1
|
Chen X, Li H, Huang B, Ruan J, Li X, Li Q. High impact works on stem cell transplantation in intervertebral disc degeneration. BMC Musculoskelet Disord 2024; 25:1029. [PMID: 39702055 DOI: 10.1186/s12891-024-08131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Low back pain is a major disorder that causes disability and is strongly associated with intervertebral disc degeneration (IDD). Because of the limitations of contemporary interventions, stem cell transplantation (SCT) has been increasingly used to regenerate degenerative discs. Nevertheless, analyses of high-impact papers in this field are rare. This study aimed to determine and analyze the 100 highest-cited documents on SCT in IDD. METHODS The 100 highest-cited documents were retrieved from the Web of Science (WoS) database. Descriptive statistics were calculated and correlation analysis was conducted to determine the relationship between WoS citations, the Altmetric Attention Score (AAS), and Dimensions citations. RESULTS The citation counts of the top 100 most cited papers ranged from 13 to 372. These studies were conducted in 17 countries and were published in 48 journals between 2003 and 2021. The top three contributing countries were the China (31), United States (22), and Japan (14). Bone marrow-derived stem cells were the most common type of stem cells (70.00%), followed by adipose-derived stem cells (13.75%), and nucleus pulposus-derived stem cells (7.50). Rabbit was the most studied species (41.25%), followed by rat (21.25%), human (13.75%), sheep (8.75%), dog (8.75%), and pig (6.25%). Tokai University School of Medicine (11) had the largest number of documents, followed by The University of Hong Kong (8), and Southeast University (4). Sakai D (10) was the most fruitful author, followed by Cheung KMC (6), Melrose J (3), Pettine K (3), Lotz JC (3), and Murphy MB (3). We observed a very high correlation between the WoS and Dimensions citations (p < 0.001, r = 0.994). CONCLUSIONS This study highlights the highest impact works on SCT in IDD, thereby providing a deeper understanding of the historical works related to SCT in IDD, as well as benefits for future studies in this field.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Hao Li
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Baoci Huang
- Department of Ultrasound, Guangdong Second Provincial General Hospital Guangzhou City, Guangzhou, China
| | - Jiajian Ruan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Li
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| | - Qian Li
- Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Core-shell oxygen-releasing fibers for annulus fibrosus repair in the intervertebral disc of rats. Mater Today Bio 2023; 18:100535. [PMID: 36654965 PMCID: PMC9841168 DOI: 10.1016/j.mtbio.2022.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
The repair of annulus fibrosus (AF) defect after discectomy in the intervertebral disc (IVD) has presented a challenge over the past decade. Hostile microenvironments in the IVD, including, compression and hypoxia, are critical issues that require special attention. Till date, little information is available on potential strategies to cope with the hypoxia dilemma in AF defect sites. In this study, perfluorotributylamine (PFTBA) core-shell fibers were fabricated by coaxial electrospinning to construct oxygen-releasing scaffold for promoting endogenous repair in the AF after discectomy. We demonstrated that PFTBA fibers (10% chitosan, chitosan: PCL, 1:6) could release oxygen for up to 144 h. The oxygen released from PFTBA fibers was found to protect annulus fibrosus stem cells (AFSCs) from hypoxia-induced apoptosis. In addition, the PFTBA fibers were able to promote proliferation, migration and extracellular matrix (ECM) production in AFSCs under hypoxia, highlighting their therapeutic potential in AF defect repair. Subsequent in vivo studies demonstrated that oxygen-supplying fibers were capable of ameliorating disc degeneration after discectomy, which was evidenced by improved disc height and morphological integrity in rats with the oxygen-releasing scaffolds. Further transcriptome analysis indicated that differential expression genes (DEGs) were enriched in "oxygen transport" and "angiogenesis", which likely contributed to their beneficial effect on endogenous AF regeneration. In summary, the oxygen-releasing scaffold provides novel insights into the oxygen regulation by bioactive materials and raises the therapeutic possibility of oxygen supply strategies for defect repair in AF, as well as other aerobic tissues.
Collapse
|
3
|
Luo Z, Bian Y, Zheng R, Song Y, Shi L, Xu H, Wang H, Li X, Tao Z, Wang A, Liu K, Fu W, Xue J. Combination of chemically modified SDF-1α mRNA and small skin improves wound healing in diabetic rats with full-thickness skin defects. Cell Prolif 2022; 55:e13318. [PMID: 35932176 DOI: 10.1111/cpr.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Diabetes mellitus is associated with refractory wound healing, yet current therapies are insufficient to accelerate the process of healing. Recent studies have indicated chemically modified mRNA (modRNA) as a promising therapeutic intervention. The present study aimed to explore the efficacy of small skin engineered to express modified mRNAs encoding the stromal cell-derived factor-1α (SDF-1α) facilitating wound healing in a full-thickness skin defect rat model. This study, devised therapeutic strategies for diabetic wounds by pre-treating small skin with SDF-1α modRNA. MATERIALS AND METHODS The in vitro transfection efficiency was evaluated using fluorescence microscopy and the content of SDF-1α in the medium was determined using ELISA after the transfection of SDF-1α into the small skin. To evaluate the effect of SDF-1α modRNA and transplantation of the small skin cells on wound healing, an in vivo full-thickness skin defect rat model was assessed. RESULTS The results revealed that a modRNA carrying SDF-1α provided potent wound healing in the small skin lesions reducing reduced scar thickness and greater angiogenesis (CD31) in the subcutaneous layer. The SDF-1α cytokines were significantly secreted by the small skin after transfection in vitro. CONCLUSIONS This study demonstrated the benefits of employing small skin combined with SDF-1α modRNA in enhancing wound healing in diabetic rats having full-thickness skin defects.
Collapse
Affiliation(s)
- Zucheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yujie Bian
- Department of Orthopaedics, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Rui Zheng
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonghuan Song
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Li Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Haiting Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Zhenyu Tao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Anyuan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Ke Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jixin Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Olmedo-Moreno L, Aguilera Y, Baliña-Sánchez C, Martín-Montalvo A, Capilla-González V. Heterogeneity of In Vitro Expanded Mesenchymal Stromal Cells and Strategies to Improve Their Therapeutic Actions. Pharmaceutics 2022; 14:1112. [PMID: 35631698 PMCID: PMC9146397 DOI: 10.3390/pharmaceutics14051112] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Abstract
Beneficial properties of mesenchymal stromal cells (MSCs) have prompted their use in preclinical and clinical research. Accumulating evidence has been provided for the therapeutic effects of MSCs in several pathologies, including neurodegenerative diseases, myocardial infarction, skin problems, liver disorders and cancer, among others. Although MSCs are found in multiple tissues, the number of MSCs is low, making in vitro expansion a required step before MSC application. However, culture-expanded MSCs exhibit notable differences in terms of cell morphology, physiology and function, which decisively contribute to MSC heterogeneity. The changes induced in MSCs during in vitro expansion may account for the variability in the results obtained in different MSC-based therapy studies, including those using MSCs as living drug delivery systems. This review dissects the different changes that occur in culture-expanded MSCs and how these modifications alter their therapeutic properties after transplantation. Furthermore, we discuss the current strategies developed to improve the beneficial effects of MSCs for successful clinical implementation, as well as potential therapeutic alternatives.
Collapse
Affiliation(s)
| | | | | | | | - Vivian Capilla-González
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, 41092 Seville, Spain; (L.O.-M.); (Y.A.); (C.B.-S.); (A.M.-M.)
| |
Collapse
|
5
|
Therapeutic Strategies for IVD Regeneration through Hyaluronan/SDF-1-Based Hydrogel and Intravenous Administration of MSCs. Int J Mol Sci 2021; 22:ijms22179609. [PMID: 34502517 PMCID: PMC8431759 DOI: 10.3390/ijms22179609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc (IVD) degeneration involves a complex cascade of events, including degradation of the native extracellular matrix, loss of water content, and decreased cell numbers. Cell recruitment strategies for the IVD have been increasingly explored, aiming to recruit either endogenous or transplanted cells. This study evaluates the IVD therapeutic potential of a chemoattractant delivery system (HAPSDF5) that combines a hyaluronan-based thermoreversible hydrogel (HAP) and the chemokine stromal cell derived factor-1 (SDF-1). HAPSDF5 was injected into the IVD and was combined with an intravenous injection of mesenchymal stem/stromal cells (MSCs) in a pre-clinical in vivo IVD lesion model. The local and systemic effects were evaluated two weeks after treatment. The hydrogel by itself (HAP) did not elicit any adverse effect, showing potential to be administrated by intradiscal injection. HAPSDF5 induced higher cell numbers, but no evidence of IVD regeneration was observed. MSCs systemic injection seemed to exert a role in IVD regeneration to some extent through a paracrine effect, but no synergies were observed when HAPSDF5 was combined with MSCs. Overall, this study shows that although the injection of chemoattractant hydrogels and MSC recruitment are feasible approaches for IVD, IVD regeneration using this strategy needs to be further explored before successful clinical translation.
Collapse
|
6
|
Fu H, Wu Y, Yang X, Huang S, Yu F, Deng H, Zhang S, Xiang Q. Stem cell and its derivatives as drug delivery vehicles: an effective new strategy of drug delivery system. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1967202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Hongwei Fu
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yinan Wu
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xiaobin Yang
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shiyi Huang
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Fenglin Yu
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Hong Deng
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shu Zhang
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Qi Xiang
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Ekram S, Khalid S, Bashir I, Salim A, Khan I. Human umbilical cord-derived mesenchymal stem cells and their chondroprogenitor derivatives reduced pain and inflammation signaling and promote regeneration in a rat intervertebral disc degeneration model. Mol Cell Biochem 2021; 476:3191-3205. [PMID: 33864569 DOI: 10.1007/s11010-021-04155-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/02/2021] [Indexed: 12/21/2022]
Abstract
Intervertebral disc (IVD) degeneration is an asymptomatic pathophysiological condition and a strong causative factor of low back pain. There is no cure available except spinal fusion and pain management. Stem cell-based regenerative medicine is being considered as an alternative approach to treat disc diseases. The current study aimed to differentiate human umbilical cord-mesenchymal stem cells (hUC-MSCs) into chondrocyte-like cells and to elucidate their feasibility and efficacy in the degenerated IVD rat model. Chondrogenic induction medium was used to differentiate hUC-MSCs into chondroprogenitors. Rat tail IVD model was established with three consecutive coccygeal discs. qPCR was performed to quantify the molecular markers of pain and inflammation. Histological staining was performed to evaluate the degree of regeneration. Induced chondroprogenitors showed the expression of chondrogenic genes, SOX9, TGF-β1, ACAN, BMP2, and GDF5. Immunocytochemical staining showed positive expression of chondrogenic proteins SOX9, TGF-β1, TGF-β2, and Collagen 2. In in vivo study, transplanted chondroprogenitors showed better survival, homing, and distribution in IVD as compared to normal MSCs. Expression of pain and inflammatory genes at day 5 of cell transplantation modulated immune response significantly. The transplanted labeled MSCs and induced chondroprogenitors differentiated into functional nucleus pulposus (NP) cells as evident from co-localization of red (DiI) and green fluorescence for SOX9, TGF-β1, and TGF-β2. Alcian blue and H & E staining showed standard histological features, indicating better preservation of the NP structure and cellularity than degenerated discs. hUC-MSCs-derived chondroprogenitors showed better regeneration potential as compared to normal MSCs. The pain and inflammation genes were downregulated in the treated group as compared to the degenerated IVD.
Collapse
Affiliation(s)
- Sobia Ekram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Imtiaz Bashir
- Zainab Panjwani Memorial Hospital, Mohammadali Habib Road, Numaish Karachi, 74800, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
8
|
Xiu G, Li X, Yin Y, Li J, Li B, Chen X, Liu P, Sun J, Ling B. SDF-1/CXCR4 Augments the Therapeutic Effect of Bone Marrow Mesenchymal Stem Cells in the Treatment of Lipopolysaccharide-Induced Liver Injury by Promoting Their Migration Through PI3K/Akt Signaling Pathway. Cell Transplant 2021; 29:963689720929992. [PMID: 32452221 PMCID: PMC7563832 DOI: 10.1177/0963689720929992] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are thought to have great potential in the therapy of acute liver injury. It is possible that these cells may be regulated by the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) signaling axis, which has been shown to promote stem cells migration in the inflammation-associated diseases. However, the effects of SDF-1/CXCR4 axis on the MSCs-transplantation-based treatment for acute liver injury and the underlying mechanisms are largely unknown. In this study, we sought to determine whether SDF-1/CXCR4 would augment the therapeutic effect of bone marrow mesenchymal stem cells (BMSCs) by promoting their migration, which may result from activating the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, in a rat acute liver injury model induced by lipopolysaccharide (LPS). We found that BMSCs transplantation markedly attenuated liver injury and improved the survival of LPS-treated rats. Of interest, overexpression of CXCR4 in BMSCs could substantially promote their migration both in vitro and in vivo, and result in even better therapeutic effects. This might be attributed to the activation of PI3K/Akt signaling pathway in BMSCs that is downstream of CXCR4, as demonstrated by the use of the CXCR4 antagonist AMD3100 and PI3K pathway inhibitor LY294002 assays in vitro and in vivo. Together, our results unraveled a novel molecular mechanism for the therapeutic effect of BMSCs for the treatment of acute liver injury, which may shed a new light on the clinical application of BMSCs for acute liver failure.
Collapse
Affiliation(s)
- Guanghui Xiu
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China.,These authors contributed equally to this article
| | - Xiuling Li
- Department of Obstetrics, The First People's Hospital of Yunnan province, Kunming, Yunnan Province, China.,These authors contributed equally to this article
| | - Yunyu Yin
- Department of Intensive Care Unit, The Affiliated hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China.,These authors contributed equally to this article
| | - Jintao Li
- The Institute of Neuroscience, The Kunming Medical University, Kunming, Yunnan Province, China
| | - Bingqin Li
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Xianzhong Chen
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Ping Liu
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Jie Sun
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Bin Ling
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| |
Collapse
|
9
|
Chen H, Li G, Liu Y, Ji S, Li Y, Xiang J, Zhou L, Gao H, Zhang W, Sun X, Fu X, Li B. Pleiotropic Roles of CXCR4 in Wound Repair and Regeneration. Front Immunol 2021; 12:668758. [PMID: 34122427 PMCID: PMC8194072 DOI: 10.3389/fimmu.2021.668758] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Wound healing is a multi-step process that includes multiple cellular events such as cell proliferation, cell adhesion, and chemotactic response as well as cell apoptosis. Accumulating studies have documented the significance of stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor 4 (CXCR4) signaling in wound repair and regeneration. However, the molecular mechanism of regeneration is not clear. This review describes various types of tissue regeneration that CXCR4 participates in and how the efficiency of regeneration is increased by CXCR4 overexpression. It emphasizes the pleiotropic effects of CXCR4 in regeneration. By delving into the specific molecular mechanisms of CXCR4, we hope to provide a theoretical basis for tissue engineering and future regenerative medicine.
Collapse
Affiliation(s)
- Huating Chen
- Department of Wound Repair Surgery, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | | | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.,Department of Southern Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Jiangbing Xiang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.,Department of School of Biological Engineering, Chongqing University, Chongqing, China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Huanhuan Gao
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenwen Zhang
- Department of Wound Repair Surgery, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Binghui Li
- Department of Wound Repair Surgery, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Vadalà G, Ambrosio L, Russo F, Papalia R, Denaro V. Stem Cells and Intervertebral Disc Regeneration Overview-What They Can and Can't Do. Int J Spine Surg 2021; 15:40-53. [PMID: 34376495 DOI: 10.14444/8054] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Low back pain (LPB) is the main cause of disability worldwide with enormous socioeconomic burdens. A major cause of LBP is intervertebral disc degeneration (IDD): a chronic, progressive process associated with exhaustion of the resident cell population, tissue inflammation, degradation of the extracellular matrix and dehydration of the nucleus pulposus. Eventually, IDD may lead to serious sequelae including chronic LBP, disc herniation, segmental instability, and spinal stenosis, which may require invasive surgical interventions. However, no treatment is actually able to directly tackle IDD and hamper the degenerative process. In the last decade, the intradiscal injection of stem cells is raising as a promising approach to regenerate the intervertebral disc. This review aims to describe the rationale behind a regenerative stem cell therapy for IDD as well as the effect of stem cells following their implantation in the disc environment according to preclinical studies. Furthermore, actual clinical evidence and ongoing trials will be discussed, taking into account the future perspective and current limitations of this cutting-edge therapy. METHODS A literature analysis was performed for this narrative review. A database search of PubMed, Scopus and ClinicalTrials.gov was conducted using "stem cells" combined with "intervertebral disc", "degeneration" and "regeneration" without exclusion based on publication date. Articles were firstly screened on a title-abstract basis and, subsequently, full-text were reviewed. Both preclinical and clinical studies have been included. RESULTS The database search yielded recent publications from which the narrative review was completed. CONCLUSIONS Based on available evidence, intradiscal stem cell therapy has provided encouraging results in terms of regenerative effects and reduction of LBP. However, multicenter, prospective randomized trials are needed in order confirm the safety, efficacy and applicability of such a promising treatment.
Collapse
Affiliation(s)
- Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Luca Ambrosio
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Fabrizio Russo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Rocco Papalia
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
11
|
Zhang Y, Zhang Z, Chen P, Ma CY, Li C, Au TYK, Tam V, Peng Y, Wu R, Cheung KMC, Sham PC, Tse HF, Chan D, Leung VY, Cheah KSE, Lian Q. Directed Differentiation of Notochord-like and Nucleus Pulposus-like Cells Using Human Pluripotent Stem Cells. Cell Rep 2021; 30:2791-2806.e5. [PMID: 32101752 DOI: 10.1016/j.celrep.2020.01.100] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 10/15/2019] [Accepted: 01/28/2020] [Indexed: 12/26/2022] Open
Abstract
Intervertebral disc degeneration might be amenable to stem cell therapy, but the required cells are scarce. Here, we report the development of a protocol for directed in vitro differentiation of human pluripotent stem cells (hPSCs) into notochord-like and nucleus pulposus (NP)-like cells of the disc. The first step combines enhancement of ACTIVIN/NODAL and WNT and inhibition of BMP pathways. By day 5 of differentiation, hPSC-derived cells express notochordal cell characteristic genes. After activating the TGF-β pathway for an additional 15 days, qPCR, immunostaining, and transcriptome data show that a wide array of NP markers are expressed. Transcriptomically, the in vitro-derived cells become more like in vivo adolescent human NP cells, driven by a set of influential genes enriched with motifs bound by BRACHYURY and FOXA2, consistent with an NP cell-like identity. Transplantation of these NP-like cells attenuates fibrotic changes in a rat disc injury model of disc degeneration.
Collapse
Affiliation(s)
- Yuelin Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong 510080, China
| | - Zhao Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong 510080, China
| | - Peikai Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Chui Yan Ma
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Cheng Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Tiffany Y K Au
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Vivian Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Yan Peng
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Ron Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Pak C Sham
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Hung-Fat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Danny Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Victor Y Leung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kathryn S E Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong.
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong 510080, China; The State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong.
| |
Collapse
|
12
|
Ali SR, Ahmad W, Naeem N, Salim A, Khan I. Small molecule 2'-deoxycytidine differentiates human umbilical cord-derived MSCs into cardiac progenitors in vitro and their in vivo xeno-transplantation improves cardiac function. Mol Cell Biochem 2020; 470:99-113. [PMID: 32415417 DOI: 10.1007/s11010-020-03750-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Small molecules are widely used to induce stem cell differentiation. 2'-deoxycytidine (2-DC) belongs to the cytidine family. It stimulates the expression of cardiac-specific genes and proteins, and directs mesenchymal stem cells towards cardiomyogenic differentiation. We aim to investigate the role of 2-DC-treated human umbilical cord mesenchymal stem cells (UC-MSCs) into myogenic lineage and explore their application in regeneration of infarcted myocardium. UC-MSCs were treated with 5, 10, 20, and 40 µM 2-DC following optimization by cytotoxicity analysis. Rat model of myocardial infarction (MI) was induced by ligating left anterior descending coronary artery. Normal, and 2-DC treated UC-MSCs were transplanted in the left ventricular wall immediately after ligation. Echocardiographic measurements were performed to assess cardiac function. Tissue architecture of the myocardium was examined by histological analysis to determine fate of the transplanted cells. MSCs were successfully isolated from human umbilical cord tissue. 2-DC treatment did not produce any significant cytotoxic effect in UC-MSCs at all concentrations. qPCR analysis of treated UC-MSCs showed induction of myogenic differentiation, which is more pronounced at 20 μM concentration. Fluorescently labeled 2-DC-treated UC-MSCs showed significant (**P < 0.01) homing in the infarcted myocardium as compared to normal UC-MSCs. Hearts transplanted with 2-DC-treated UC-MSCs significantly (***P < 0.001) improved the cardiac systolic and diastolic functions and pumping ability as compared to normal UC-MSCs and MI groups. Fibrotic area and left ventricular wall thickness were significantly improved (***P < 0.001) in 2-DC-treated group as compared to normal UC-MSCs. Immunohistochemical staining showed co-localization of fluorescently labeled cells and patches of differentiated myocytes which were stained for cardiac proteins in the infarct zone implying that the treated UC-MSCs regenerated cardiomyocytes. We report for the first time that 2-DC induces cardiac differentiation in UC-MSCs. Transplanted cells differentiated into functional cardiomyocytes and significantly improved cardiac performance. These pre-differentiated cardiac progenitors showed better survival, homing, and distribution in the infarcted zone. 2-DC treated cells not only improved cardiac function, but also restored tissue homeostasis, suggesting a better therapeutic option for the regeneration of cardiac tissue in the clinical setup.
Collapse
Affiliation(s)
- Syeda Roohina Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Waqas Ahmad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Nadia Naeem
- Dow University of Health Sciences, Ojha Campus, Gulzar-e-Hijri, Suparco Road, KDA Scheme-33, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
13
|
Herrmann M, Jakob F. Bone Marrow Niches for Skeletal Progenitor Cells and their Inhabitants in Health and Disease. Curr Stem Cell Res Ther 2019; 14:305-319. [PMID: 30674266 DOI: 10.2174/1574888x14666190123161447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/04/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
The bone marrow hosts skeletal progenitor cells which have most widely been referred to as Mesenchymal Stem or Stromal Cells (MSCs), a heterogeneous population of adult stem cells possessing the potential for self-renewal and multilineage differentiation. A consensus agreement on minimal criteria has been suggested to define MSCs in vitro, including adhesion to plastic, expression of typical surface markers and the ability to differentiate towards the adipogenic, osteogenic and chondrogenic lineages but they are critically discussed since the differentiation capability of cells could not always be confirmed by stringent assays in vivo. However, these in vitro characteristics have led to the notion that progenitor cell populations, similar to MSCs in bone marrow, reside in various tissues. MSCs are in the focus of numerous (pre)clinical studies on tissue regeneration and repair. Recent advances in terms of genetic animal models enabled a couple of studies targeting skeletal progenitor cells in vivo. Accordingly, different skeletal progenitor cell populations could be identified by the expression of surface markers including nestin and leptin receptor. While there are still issues with the identity of, and the overlap between different cell populations, these studies suggested that specific microenvironments, referred to as niches, host and maintain skeletal progenitor cells in the bone marrow. Dynamic mutual interactions through biological and physical cues between niche constituting cells and niche inhabitants control dormancy, symmetric and asymmetric cell division and lineage commitment. Niche constituting cells, inhabitant cells and their extracellular matrix are subject to influences of aging and disease e.g. via cellular modulators. Protective niches can be hijacked and abused by metastasizing tumor cells, and may even be adapted via mutual education. Here, we summarize the current knowledge on bone marrow skeletal progenitor cell niches in physiology and pathophysiology. We discuss the plasticity and dynamics of bone marrow niches as well as future perspectives of targeting niches for therapeutic strategies.
Collapse
Affiliation(s)
- Marietta Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics Wuerzburg, Wuerzburg, Germany.,Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
14
|
Effects of Stromal Cell-Derived Factor-1 α Secreted in Degenerative Intervertebral Disc on Activation and Recruitment of Nucleus Pulposus-Derived Stem Cells. Stem Cells Int 2019; 2019:9147835. [PMID: 31827537 PMCID: PMC6885842 DOI: 10.1155/2019/9147835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/03/2019] [Accepted: 05/26/2019] [Indexed: 12/25/2022] Open
Abstract
Stromal cell-derived factor-1α (SDF-1α) plays a significant role in mobilizing and recruiting mesenchymal stem cells (MSCs) to the sites of injury. This study investigated the potential of SDF-1α released in the degenerative intervertebral disc (IVD) to activate and recruit endogenous nucleus pulposus-derived stem cells (NPSCs) for regeneration in situ. We found SDF-1α was highly expressed and secreted by the native disc cells when cultured in the proinflammatory mediators in vitro mimicking the degenerative settings. Immunohistochemical staining also showed that the expression level of SDF-1α was significantly higher in the degenerative group compared to that in the normal group. In addition to enhancement of viability, SDF-1α significantly increased the number of NPSCs migrating into the center of the nucleotomized bovine IVD ex vivo. After the systemic delivery of exogenous PKH26-labelled NPSCs into the rats in vivo, there was a significant difference in the distribution of the migrated cells between the normal and the degenerative IVDs, which might be caused by the different expression levels of SDF-1α. However, blocking CXC chemokine receptor 4 (CXCR4) with AMD3100 effectively abrogated SDF-1α-stimulated proliferation and migration. Taken together, SDF-1α may be a key chemoattractant that is highly produced in response to the degenerative changes, which can be used to enhance the proliferation and recruitment of endogenous stem cells into the IVDs. These findings may be of importance for understanding IVD regenerative mechanisms and development of regenerative strategies in situ for IVD degeneration.
Collapse
|
15
|
Perez-Cruet M, Beeravolu N, McKee C, Brougham J, Khan I, Bakshi S, Chaudhry GR. Potential of Human Nucleus Pulposus-Like Cells Derived From Umbilical Cord to Treat Degenerative Disc Disease. Neurosurgery 2019; 84:272-283. [PMID: 29490072 PMCID: PMC6292795 DOI: 10.1093/neuros/nyy012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Degenerative disc disease (DDD) is a common spinal disorder that manifests with neck and lower back pain caused by the degeneration of intervertebral discs (IVDs). Currently, there is no treatment to cure this debilitating ailment. OBJECTIVE To investigate the potential of nucleus pulposus (NP)-like cells (NPCs) derived from human umbilical cord mesenchymal stem cells (MSCs) to restore degenerated IVDs using a rabbit DDD model. METHODS NPCs differentiated from MSCs were characterized using quantitative real-time reverse transcription polymerase chain reaction and immunocytochemical analysis. MSCs and NPCs were labeled with fluorescent dye, PKH26, and transplanted into degenerated IVDs of a rabbit model of DDD (n = 9 each). Magnetic resonance imaging of the IVDs was performed before and after IVD degeneration, and following cell transplantation. IVDs were extracted 8 wk post-transplantation and analyzed by various biochemical, immunohistological, and molecular techniques. RESULTS NPC derivatives of MSCs expressed known NP-specific genes, SOX9, ACAN, COL2, FOXF1, and KRT19. Transplanted cells survived, dispersed, and integrated into the degenerated IVDs. IVDs augmented with NPCs showed significant improvement in the histology, cellularity, sulfated glycosaminoglycan and water contents of the NP. In addition, expression of human genes, SOX9, ACAN, COL2, FOXF1, KRT19, PAX6, CA12, and COMP, as well as proteins, SOX9, ACAN, COL2, and FOXF1, suggest NP biosynthesis due to transplantation of NPCs. Based on these results, a molecular mechanism for NP regeneration was proposed. CONCLUSION The findings of this study demonstrating feasibility and efficacy of NPCs to regenerate NP should spur interest for clinical studies to treat DDD using cell therapy.
Collapse
Affiliation(s)
- Mick Perez-Cruet
- Department of Neurosurgery, Beaumont Health System, Royal Oak, Michigan
- OUWB School of Medicine, Oakland University, Rochester, Michigan
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan
- Michigan Head and Spine Institute, Southfield, Michigan
| | - Naimisha Beeravolu
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Christina McKee
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Jared Brougham
- OUWB School of Medicine, Oakland University, Rochester, Michigan
| | - Irfan Khan
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan
- Department of Biological Sciences, Oakland University, Rochester, Michigan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shreeya Bakshi
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - G Rasul Chaudhry
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| |
Collapse
|
16
|
Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018; 132:57-80. [PMID: 29935987 DOI: 10.1016/j.addr.2018.06.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Cellular carriers for drug delivery are attractive alternatives to synthetic nanoparticles owing to their innate homing/targeting abilities. Here, we review molecular interactions involved in the homing of Mesenchymal stem cells (MSCs) and other cell types to understand the process of designing and engineering highly efficient, actively targeting cellular vehicles. In addition, we comprehensively discuss various genetic and non-genetic strategies and propose futuristic approaches of engineering MSC homing using micro/nanotechnology and high throughput small molecule screening. Most of the targeting abilities of a cell come from its plasma membrane, thus, efforts to harness cell membranes as drug delivery vehicles are gaining importance and are highlighted here. We also recognize and report the lack of detailed characterization of cell membranes in terms of safety, structural integrity, targeting functionality, and drug transport. Finally, we provide insights on future development of bioengineered cellular and cell membrane-derived vesicles for successful clinical translation.
Collapse
Affiliation(s)
- Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, B.H. Road, Tumakuru, 572103, Karnataka, India.
| |
Collapse
|
17
|
Barhanpurkar-Naik A, Mhaske ST, Pote ST, Singh K, Wani MR. Interleukin-3 enhances the migration of human mesenchymal stem cells by regulating expression of CXCR4. Stem Cell Res Ther 2017; 8:168. [PMID: 28705238 PMCID: PMC5512829 DOI: 10.1186/s13287-017-0618-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/06/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) represent an important source for cell therapy in regenerative medicine. MSCs have shown promising results for repair of damaged tissues in various degenerative diseases in animal models and also in human clinical trials. However, little is known about the factors that could enhance the migration and tissue-specific engraftment of exogenously infused MSCs for successful regenerative cell therapy. Previously, we have reported that interleukin-3 (IL-3) prevents bone and cartilage damage in animal models of rheumatoid arthritis and osteoarthritis. Also, IL-3 promotes the differentiation of human MSCs into functional osteoblasts and increases their in-vivo bone regenerative potential in immunocompromised mice. However, the role of IL-3 in migration of MSCs is not yet known. In the present study, we investigated the role of IL-3 in migration of human MSCs under both in-vitro and in-vivo conditions. METHODS MSCs isolated from human bone marrow, adipose and gingival tissues were used for in-vitro cell migration, motility and wound healing assays in the presence or absence of IL-3. The effect of IL-3 preconditioning on expression of chemokine receptors and integrins was examined by flow cytometry and real-time PCR. The in-vivo migration of IL-3-preconditioned MSCs was investigated using a subcutaneous matrigel-releasing stromal cell-derived factor-1 alpha (SDF-1α) model in immunocompromised mice. RESULTS We observed that human MSCs isolated from all three sources express IL-3 receptor-α (IL-3Rα) both at gene and protein levels. IL-3 significantly enhances in-vitro migration, motility and wound healing abilities of MSCs. Moreover, IL-3 preconditioning upregulates expression of chemokine (C-X-C motif) receptor 4 (CXCR4) on MSCs, which leads to increased migration of cells towards SDF-1α. Furthermore, CXCR4 antagonist AMD3100 decreases the migration of IL-3-treated MSCs towards SDF-1α. Importantly, IL-3 also induces in-vivo migration of MSCs towards subcutaneously implanted matrigel-releasing-SDF-1α in immunocompromised mice. CONCLUSIONS The present study demonstrates for the first time that IL-3 has an important role in enhancing the migration of human MSCs through regulation of the CXCR4/SDF-1α axis. These findings suggest a potential role of IL-3 in improving the efficacy of MSCs in regenerative cell therapy.
Collapse
Affiliation(s)
| | - Suhas T. Mhaske
- National Centre for Cell Science, S. P. Pune University Campus, Pune, 411 007 India
| | - Satish T. Pote
- National Centre for Cell Science, S. P. Pune University Campus, Pune, 411 007 India
| | - Kanupriya Singh
- National Centre for Cell Science, S. P. Pune University Campus, Pune, 411 007 India
| | - Mohan R. Wani
- National Centre for Cell Science, S. P. Pune University Campus, Pune, 411 007 India
| |
Collapse
|
18
|
Liu S, Liang H, Lee SM, Li Z, Zhang J, Fei Q. Isolation and identification of stem cells from degenerated human intervertebral discs and their migration characteristics. Acta Biochim Biophys Sin (Shanghai) 2017; 49:101-109. [PMID: 28172101 DOI: 10.1093/abbs/gmw121] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/03/2016] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been isolated and identified separately from the three components of intervertebral disc, i.e. annulus fibrosus (AF), nucleus pulposus (NP), and cartilage endplate (CEP). However, few studies have been carried out to compare the properties of these three kinds of stem cells, especially their migration ability which is essential for their potential clinical application. In this study, MSCs were isolated from AF, NP, and CEP, respectively, of human degenerated discs and identified by surface markers and multilineage differentiation assay at passage 3. These three types of stem cells were named as AF-MSCs, NP-MSCs, and CEP-MSCs. Then, their biological characteristics were compared in terms of proliferation, passage, colony formation, migration, and invasion capacity. Results showed that all the three types of cells were identified as MSCs and had similar characteristics in proliferation, passage, and colony formation capacity. CEP-MSCs showed the highest migration and invasion potency, while NP-MSCs showed the lowest migration ability and almost no invasion potency, suggesting that CEP-MSCs had the most powerful properties of migration and invasion when compared with AF-MSCs and NP-MSCs. It was also found that the expression of CXCR4 was higher in CEP-MSCs than in the other two, suggesting that SDF-1/CXCR4 axis may play significant roles in the migration of these cells.
Collapse
Affiliation(s)
- Shuhao Liu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Haifeng Liang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Soo-Min Lee
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qinming Fei
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
19
|
Sherman LS, Shaker M, Mariotti V, Rameshwar P. Mesenchymal stromal/stem cells in drug therapy: New perspective. Cytotherapy 2016; 19:19-27. [PMID: 27765601 DOI: 10.1016/j.jcyt.2016.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
Mesenchymal stromal/stem cells (MSC) have emerged as a class of cells suitable for cellular delivery of nanoparticles, drugs and micro-RNA cargo for targeted treatments such as tumor and other protective mechanisms. The special properties of MSC underscore the current use for various clinical applications. Examples of applications include but are not limited to regenerative medicine, immune disorders and anti-cancer therapies. In recent years, there has been intense research in modifying MSC to achieve targeted and efficient clinical outcomes. This review discusses effects of MSC in an inflammatory microenvironment and then explains how these properties could be important to the overall application of MSC in cell therapy. The article also advises caution in the application of these cells because of their role in tumorigenesis. The review stresses the use of MSC as vehicles for drug delivery and discusses the accompanying challenges, based on the influence of the microenvironment on MSC.
Collapse
Affiliation(s)
- Lauren S Sherman
- Graduate School of Biomedical Sciences, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA; Department of Medicine, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Maran Shaker
- Graduate School of Biomedical Sciences, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Veronica Mariotti
- Department of Medicine, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Pranela Rameshwar
- Graduate School of Biomedical Sciences, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA; Department of Medicine, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| |
Collapse
|
20
|
Melrose J. Strategies in regenerative medicine for intervertebral disc repair using mesenchymal stem cells and bioscaffolds. Regen Med 2016; 11:705-24. [DOI: 10.2217/rme-2016-0069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intervertebral disc (IVD) is a major weight bearing structure that undergoes degenerative changes with aging limiting its ability to dissipate axial spinal loading in an efficient manner resulting in the generation of low back pain. Low back pain is a number one global musculoskeletal disorder with massive socioeconomic impact. The WHO has nominated development of mesenchymal stem cells and bioscaffolds to promote IVD repair as primary research objectives. There is a clear imperative for the development of strategies to effectively treat IVD defects. Early preclinical studies with mesenchymal stem cells in canine and ovine models have yielded impressive results in IVD repair. Combinatorial therapeutic approaches encompassing biomaterial and cell-based therapies promise significant breakthroughs in IVD repair in the near future.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone & Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
21
|
Liu MH, Bian BSJ, Cui X, Liu LT, Liu H, Huang B, Cui YH, Bian XW, Zhou Y. Mesenchymal stem cells regulate mechanical properties of human degenerated nucleus pulposus cells through SDF-1/CXCR4/AKT axis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1961-8. [DOI: 10.1016/j.bbamcr.2016.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 01/07/2023]
|