1
|
Wang M, Jia J, Xu F, Zhou H, Liu Y, Yu B. Res-GCN: Identification of protein phosphorylation sites using graph convolutional network and residual network. Comput Biol Chem 2024; 112:108183. [PMID: 39208554 DOI: 10.1016/j.compbiolchem.2024.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
An essential post-translational modification, phosphorylation is intimately related with a wide range of biological activities. The advancement of effective computational methods for correctly recognizing phosphorylation sites is important for in-depth understanding of various physiological phenomena. However, the traditional method of identifying phosphorylation sites experimentally is time-consuming and laborious, which makes it difficult to meet the processing demands of today's big data. This research proposes the use of a novel model, Res-GCN, to recognize the phosphorylation sites of SARS-CoV-2. Firstly, eight feature extraction strategies are utilized to digitize the protein sequence from multiple viewpoints, including amino acid property encodings (AAindex), pseudo-amino acid composition (PseAAC), adapted normal distribution bi-profile Bayes (ANBPB), dipeptide composition (DC), binary encoding (BE), enhanced amino acid composition (EAAC), Word2Vec, and BLOSUM62 matrices. Secondly, elastic net is utilized to eliminate redundant data in the fused matrix. Finally, a combination of graph convolutional network (GCN) and residual network (ResNet) is used to classify the phosphorylated sites and output predictions using a fully connected layer (FC). The performance of Res-GCN is tested by 5-fold cross-validation and independent testing, and excellent results are obtained on S/T and Y datasets. This demonstrates that the Res-GCN model exhibits exceptional predictive performance and generalizability.
Collapse
Affiliation(s)
- Minghui Wang
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Jihua Jia
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Fei Xu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Hongyan Zhou
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Yushuang Liu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China.
| | - Bin Yu
- School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China; School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Adejor J, Tumukunde E, Li G, Lin H, Xie R, Wang S. Impact of Lysine Succinylation on the Biology of Fungi. Curr Issues Mol Biol 2024; 46:1020-1046. [PMID: 38392183 PMCID: PMC10888112 DOI: 10.3390/cimb46020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/24/2024] Open
Abstract
Post-translational modifications (PTMs) play a crucial role in protein functionality and the control of various cellular processes and secondary metabolites (SMs) in fungi. Lysine succinylation (Ksuc) is an emerging protein PTM characterized by the addition of a succinyl group to a lysine residue, which induces substantial alteration in the chemical and structural properties of the affected protein. This chemical alteration is reversible, dynamic in nature, and evolutionarily conserved. Recent investigations of numerous proteins that undergo significant succinylation have underscored the potential significance of Ksuc in various biological processes, encompassing normal physiological functions and the development of certain pathological processes and metabolites. This review aims to elucidate the molecular mechanisms underlying Ksuc and its diverse functions in fungi. Both conventional investigation techniques and predictive tools for identifying Ksuc sites were also considered. A more profound comprehension of Ksuc and its impact on the biology of fungi have the potential to unveil new insights into post-translational modification and may pave the way for innovative approaches that can be applied across various clinical contexts in the management of mycotoxins.
Collapse
Affiliation(s)
- John Adejor
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Elisabeth Tumukunde
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoqi Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Xie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2023; 1878:188999. [PMID: 37858622 DOI: 10.1016/j.bbcan.2023.188999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Recent multi-omics studies, including proteomics, transcriptomics, genomics, and metabolomics have revealed the critical role of post-translational modifications (PTMs) in the progression and pathogenesis of Glioblastoma multiforme (GBM). Further, PTMs alter the oncogenic signaling events and offer a novel avenue in GBM therapeutics research through PTM enzymes as potential biomarkers for drug targeting. In addition, PTMs are critical regulators of chromatin architecture, gene expression, and tumor microenvironment (TME), that play a crucial function in tumorigenesis. Moreover, the implementation of artificial intelligence and machine learning algorithms enhances GBM therapeutics research through the identification of novel PTM enzymes and residues. Herein, we briefly explain the mechanism of protein modifications in GBM etiology, and in altering the biologics of GBM cells through chromatin remodeling, modulation of the TME, and signaling pathways. In addition, we highlighted the importance of PTM enzymes as therapeutic biomarkers and the role of artificial intelligence and machine learning in protein PTM prediction.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India.
| |
Collapse
|
4
|
Zhang T, Jia J, Chen C, Zhang Y, Yu B. BiGRUD-SA: Protein S-sulfenylation sites prediction based on BiGRU and self-attention. Comput Biol Med 2023; 163:107145. [PMID: 37336062 DOI: 10.1016/j.compbiomed.2023.107145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
S-sulfenylation is a vital post-translational modification (PTM) of proteins, which is an intermediate in other redox reactions and has implications for signal transduction and protein function regulation. However, there are many restrictions on the experimental identification of S-sulfenylation sites. Therefore, predicting S-sulfoylation sites by computational methods is fundamental to studying protein function and related biological mechanisms. In this paper, we propose a method named BiGRUD-SA based on bi-directional gated recurrent unit (BiGRU) and self-attention mechanism to predict protein S-sulfenylation sites. We first use AAC, BLOSUM62, AAindex, EAAC and GAAC to extract features, and do feature fusion to obtain original feature space. Next, we use SMOTE-Tomek method to handle data imbalance. Then, we input the processed data to the BiGRU and use self-attention mechanism to do further feature extraction. Finally, we input the data obtained to the deep neural networks (DNN) to identify S-sulfenylation sites. The accuracies of training set and independent test set are 96.66% and 95.91% respectively, which indicates that our method is conducive to identifying S-sulfenylation sites. Furthermore, we use a data set of S-sulfenylation sites in Arabidopsis thaliana to effectively verify the generalization ability of BiGRUD-SA method, and obtain better prediction results.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Computer Science and Technology, Shandong University, Qingdao, 266237, China; College of Information Science and Technology, School of Data Science, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Jihua Jia
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Cheng Chen
- College of Computer Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yaqun Zhang
- College of Mathematics and Big Data, Dezhou University, Dezhou, 253023, China.
| | - Bin Yu
- College of Information Science and Technology, School of Data Science, Qingdao University of Science and Technology, Qingdao, 266061, China; School of Data Science, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
5
|
Wang M, Song L, Zhang Y, Gao H, Yan L, Yu B. Malsite-Deep: Prediction of protein malonylation sites through deep learning and multi-information fusion based on NearMiss-2 strategy. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.108191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Ning Q, Ma Z, Zhao X, Yin M. SSKM_Succ: A Novel Succinylation Sites Prediction Method Incorporating K-Means Clustering With a New Semi-Supervised Learning Algorithm. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:643-652. [PMID: 32750881 DOI: 10.1109/tcbb.2020.3006144] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein succinylation is a type of post-translational modification (PTM) that occurs on lysine sites and plays a key role in protein conformation regulation and cellular function control. When training in computational method, it is difficult to designate negative samples because of the uncertainty of non-succinylation lysine sites, and if not handled properly, it may affect the performance of computational models dramatically. Therefore, we propose a new semi-supervised learning method to identify reliable non-succinylation lysine sites as negative samples. This method, named SSKM_Succ, also employs K-means clustering to divide data into 5 clusters. Besides, information of proximal PTMs and three kinds of sequence features (grey pseudo amino acid composition, K-space and position-special amino acid propensity) are utilized to formulate protein. Then, we perform a two-step feature selection to remove redundant features and construct the optimization model for each cluster. Finally, support vector machine is applied to construct a prediction model for each cluster. Promising results are obtained by this method with an accuracy of 80.18 percent for succinylation sites on the independent testing dataset. Meanwhile, we compare the result with other existing tools, and it shows that our method is promising for predicting succinylation sites. Through analysis, we further verify that succinylated protein has potential effects on amino acid degradation and fatty acid metabolism, and speculate that protein succinylation may be closely related to neurodegenerative diseases. The code of SSKM_Succ is available on the web https://github.com/yangyq505/SSKM_Succ.git.
Collapse
|
7
|
Liu Y, Jin S, Song L, Han Y, Yu B. Prediction of protein ubiquitination sites via multi-view features based on eXtreme gradient boosting classifier. J Mol Graph Model 2021; 107:107962. [PMID: 34198216 DOI: 10.1016/j.jmgm.2021.107962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/03/2021] [Accepted: 06/02/2021] [Indexed: 01/29/2023]
Abstract
Ubiquitination is a common and reversible post-translational protein modification that regulates apoptosis and plays an important role in protein degradation and cell diseases. However, experimental identification of protein ubiquitination sites is usually time-consuming and labor-intensive, so it is necessary to establish effective predictors. In this study, we propose a ubiquitination sites prediction method based on multi-view features, namely UbiSite-XGBoost. Firstly, we use seven single-view features encoding methods to convert protein sequence fragments into digital information. Secondly, the least absolute shrinkage and selection operator (LASSO) is applied to remove the redundant information and get the optimal feature subsets. Finally, these features are inputted into the eXtreme gradient boosting (XGBoost) classifier to predict ubiquitination sites. Five-fold cross-validation shows that the AUC values of Set1-Set6 datasets are 0.8258, 0.7592, 0.7853, 0.8345, 0.8979 and 0.8901, respectively. The synthetic minority oversampling technique (SMOTE) is employed in Set4-Set6 unbalanced datasets, and the AUC values are 0.9777, 0.9782 and 0.9860, respectively. In addition, we have constructed three independent test datasets which the AUC values are 0.8007, 0.6897 and 0.7280, respectively. The results show that the proposed method UbiSite-XGBoost is superior to other ubiquitination prediction methods and it provides new guidance for the identification of ubiquitination sites. The source code and all datasets are available at https://github.com/QUST-AIBBDRC/UbiSite-XGBoost/.
Collapse
Affiliation(s)
- Yushuang Liu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Shuping Jin
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Lili Song
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Yu Han
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Bin Yu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China; Key Laboratory of Computational Science and Application of Hainan Province, Haikou, 571158, China.
| |
Collapse
|
8
|
LSTMCNNsucc: A Bidirectional LSTM and CNN-Based Deep Learning Method for Predicting Lysine Succinylation Sites. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9923112. [PMID: 34159204 PMCID: PMC8188601 DOI: 10.1155/2021/9923112] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
Lysine succinylation is a typical protein post-translational modification and plays a crucial role of regulation in the cellular process. Identifying succinylation sites is fundamental to explore its functions. Although many computational methods were developed to deal with this challenge, few considered semantic relationship between residues. We combined long short-term memory (LSTM) and convolutional neural network (CNN) into a deep learning method for predicting succinylation site. The proposed method obtained a Matthews correlation coefficient of 0.2508 on the independent test, outperforming state of the art methods. We also performed the enrichment analysis of succinylation proteins. The results showed that functions of succinylation were conserved across species but differed to a certain extent with species. On basis of the proposed method, we developed a user-friendly web server for predicting succinylation sites.
Collapse
|
9
|
Li A, Deng Y, Tan Y, Chen M. A Transfer Learning-Based Approach for Lysine Propionylation Prediction. Front Physiol 2021; 12:658633. [PMID: 33967828 PMCID: PMC8096918 DOI: 10.3389/fphys.2021.658633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Lysine propionylation is a newly discovered posttranslational modification (PTM) and plays a key role in the cellular process. Although proteomics techniques was capable of detecting propionylation, large-scale detection was still challenging. To bridge this gap, we presented a transfer learning-based method for computationally predicting propionylation sites. The recurrent neural network-based deep learning model was trained firstly by the malonylation and then fine-tuned by the propionylation. The trained model served as feature extractor where protein sequences as input were translated into numerical vectors. The support vector machine was used as the final classifier. The proposed method reached a matthews correlation coefficient (MCC) of 0.6615 on the 10-fold crossvalidation and 0.3174 on the independent test, outperforming state-of-the-art methods. The enrichment analysis indicated that the propionylation was associated with these GO terms (GO:0016620, GO:0051287, GO:0003735, GO:0006096, and GO:0005737) and with metabolism. We developed a user-friendly online tool for predicting propoinylation sites which is available at http://47.113.117.61/.
Collapse
Affiliation(s)
- Ang Li
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| | - Yingwei Deng
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| | - Yan Tan
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| | - Min Chen
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| |
Collapse
|
10
|
HybridSucc: A Hybrid-learning Architecture for General and Species-specific Succinylation Site Prediction. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:194-207. [PMID: 32861878 PMCID: PMC7647696 DOI: 10.1016/j.gpb.2019.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/17/2019] [Accepted: 11/13/2019] [Indexed: 11/21/2022]
Abstract
As an important protein acylation modification, lysine succinylation (Ksucc) is involved in diverse biological processes, and participates in human tumorigenesis. Here, we collected 26,243 non-redundant known Ksucc sites from 13 species as the benchmark data set, combined 10 types of informative features, and implemented a hybrid-learning architecture by integrating deep-learning and conventional machine-learning algorithms into a single framework. We constructed a new tool named HybridSucc, which achieved area under curve (AUC) values of 0.885 and 0.952 for general and human-specific prediction of Ksucc sites, respectively. In comparison, the accuracy of HybridSucc was 17.84%–50.62% better than that of other existing tools. Using HybridSucc, we conducted a proteome-wide prediction and prioritized 370 cancer mutations that change Ksucc states of 218 important proteins, including PKM2, SHMT2, and IDH2. We not only developed a high-profile tool for predicting Ksucc sites, but also generated useful candidates for further experimental consideration. The online service of HybridSucc can be freely accessed for academic research at http://hybridsucc.biocuckoo.org/.
Collapse
|
11
|
AHMAD WAKIL, ARAFAT EASIN, TAHERZADEH GHAZALEH, SHARMA ALOK, DIPTA SHUBHASHISROY, DEHZANGI ABDOLLAH, SHATABDA SWAKKHAR. Mal-Light: Enhancing Lysine Malonylation Sites Prediction Problem Using Evolutionary-based Features. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:77888-77902. [PMID: 33354488 PMCID: PMC7751949 DOI: 10.1109/access.2020.2989713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Post Translational Modification (PTM) is considered an important biological process with a tremendous impact on the function of proteins in both eukaryotes, and prokaryotes cells. During the past decades, a wide range of PTMs has been identified. Among them, malonylation is a recently identified PTM which plays a vital role in a wide range of biological interactions. Notwithstanding, this modification plays a potential role in energy metabolism in different species including Homo Sapiens. The identification of PTM sites using experimental methods is time-consuming and costly. Hence, there is a demand for introducing fast and cost-effective computational methods. In this study, we propose a new machine learning method, called Mal-Light, to address this problem. To build this model, we extract local evolutionary-based information according to the interaction of neighboring amino acids using a bi-peptide based method. We then use Light Gradient Boosting (LightGBM) as our classifier to predict malonylation sites. Our results demonstrate that Mal-Light is able to significantly improve malonylation site prediction performance compared to previous studies found in the literature. Using Mal-Light we achieve Matthew's correlation coefficient (MCC) of 0.74 and 0.60, Accuracy of 86.66% and 79.51%, Sensitivity of 78.26% and 67.27%, and Specificity of 95.05% and 91.75%, for Homo Sapiens and Mus Musculus proteins, respectively. Mal-Light is implemented as an online predictor which is publicly available at: (http://brl.uiu.ac.bd/MalLight/).
Collapse
Affiliation(s)
- WAKIL AHMAD
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Dhaka 1212, Bangladesh
| | - EASIN ARAFAT
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Dhaka 1212, Bangladesh
| | - GHAZALEH TAHERZADEH
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
| | - ALOK SHARMA
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, QLD-4111, Australia
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Kanagawa, Japan
- School of Engineering and Physics, Faculty of Science Technology and Environment, University of the South Pacific, Suva, Fiji
- CREST, JST, Tokyo, 102-8666, Japan
| | - SHUBHASHIS ROY DIPTA
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Dhaka 1212, Bangladesh
| | - ABDOLLAH DEHZANGI
- Department of Computer Science, Morgan State University, Baltimore, MD, 21251, USA
| | - SWAKKHAR SHATABDA
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Dhaka 1212, Bangladesh
| |
Collapse
|
12
|
Hasan MM, Khatun MS, Kurata H. Large-Scale Assessment of Bioinformatics Tools for Lysine Succinylation Sites. Cells 2019; 8:cells8020095. [PMID: 30696115 PMCID: PMC6406724 DOI: 10.3390/cells8020095] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 12/19/2022] Open
Abstract
Lysine succinylation is a form of posttranslational modification of the proteins that play an essential functional role in every aspect of cell metabolism in both prokaryotes and eukaryotes. Aside from experimental identification of succinylation sites, there has been an intense effort geared towards the development of sequence-based prediction through machine learning, due to its promising and essential properties of being highly accurate, robust and cost-effective. In spite of these advantages, there are several problems that are in need of attention in the design and development of succinylation site predictors. Notwithstanding of many studies on the employment of machine learning approaches, few articles have examined this bioinformatics field in a systematic manner. Thus, we review the advancements regarding the current state-of-the-art prediction models, datasets, and online resources and illustrate the challenges and limitations to present a useful guideline for developing powerful succinylation site prediction tools.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680⁻4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| | - Mst Shamima Khatun
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680⁻4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680⁻4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
- Biomedical Informatics R&D Center, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|