1
|
Pang F, Lei C, Zhao H, Xing Z. An Earth Mover's Distance-Based Self-Supervised Framework for Cellular Dynamic Grading in Live-Cell Imaging. J Comput Biol 2025; 32:274-297. [PMID: 39618334 DOI: 10.1089/cmb.2024.0672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Cellular appearance and its dynamics frequently serve as a proxy measurement of live-cell physiological properties. The computational analysis of cell properties is considered to be a significant endeavor in biological and biomedical research. Deep learning has garnered considerable success across various fields. In light of this, various neural networks have been developed to analyze live-cell microscopic videos and capture cellular dynamics with biological significance. Specifically, cellular dynamic grading (CDG) is the task that provides a predefined dynamic grade for a live-cell according to the speed of cellular deformation and intracellular movement. This task involves recording the morphological and cytoplasmic dynamics in live-cell microscopic videos. Similar to other medical image processing tasks, CDG faces challenges in collecting and annotating cellular videos. These deficiencies in medical data limit the performance of deep learning models. In this article, we propose a novel self-supervised framework to overcome these limitations for the CDG task. Our framework relies on the assumption that increasing or decreasing cell dynamic grades is consistent with accelerating or decelerating cell appearance change in videos, respectively. This consistency is subsequently incorporated as a constraint in the loss function for the self-supervised training strategy. Our framework is implemented by formulating a probability transition matrix based on the Earth Mover's Distance and imposing a loss constraint on the elements of this matrix. Experimental results demonstrate that our proposed framework enhances the model's ability to learn spatiotemporal dynamics. Furthermore, our framework outperforms the existing methods on our cell video database.
Collapse
Affiliation(s)
- Fengqian Pang
- School of Information Science and Technology, North China University of Technology, Beijing, China
| | - Chunyue Lei
- School of Information Science and Technology, North China University of Technology, Beijing, China
| | - Hongfei Zhao
- School of Information Science and Technology, North China University of Technology, Beijing, China
| | - Zhiqiang Xing
- School of Information Science and Technology, North China University of Technology, Beijing, China
| |
Collapse
|
2
|
He L, Li M, Wang X, Wu X, Yue G, Wang T, Zhou Y, Lei B, Zhou G. Morphology-based deep learning enables accurate detection of senescence in mesenchymal stem cell cultures. BMC Biol 2024; 22:1. [PMID: 38167069 PMCID: PMC10762950 DOI: 10.1186/s12915-023-01780-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Cell senescence is a sign of aging and plays a significant role in the pathogenesis of age-related disorders. For cell therapy, senescence may compromise the quality and efficacy of cells, posing potential safety risks. Mesenchymal stem cells (MSCs) are currently undergoing extensive research for cell therapy, thus necessitating the development of effective methods to evaluate senescence. Senescent MSCs exhibit distinctive morphology that can be used for detection. However, morphological assessment during MSC production is often subjective and uncertain. New tools are required for the reliable evaluation of senescent single cells on a large scale in live imaging of MSCs. RESULTS We have developed a successful morphology-based Cascade region-based convolution neural network (Cascade R-CNN) system for detecting senescent MSCs, which can automatically locate single cells of different sizes and shapes in multicellular images and assess their senescence state. Additionally, we tested the applicability of the Cascade R-CNN system for MSC senescence and examined the correlation between morphological changes with other senescence indicators. CONCLUSIONS This deep learning has been applied for the first time to detect senescent MSCs, showing promising performance in both chronic and acute MSC senescence. The system can be a labor-saving and cost-effective option for screening MSC culture conditions and anti-aging drugs, as well as providing a powerful tool for non-invasive and real-time morphological image analysis integrated into cell production.
Collapse
Affiliation(s)
- Liangge He
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Mingzhu Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Xinglie Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Xiaoyan Wu
- Department of Dermatology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Guanghui Yue
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Yan Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Shenzhen University Medical School, Shenzhen, 518060, China
- Lungene Biotech Ltd., Shenzhen, 18000, China
| | - Baiying Lei
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China.
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Shenzhen University Medical School, Shenzhen, 518060, China.
| |
Collapse
|
3
|
Zhao T, Fu C, Song W, Sham CW. RGGC-UNet: Accurate Deep Learning Framework for Signet Ring Cell Semantic Segmentation in Pathological Images. Bioengineering (Basel) 2023; 11:16. [PMID: 38247893 PMCID: PMC10813712 DOI: 10.3390/bioengineering11010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Semantic segmentation of Signet Ring Cells (SRC) plays a pivotal role in the diagnosis of SRC carcinoma based on pathological images. Deep learning-based methods have demonstrated significant promise in computer-aided diagnosis over the past decade. However, many existing approaches rely heavily on stacking layers, leading to repetitive computational tasks and unnecessarily large neural networks. Moreover, the lack of available ground truth data for SRCs hampers the advancement of segmentation techniques for these cells. In response, this paper introduces an efficient and accurate deep learning framework (RGGC-UNet), which is a UNet framework including our proposed residual ghost block with ghost coordinate attention, featuring an encoder-decoder structure tailored for the semantic segmentation of SRCs. We designed a novel encoder using the residual ghost block with proposed ghost coordinate attention. Benefiting from the utilization of ghost block and ghost coordinate attention in the encoder, the computational overhead of our model is effectively minimized. For practical application in pathological diagnosis, we have enriched the DigestPath 2019 dataset with fully annotated mask labels of SRCs. Experimental outcomes underscore that our proposed model significantly surpasses other leading-edge models in segmentation accuracy while ensuring computational efficiency.
Collapse
Affiliation(s)
- Tengfei Zhao
- School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Chong Fu
- School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
- Engineering Research Center of Security Technology of Complex Network System, Ministry of Education, Shenyang 110819, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110819, China
| | - Wei Song
- School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Chiu-Wing Sham
- School of Computer Science, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|