1
|
Saitou T, Kajiwara K, Oneyama C, Suzuki T, Okada M. Roles of raft-anchored adaptor Cbp/PAG1 in spatial regulation of c-Src kinase. PLoS One 2014; 9:e93470. [PMID: 24675741 PMCID: PMC3968143 DOI: 10.1371/journal.pone.0093470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/06/2014] [Indexed: 11/21/2022] Open
Abstract
The tyrosine kinase c-Src is upregulated in numerous human cancers, implying a role for c-Src in cancer progression. Previously, we have shown that sequestration of activated c-Src into lipid rafts via a transmembrane adaptor, Cbp/PAG1, efficiently suppresses c-Src-induced cell transformation in Csk-deficient cells, suggesting that the transforming activity of c-Src is spatially regulated via Cbp in lipid rafts. To dissect the molecular mechanisms of the Cbp-mediated regulation of c-Src, a combined analysis was performed that included mathematical modeling and in vitro experiments in a c-Src- or Cbp-inducible system. c-Src activity was first determined as a function of c-Src or Cbp levels, using focal adhesion kinase (FAK) as a crucial c-Src substrate. Based on these experimental data, two mathematical models were constructed, the sequestration model and the ternary model. The computational analysis showed that both models supported our proposal that raft localization of Cbp is crucial for the suppression of c-Src function, but the ternary model, which includes a ternary complex consisting of Cbp, c-Src, and FAK, also predicted that c-Src function is dependent on the lipid-raft volume. Experimental analysis revealed that c-Src activity is elevated when lipid rafts are disrupted and the ternary complex forms in non-raft membranes, indicating that the ternary model accurately represents the system. Moreover, the ternary model predicted that, if Cbp enhances the interaction between c-Src and FAK, Cbp could promote c-Src function when lipid rafts are disrupted. These findings underscore the crucial role of lipid rafts in the Cbp-mediated negative regulation of c-Src-transforming activity, and explain the positive role of Cbp in c-Src regulation under particular conditions where lipid rafts are perturbed.
Collapse
Affiliation(s)
- Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, Japan
- * E-mail: (TS); (KK)
| | - Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail: (TS); (KK)
| | - Chitose Oneyama
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takashi Suzuki
- Division of Mathematical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
- JST, CREST, Chiyoda-ku, Tokyo, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Barua D, Hlavacek WS, Lipniacki T. A computational model for early events in B cell antigen receptor signaling: analysis of the roles of Lyn and Fyn. THE JOURNAL OF IMMUNOLOGY 2012; 189:646-58. [PMID: 22711887 DOI: 10.4049/jimmunol.1102003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BCR signaling regulates the activities and fates of B cells. BCR signaling encompasses two feedback loops emanating from Lyn and Fyn, which are Src family protein tyrosine kinases (SFKs). Positive feedback arises from SFK-mediated trans phosphorylation of BCR and receptor-bound Lyn and Fyn, which increases the kinase activities of Lyn and Fyn. Negative feedback arises from SFK-mediated cis phosphorylation of the transmembrane adapter protein PAG1, which recruits the cytosolic protein tyrosine kinase Csk to the plasma membrane, where it acts to decrease the kinase activities of Lyn and Fyn. To study the effects of the positive and negative feedback loops on the dynamical stability of BCR signaling and the relative contributions of Lyn and Fyn to BCR signaling, we consider in this study a rule-based model for early events in BCR signaling that encompasses membrane-proximal interactions of six proteins, as follows: BCR, Lyn, Fyn, Csk, PAG1, and Syk, a cytosolic protein tyrosine kinase that is activated as a result of SFK-mediated phosphorylation of BCR. The model is consistent with known effects of Lyn and Fyn deletions. We find that BCR signaling can generate a single pulse or oscillations of Syk activation depending on the strength of Ag signal and the relative levels of Lyn and Fyn. We also show that bistability can arise in Lyn- or Csk-deficient cells.
Collapse
Affiliation(s)
- Dipak Barua
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | |
Collapse
|
3
|
Chang F, Lemmon C, Lietha D, Eck M, Romer L. Tyrosine phosphorylation of Rac1: a role in regulation of cell spreading. PLoS One 2011; 6:e28587. [PMID: 22163037 PMCID: PMC3232246 DOI: 10.1371/journal.pone.0028587] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 11/11/2011] [Indexed: 11/19/2022] Open
Abstract
Rac1 influences a multiplicity of vital cellular- and tissue-level control functions, making it an important candidate for targeted therapeutics. The activity of the Rho family member Cdc42 has been shown to be modulated by tyrosine phosphorylation at position 64. We therefore investigated consequences of the point mutations Y64F and Y64D in Rac1. Both mutations altered cell spreading from baseline in the settings of wild type, constitutively active, or dominant negative Rac1 expression, and were accompanied by differences in Rac1 targeting to focal adhesions. Rac1-Y64F displayed increased GTP-binding, increased association with βPIX, and reduced binding with RhoGDI as compared with wild type Rac1. Rac1-Y64D had less binding to PAK than Rac1-WT or Rac1-64F. In vitro assays demonstrated that Y64 in Rac1 is a target for FAK and Src. Taken together, these data suggest a mechanism for the regulation of Rac1 activity by non-receptor tyrosine kinases, with consequences for membrane extension.
Collapse
Affiliation(s)
- Fumin Chang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher Lemmon
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel Lietha
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Michael Eck
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Lewis Romer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Departments of Cell Biology, Biomedical Engineering, Pediatrics, and the Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
4
|
B cell activation triggered by the formation of the small receptor cluster: a computational study. PLoS Comput Biol 2011; 7:e1002197. [PMID: 21998572 PMCID: PMC3188507 DOI: 10.1371/journal.pcbi.1002197] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 08/03/2011] [Indexed: 01/03/2023] Open
Abstract
We proposed a spatially extended model of early events of B cell receptors (BCR) activation, which is based on mutual kinase-receptor interactions that are characteristic for the immune receptors and the Src family kinases. These interactions lead to the positive feedback which, together with two nonlinearities resulting from the double phosphorylation of receptors and Michaelis-Menten dephosphorylation kinetics, are responsible for the system bistability. We demonstrated that B cell can be activated by a formation of a tiny cluster of receptors or displacement of the nucleus. The receptors and Src kinases are activated, first locally, in the locus of the receptor cluster or the region where the cytoplasm is the thinnest. Then the traveling wave of activation propagates until activity spreads over the whole cell membrane. In the models in which we assume that the kinases are free to diffuse in the cytoplasm, we found that the fraction of aggregated receptors, capable to initiate B cell activation decreases with the decreasing thickness of cytoplasm and decreasing kinase diffusion. When kinases are restricted to the cell membrane - which is the case for most of the Src family kinases - even a cluster consisting of a tiny fraction of total receptors becomes activatory. Interestingly, the system remains insensitive to the modest changes of total receptor level. The model provides a plausible mechanism of B cells activation due to the formation of small receptors clusters collocalized by binding of polyvalent antigens or arising during the immune synapse formation. B cells are activated in response to binding of appropriate ligands, which induces the aggregation of B cell receptors. The formation of even small clusters containing less than 1% of all the receptors is sufficient for activation. This observation led us to a model in which the receptor cluster serves only as a switch that turns on the activation process involving also the remaining receptors. The idea of the model exploits the fact the Src kinase - BCR system is bistable, and thus its local activation may start the propagation of a traveling wave, which spreads activation over the entire membrane. We found that the minimal size of the activatory cluster decreases with the thickness of the cytoplasm and kinase diffusion coefficient. It is particularly small when kinases are restricted to the membrane. These findings are consistent with the properties of B cells, which prior to activation have extremely thin cytoplasmic layer and in which Src family kinases (interacting with the receptors) are tethered to the membrane.
Collapse
|
5
|
Allen RJ, Bogle IDL, Ridley AJ. A model of localised Rac1 activation in endothelial cells due to fluid flow. J Theor Biol 2011; 280:34-42. [PMID: 21439300 DOI: 10.1016/j.jtbi.2011.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 03/07/2011] [Accepted: 03/17/2011] [Indexed: 01/27/2023]
Abstract
Endothelial cells respond to fluid flow by elongating in the direction of flow. Cytoskeletal changes and activation of signalling molecules have been extensively studied in this response, including: activation of receptors by mechano-transduction, actin filament alignment in the direction of flow, changes to cell-substratum adhesions, actin-driven lamellipodium extension, and localised activation of Rho GTPases. To study this process we model the force over a single cell and couple this to a model of the Rho GTPases, Rac and Rho, via a Kelvin-body model of mechano-transduction. It is demonstrated that a mechano-transducer can respond to the normal component of the force is likely to be a necessary component of the signalling network in order to establish polarity. Furthermore, the rate-limiting step of Rac1 activation is predicted to be conversion of Rac-GDP to Rac-GTP, rather than activation of upstream components. Modelling illustrates that the aligned endothelial cell morphology could attenuate the signalling network.
Collapse
Affiliation(s)
- R J Allen
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1E 7JE, United Kingdom.
| | | | | |
Collapse
|
6
|
Kaimachnikov NP, Kholodenko BN. Toggle switches, pulses and oscillations are intrinsic properties of the Src activation/deactivation cycle. FEBS J 2009; 276:4102-18. [PMID: 19627364 DOI: 10.1111/j.1742-4658.2009.07117.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Src-family kinases (SFKs) play a pivotal role in growth factor signaling, mitosis, cell motility and invasiveness. In their basal state, SFKs maintain a closed autoinhibited conformation, where the Src homology 2 domain interacts with an inhibitory phosphotyrosine in the C-terminus. Activation involves dephosphorylation of this inhibitory phosphotyrosine, followed by intermolecular autophosphorylation of a specific tyrosine residue in the activation loop. The spatiotemporal dynamics of SFK activation controls cell behavior, yet these dynamics remain largely uninvestigated. In the present study, we show that the basic properties of the Src activation/deactivation cycle can bring about complex signaling dynamics, including oscillations, toggle switches and excitable behavior. These intricate dynamics do not require imposed external feedback loops and occur at constant activities of Src inhibitors and activators, such as C-terminal Src kinase and receptor-type protein tyrosine phosphatases. We demonstrate that C-terminal Src kinase and receptor-type protein tyrosine phosphatase underexpression or their simultaneous overexpression can transform Src response patterns into oscillatory or bistable responses, respectively. Similarly, Src overexpression leads to dysregulation of Src activity, promoting sustained self-perpetuating oscillations. Distinct types of responses can allow SFKs to trigger different cell-fate decisions, where cellular outcomes are determined by the stimulation threshold and history. Our mathematical model helps to understand the puzzling experimental observations and suggests conditions where these different kinetic behaviors of SFKs can be tested experimentally.
Collapse
Affiliation(s)
- Nikolai P Kaimachnikov
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
7
|
SRC family kinases and receptors: analysis of three activation mechanisms by dynamic systems modeling. Biophys J 2007; 94:1995-2006. [PMID: 18055537 DOI: 10.1529/biophysj.107.115022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Src family kinases (SFKs) interact with a number of cellular receptors. They participate in diverse signaling pathways and cellular functions. Most of the receptors involved in SFK signaling are characterized by similar modes of regulation. This computational study discusses a general kinetic model of SFK-receptor interaction. The analysis of the model reveals three major ways of SFK activation: release of inhibition by C-terminal Src kinase, weakening of the inhibitory intramolecular phosphotyrosine-SH2 interaction, and amplification of a stimulating kinase activity. The SFK model was then extended to simulate interaction with growth factor and T-cell receptors. The modular SFK signaling system was shown to adapt to the requirements of specific signaling contexts and yield qualitatively different responses in the different simulated environments. The model also provides a systematic overview of the major interactions between SFKs and various cellular signaling systems and identifies their common properties.
Collapse
|