1
|
Hubert JN, Demars J. Genomic Imprinting in the New Omics Era: A Model for Systems-Level Approaches. Front Genet 2022; 13:838534. [PMID: 35368671 PMCID: PMC8965095 DOI: 10.3389/fgene.2022.838534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting represents a noteworthy inheritance mechanism leading to allele-specific regulations dependent of the parental origin. Imprinted loci are especially involved in essential mammalian functions related to growth, development and behavior. In this mini-review, we first offer a summary of current representations associated with genomic imprinting through key results of the three last decades. We then outline new perspectives allowed by the spread of new omics technologies tackling various interacting levels of imprinting regulations, including genomics, transcriptomics and epigenomics. We finally discuss the expected contribution of new omics data to unresolved big questions in the field.
Collapse
|
2
|
Arena R, Zacchini F, Toschi P, Palazzese L, Czernik M, Ptak GE. Developmental peculiarities in placentae of ovine uniparental conceptuses. PLoS One 2017; 12:e0188278. [PMID: 29190766 PMCID: PMC5708791 DOI: 10.1371/journal.pone.0188278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon regulating mono-allelic expression of genes depending on their parental origin. Defective genomic imprinting is involved in several placental disorders, such as intrauterine growth restriction and pre-eclampsia. Uniparental embryos, having maternal-only or paternal-only genomes (parthenogenotes [PAR] and androgenotes [AND], respectively), are useful models to study placentation. The aim of this work was to reveal the effect of parental genome (maternal and paternal) on placentation. To do this, uniparental (AND and PAR) and biparental (CTR) in vitro produced sheep embryos transferred to recipient females were collected at day 20 of pregnancy and their placentae were analyzed. qPCR analysis showed that imprinted genes (H19, IGF2R and DLK1) were expressed accordingly to their parental origin while the expression f DNA methyltransferases () was disregulated, especially in PAR (P < 0.05). AND placentae were significantly hypomethylated compared to both PAR and CTR (P = 0.023). Chorion-allantoid of AND showed impaired development of vessels and reduced mRNA expression of vasculogenetic factors (ANG2 P = 0.05; VEGFR2 P< 0.001; TIE2 P < 0.001). Morphologically, PAR placentae were characterized by abnormal structure of the trophoectodermal epithelium and reduced total number (P<0.03) of Trophoblastic Binucleate Cells. A reduced implantation rate of both classes of uniparental embryos (P<0.03) was also noted. Our results provide new insights into the characterization of uniparental embryos and demonstrate the complementary role of parental genomes for the correct establishment of pregnancy. Thus, our findings may suggest new targets to improve our understanding of the origin of imprinting-related placental dysfunction.
Collapse
Affiliation(s)
- Roberta Arena
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Federica Zacchini
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Paola Toschi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Luca Palazzese
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Grażyna Ewa Ptak
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail:
| |
Collapse
|
3
|
Crispo M, Dos Santos-Neto PC, Vilariño M, Mulet AP, de León A, Barbeito L, Menchaca A. RAPID COMMUNICATION: Nerve growth factor influences cleavage rate and embryo development in sheep. J Anim Sci 2017; 94:4447-4451. [PMID: 27898841 DOI: 10.2527/jas.2016-0736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent information about Nerve growth factor (NGF), a protein traditionally associated to the nervous system that regulates survival and maturation of developing neurons, suggests that it may exert action also on different levels in the reproductive system. The aim of this study was to evaluate the effect of NGF added during in vitro oocyte maturation, fertilization or in vitro embryo development in sheep. Nerve growth factor was supplemented to the culture medium at 0, 100, or 1,000 ng/mL, during either in vitro maturation (Exp. 1), in vitro fertilization (Exp. 2), or in vitro culture (Exp. 3). In addition, NGF mRNA expression was determined in cumulus cells and oocytes. Nerve growth factor induced early cleavage when added during oocyte maturation or fertilization, improved embryo development when added during fertilization, and had no significant effect when added during embryo culture. In general, the effect was more evident with 100 rather than 1,000 ng/mL (P < 0.05). Expression of endogenous NGF was not detected in oocytes, and increased in cumulus cells when 1,000 ng/mL of NGF was added during fertilization, but not during maturation and embryo culture. In conclusion, the addition of NGF during oocyte maturation and fertilization affects in vitro cleavage and embryo development in sheep. We suggest a possible effect of this growth factor on oocyte maturation and mainly on the fertilization process.
Collapse
|
4
|
Zacchini F, Toschi P, Ptak GE. Cobalamin supplementation during in vitro maturation improves developmental competence of sheep oocytes. Theriogenology 2017; 93:55-61. [PMID: 28257867 DOI: 10.1016/j.theriogenology.2017.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/30/2016] [Accepted: 01/19/2017] [Indexed: 01/15/2023]
Abstract
Pregnancies obtained by Assisted Reproductive Technologies are at higher risk of miscarriage than those obtained naturally. Previously, we reported impaired placental vascular development of in vitro produced (IVP) sheep embryos and defective DNA methylation in the placentae of those embryos. One reason behind these observed defects may be an impaired One Carbon Metabolism (OCM) The present study was performed to test the hypothesis that Cobalamin (Vitamin B12, an important OCM co-factor) supplementation during IVM corrects DNA methylation of IVP embryos and, consequently, ameliorates placental vasculogenesis. To this aim, embryos derived from oocytes matured with Cobalamin (B12 group) or without (negative control group, -CTR) were transferred to synchronized recipient sheep. At day 20 of pregnancy, collected embryos were morphologically evaluated while placentae were subjected to qPCR and histological analysis. The positive control group (+CTR) consisted of conceptuses obtained from naturally mated sheep. Results showed an increased fertilization rate in the B12 group vs -CTR (69.56% vs 57.91% respectively, P = 0.006) not associated with quantitative improvement in blastocyst and/or implantation rate (44.32% vs 36.67% respectively, P > 0.05). Moreover, Cobalamin supplementation during oocyte IVM ameliorated resulting conceptuses quality, in terms of placental vascularization (vessels' maturity and vasculogenetic factors' expression). The expression of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) was also improved in placentae from the B12 group. In conclusion, Cobalamin supplementation during oocyte IVM improves IVP embryo quality. These results suggest that Cobalamin should be included in standard IVM media.
Collapse
Affiliation(s)
- Federica Zacchini
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Jastrzebiec, 36a Postepu str., Poland
| | - Paola Toschi
- Faculty of Veterinary Medicine, University of Teramo, via Renato Balzarini, 64100 Teramo, Italy
| | - Grazyna Ewa Ptak
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Jastrzebiec, 36a Postepu str., Poland; National Research Institute of Animal Production, ul. Krakowska 1, 32-083 Balice n. Krakow, Poland.
| |
Collapse
|
5
|
Crocomo LF, Ariu F, Bogliolo L, Bebbere D, Ledda S, Bicudo SD. In vitro Developmental Competence of Adult Sheep Oocytes Treated with Roscovitine. Reprod Domest Anim 2016; 51:276-81. [PMID: 26890275 DOI: 10.1111/rda.12677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/19/2016] [Indexed: 11/27/2022]
Abstract
The efficiency of in vitro sheep embryo production is still low compared to that observed in vivo and in other species. In this context, meiotic inhibition strategies emerged as a promising alternative to improve this biotechnology. So, this study aimed to evaluate, for the first time, the effects of roscovitine on in vitro maturation of sheep oocytes and their subsequent embryo development. For this, cumulus-oocyte complexes (COCs) were cultured for 6 h in the presence (Rosco) or absence (Control) of 75 μm roscovitine and, subsequently, in vitro matured (IVM) for 18 h with gonadotropins. At 0 (Immature), 6 and 24 h of culture, the nuclear status of oocytes was evaluated by Hoechst staining. Embryo cleavage and blastocyst formation were recorded 30 h after in vitro fertilization and on day 7 of culture, respectively. Blastocyst quality was evaluated by differential staining. At 6 h, the GV rate in the Rosco treatment (93.8%) was similar to that observed in the Immature oocytes (94.9%) and significantly higher compared to Control (41.3%). After IVM for 18 h, a high and similar proportion of oocytes from Rosco (93.6%) and Control (88.4%) reached the MII stage. In both treatments, approximately 70% of oocytes cleaved and 50% of them developed up to blastocyst. The mean percentage of blastocyst cells, embryoblast, trophoblast and pyknosis did also not differ between Control and Rosco. In conclusion, roscovitine, at the studied experimental conditions, was efficient to reversibly inhibit the meiosis of adult sheep oocytes without detrimental effect on development and quality of the in vitro produced embryos.
Collapse
Affiliation(s)
- L F Crocomo
- Institute of Agricultural Sciences, Federal University of Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - F Ariu
- Department of Veterinary Medicine, University of Sassari, Sardegna, Italy
| | - L Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sardegna, Italy
| | - D Bebbere
- Department of Veterinary Medicine, University of Sassari, Sardegna, Italy
| | - S Ledda
- Department of Veterinary Medicine, University of Sassari, Sardegna, Italy
| | - S D Bicudo
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
6
|
O'Doherty AM, MacHugh DE, Spillane C, Magee DA. Genomic imprinting effects on complex traits in domesticated animal species. Front Genet 2015; 6:156. [PMID: 25964798 PMCID: PMC4408863 DOI: 10.3389/fgene.2015.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/06/2015] [Indexed: 11/13/2022] Open
Abstract
Monoallelically expressed genes that exert their phenotypic effect in a parent-of-origin specific manner are considered to be subject to genomic imprinting, the most well understood form of epigenetic regulation of gene expression in mammals. The observed differences in allele specific gene expression for imprinted genes are not attributable to differences in DNA sequence information, but to specific chemical modifications of DNA and chromatin proteins. Since the discovery of genomic imprinting some three decades ago, over 100 imprinted mammalian genes have been identified and considerable advances have been made in uncovering the molecular mechanisms regulating imprinted gene expression. While most genomic imprinting studies have focused on mouse models and human biomedical disorders, recent work has highlighted the contributions of imprinted genes to complex trait variation in domestic livestock species. Consequently, greater understanding of genomic imprinting and its effect on agriculturally important traits is predicted to have major implications for the future of animal breeding and husbandry. In this review, we discuss genomic imprinting in mammals with particular emphasis on domestic livestock species and consider how this information can be used in animal breeding research and genetic improvement programs.
Collapse
Affiliation(s)
- Alan M O'Doherty
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Ireland
| | - David E MacHugh
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Ireland ; Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield Ireland
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre, School of Natural Sciences, National University of Ireland Galway, Galway Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield Ireland ; Department of Animal Science, University of Connecticut, Storrs, CT USA
| |
Collapse
|
7
|
Ptak GE, Toschi P, Fidanza A, Czernik M, Zacchini F, Modlinski JA, Loi P. Autophagy and apoptosis: parent-of-origin genome-dependent mechanisms of cellular self-destruction. Open Biol 2014; 4:140027. [PMID: 24898141 PMCID: PMC4077060 DOI: 10.1098/rsob.140027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022] Open
Abstract
Functional genomic imprinting is necessary for the transfer of maternal resources to mammalian embryos. Imprint-free embryos are unable to establish a viable placental vascular network necessary for the transfer of resources such as nutrients and oxygen. How the parental origin of inherited genes influences cellular response to resource limitation is currently not well understood. Because such limitations are initially realized by the placenta, we studied how maternal and paternal genomes influence the cellular self-destruction responses of this organ specifically. Here, we show that cellular autophagy is prevalent in androgenetic (i.e. having only a paternal genome) placentae, while apoptosis is prevalent in parthenogenetic (i.e. having only a maternal genome) placentae. Our findings indicate that the parental origin of inherited genes determines the placenta's cellular death pathway: autophagy for androgenotes and apoptosis for parthenogenotes. The difference in time of arrest between androgenotes and parthenogenotes can be attributed, at least in part, to their placentae's selective use of these two cell death pathways. We anticipate our findings to be a starting point for general studies on the parent-of-origin regulation of autophagy. Furthermore, our work opens the door to new studies on the involvement of autophagy in pathologies of pregnancy in which the restricted transfer of maternal resources is diagnosed.
Collapse
Affiliation(s)
- Grazyna E Ptak
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec Poland
| | - Paola Toschi
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| | - Antonella Fidanza
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| | - Marta Czernik
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| | - Federica Zacchini
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| | - Jacek A Modlinski
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec Poland
| | - Pasqualino Loi
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| |
Collapse
|
8
|
Zhang H, Xiao Y, Wang X, Riaz H, Li W, Fu S, Xin Y, Shi L, Ma F, Li X, Yang L. Effects of histone deacetylase inhibitors on the early development of bovine androgenetic embryos. Cell Reprogram 2014; 16:54-64. [PMID: 24387164 DOI: 10.1089/cell.2013.0027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Histone acetylation is one of the most important posttranslational modifications that contribute to transcriptional initiation and chromatin remodeling. In our previous study, we enhanced sperm chromatin remodeling within the bovine sperm injection-derived androgenentic (SpI-AG) embryos by sperm pretreatment, and thereby improved their early developmental competence. In this study, we found that blastocyst development of SpI-AG embryos could be elevated by the histone deacetylase inhibitor (HDACi). First, we optimized the efficacy of two histone deacetylase inhibitors [trichostatin A (TSA) and Scriptaid (SCR)] in a dose (0, 5, 10, 20, 50, and 100 nM for TSA; 0, 50, 100, 200, 300, and 500 nM for SCR, respectively) and time-dependent (0, 10, 15, 20, and 25 h) manner on the developmental capacity of these embryos. Furthermore, we quantitatively assessed the alterations in histone H3 and H4 overall acetylation levels and blastocyst quality of SpI-AG embryos by immunofluorescence staining. We found a significantly improved morula and blastocyst development rate of SpI-AG embryos at a mild dose of TSA (20 nM) or SCR (200 nM) for 15 h after embryo activation. Furthermore, both HDACi noticeably increased the levels of acetylated histone H3 and H4 in SpI-AG blastocyst embryos, whereas, SCR treatment improved the quality of blastocysts when compared with control group. In conclusion, HDACi is beneficial for early development of bovine SpI-AG embryos and can be used to improve the efficiency of its in vitro production.
Collapse
Affiliation(s)
- Hualin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, 430070, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The mouse is the first species in which genomic imprinting was studied. Imprinting research in farm species has lagged behind owing to a lack of sequencing and genetic background information, as well as long generation intervals and high costs in tissue collection. Since the creation of Dolly, the first cloned mammal from an adult sheep, studies on genomic imprinting in domestic species have accelerated because animals from cloning and other assisted reproductive technologies exhibit phenotypes of imprinting disruptions. Although this review focuses on new developments in farm animals, most of the imprinting mechanism information was derived from the mouse.
Collapse
Affiliation(s)
- Xiuchun Cindy Tian
- Department of Animal Science, Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut 06269-4163;
| |
Collapse
|