key roles during the tumorigenesis of EC. To identify novel potential targets for EC, differential expressed miRNAs (DEG) between EC and adjacent normal tissues were analyzed with bioinformatics tool. Methods The differential expression of miRNAs between EC and adjacent normal tissues was analyzed. CCK-8 and Ki67 staining were used to detect the cell proliferation. Flow cytometry was performed to test the cell apoptosis. The correlation between miR-7-5p and KLF4 was detected by dual-luciferase report assay. Gene and protein expression in EC cells or in tissues were measured by qRT-PCR and Western blot, respectively. Cell migration and invasion were detected with transwell assay. Xenograft mice model was established to investigate the role of miR-7-5p in EC tumorigenesis in vivo. Results MiR-7-5p was found to be negatively correlated with the survival rate of patient with EC. In addition, downregulation of miR-7-5p significantly inhibited the growth and invasion of EC cells. Meanwhile, miR-7-5p directly targeted KLF4 in EC cells. Moreover, downregulation of miR-7-5p inhibited the tumorigenesis of EC via inactivating MAPK signaling pathway in vivo. Conclusion Downregulation of miR-7-5p notably suppressed the progression of EC via targeting KLF4. Thus, miR-7-5p might serve as a new target for the treatment of EC.
Collapse
Affiliation(s)
- Woda Shi
- Department of Cardio-Thoracic Surgery, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, People's Republic of China
| | - Jianxiang Song
- Department of Cardio-Thoracic Surgery, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, People's Republic of China
| | - Zhengya Gao
- Department of Cardio-Thoracic Surgery, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, People's Republic of China
| | - Xingchen Liu
- Department of Cardio-Thoracic Surgery, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, People's Republic of China
| | - Wencai Wang
- Department of Cardio-Thoracic Surgery, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, People's Republic of China
| |
Collapse
|