1
|
Feng K, Ye G, Wang H, Li S, Wen X, Chen M. Research on the mechanism of TWSG1 in the malignant progression of glioma cells and tumor-associated macrophage infiltration. J Neuropathol Exp Neurol 2024; 83:843-852. [PMID: 38950414 DOI: 10.1093/jnen/nlae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Gliomas are malignant tumors of the central nervous system; current treatment methods have low efficacy. Twisted gastrulation BMP signaling modulator 1 (TWSG1) has been shown to play a role in gliomas but it is not known whether TWSG1 participates in glioma pathogenesis and macrophage immune regulation. This study identified a total of 24 differentially expressed genes with survival differences in gliomas using bioinformatics analysis. Among them, TWSG1 exhibited the strongest correlation with gliomas and was positively correlated with macrophage enrichment. The results showed that TWSG1 was highly expressed in various glioma cell lines, with the highest expression observed in the A172 cell line. Silencing TWSG1 significantly decreased the viability, migration, and invasion of A172 cells in vitro and tumor growth in a mouse xenograft model in vivo. It also reduced the expression of the matrix metalloproteinases MMP2 and MMP9 both in vivo and in vitro. Silencing TWSG1 significantly reduced the expression of M2 macrophage makers and upregulated the expression of M1 macrophage markers in A172 cells and tumor tissues. These data suggest that interference with TWSG1 suppressed the progression of A172 glioma cells and regulated immune infiltration.
Collapse
Affiliation(s)
- Kuan Feng
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Gengfan Ye
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Hongcai Wang
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Shiwei Li
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Xuebin Wen
- Department of Anesthesiology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Maosong Chen
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Suzuki E, Fukuda T. Multifaceted Functions of TWSG1: From Embryogenesis to Cancer Development. Int J Mol Sci 2022; 23:12755. [PMID: 36361543 PMCID: PMC9657663 DOI: 10.3390/ijms232112755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 01/21/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) play an important role in development. Twisted gastrulation BMP signaling modulator 1 (TWSG1) was initially identified as a regulator of the dorsoventral axis formation in Drosophila. The mechanism of BMP signaling modulation by TWSG1 is complex. TWSG1 inhibits BMP signaling by binding to BMP ligands including BMP4, whereas it enhances signaling by interacting with Chordin, a BMP antagonist. Therefore, TWSG1 can act as both a BMP agonist and antagonist. TWSG1 has various functions ranging from embryogenesis to cancer progression. TWSG1 knockout mice showed neural, craniofacial, and mammary defects. TWSG1 also regulated erythropoiesis and thymocyte development. Furthermore, the relationship between TWSG1 and cancer has been elucidated. Allelic loss of TWSG1 was detected in colorectal cancer. TWSG1 expression was upregulated in papillary thyroid carcinoma and glioblastoma but downregulated in gastric and endometrial cancers. TWSG1 suppressed BMP7-enhanced sphere formation and migration in endometrial cancer cells, indicating its tumor-suppressive role. Further studies are required to clarify the TWSG1 function and its association with BMP signaling in cancer development. Finally, TWSG1 is abundantly expressed in human and mouse ovaries and sustains follicular growth in rodent ovaries. Thus, TWSG1 has various functions ranging from fertility to cancer. Therefore, TWSG1 signaling modulation may be beneficial in treating specific diseases such as cancer.
Collapse
Affiliation(s)
| | - Tomohiko Fukuda
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
3
|
MicroRNA-34c-5p exhibits anticancer properties in gastric cancer by targeting MAP2K1 to inhibit cell proliferation, migration, and invasion. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7375661. [PMID: 36203485 PMCID: PMC9532111 DOI: 10.1155/2022/7375661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/27/2022] [Indexed: 12/02/2022]
Abstract
Purpose Gastric cancer(GC)is one of the deadliest digestive tract tumors worldwide,existing studies suggest that dysregulated expression of microRNAs (miRNAs) plays an important role in the pathogenesis and progression of GC. This study aimed to investigate the expression, biological function, and downstream mechanism of miR-34c-5p in GC, provide new targets for gastric cancer diagnosis and treatment. Methods The expression of miR-34c-5p in GC tissues and cell lines was examined by RT-qPCR. Cell wound healing, transwell and cell cloning assays were used to detect the effect of miR-34c-5p on the migration and invasion abilities, respectively, of GC cells. Western blot was performed to detect the expression of related proteins. Bioinformatics analysis was used to predict the binding of MAP2K1 to miR-34c-5p and the targeting relationship was confirmed by dual luciferase reporter assay. Results The expression level of miR-34c-5p was significantly decreased in GC tissues and cell lines. miR-34c-5p overexpression inhibited migration, invasion, and colony formation of gastric cancer cells, the related protein E-cadherin expression was significantly increased and N-cadherin, vimentin, and PCNA expression were significantly decreased, while miR-34c-5p knockdown exerted the opposite effects. In addition, the targeting relationship between miR-34c-5p and MAP2K1 was predicted and confirmed, and further confirmed by rescue experiments that MAP2K1 alleviated the inhibitory effect of miR-34c-5p in GC. Conclusion MiR-34c-5p is lowly expressed in GC, and it can target MAP2K1 to exert inhibitory effects on GC proliferation, invasion, and migration. These findings provide a promising biomarker and a potential therapeutic target for gastric cancer.
Collapse
|
4
|
Sharma T, Kapoor A, Mandal CC. Duality of bone morphogenetic proteins in cancer: A comprehensive analysis. J Cell Physiol 2022; 237:3127-3163. [DOI: 10.1002/jcp.30785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Anmol Kapoor
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Chandi C. Mandal
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| |
Collapse
|
5
|
Twisted gastrulation signaling modulator 1 promotes the ability of glioma cell through activating Akt pathway. Neuroreport 2021; 32:198-205. [PMID: 33534374 DOI: 10.1097/wnr.0000000000001581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glioblastoma is one of the most common primary nervous system tumors and has a high mortality rate. It is necessary to explore a novel biological target and treatment approach. Twisted gastrulation signaling modulator 1 (TWSG1) is expressed in many tumors and closely related to tumor growth and proliferation. However, there is almost no report about the mechanism of TWSG1 in glioma. We used a glioma chip to detect the expression level of TWSG1 by Immunohistochemistry. The overexpression and silence experiments of TWSG1 were performed to assay the biological function of TWSG1 in LN229 and U251 cells. Subcutaneous xenograft mouse model presented the effect of TWSG1 expression on the malignant behavior of tumor cells. Experimental results displayed that the expression level for TWSG1 was substantially elevated in gliomas compared to that in normal brain tissue. The expression knockdown of TWSG1 caused inhibition of glioma cell proliferation. Besides, TWSG1 overexpression enhanced proliferation in glioma cells, and the capacity of proliferation was partly abolished by the PI3K inhibitor LY294002. We found that TWSG1 affected the activity of Akt signaling pathway. In conclusion, TWSG1 is overexpressed in glioma tissue and promotes tumor proliferation through Akt signaling pathway, may serve as a potential target for glioma diagnosis and therapy.
Collapse
|
6
|
Todd GM, Gao Z, Hyvönen M, Brazil DP, Ten Dijke P. Secreted BMP antagonists and their role in cancer and bone metastases. Bone 2020; 137:115455. [PMID: 32473315 DOI: 10.1016/j.bone.2020.115455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional secreted cytokines that act in a highly context-dependent manner. BMP action extends beyond the induction of cartilage and bone formation, to encompass pivotal roles in controlling tissue and organ homeostasis during development and adulthood. BMPs signal via plasma membrane type I and type II serine/threonine kinase receptors and intracellular SMAD transcriptional effectors. Exquisite temporospatial control of BMP/SMAD signalling and crosstalk with other cellular cues is achieved by a series of positive and negative regulators at each step in the BMP/SMAD pathway. The interaction of BMP ligand with its receptors is carefully controlled by a diverse set of secreted antagonists that bind BMPs and block their interaction with their cognate BMP receptors. Perturbations in this BMP/BMP antagonist balance are implicated in a range of developmental disorders and diseases, including cancer. Here, we provide an overview of the structure and function of secreted BMP antagonists, and summarize recent novel insights into their role in cancer progression and bone metastasis. Gremlin1 (GREM1) is a highly studied BMP antagonist, and we will focus on this molecule in particular and its role in cancer. The therapeutic potential of pharmacological inhibitors for secreted BMP antagonists for cancer and other human diseases will also be discussed.
Collapse
Affiliation(s)
- Grace M Todd
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Zhichun Gao
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | - Peter Ten Dijke
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
7
|
Jin C, Zhu X, Wu H, Wang Y, Hu X. Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells. J Biol Chem 2020; 295:6425-6446. [PMID: 32217690 DOI: 10.1074/jbc.ra119.012312] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Phosphoglycerate kinase 1 (PGK1) plays important roles in glycolysis, yet its forward reaction kinetics are unknown, and its role especially in regulating cancer cell glycolysis is unclear. Here, we developed an enzyme assay to measure the kinetic parameters of the PGK1-catalyzed forward reaction. The Km values for 1,3-bisphosphoglyceric acid (1,3-BPG, the forward reaction substrate) were 4.36 μm (yeast PGK1) and 6.86 μm (human PKG1). The Km values for 3-phosphoglycerate (3-PG, the reverse reaction substrate and a serine precursor) were 146 μm (yeast PGK1) and 186 μm (human PGK1). The V max of the forward reaction was about 3.5- and 5.8-fold higher than that of the reverse reaction for the human and yeast enzymes, respectively. Consistently, the intracellular steady-state concentrations of 3-PG were between 180 and 550 μm in cancer cells, providing a basis for glycolysis to shuttle 3-PG to the serine synthesis pathway. Using siRNA-mediated PGK1-specific knockdown in five cancer cell lines derived from different tissues, along with titration of PGK1 in a cell-free glycolysis system, we found that the perturbation of PGK1 had no effect or only marginal effects on the glucose consumption and lactate generation. The PGK1 knockdown increased the concentrations of fructose 1,6-bisphosphate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and 1,3-BPG in nearly equal proportions, controlled by the kinetic and thermodynamic states of glycolysis. We conclude that perturbation of PGK1 in cancer cells insignificantly affects the conversion of glucose to lactate in glycolysis.
Collapse
Affiliation(s)
- Chengmeng Jin
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xiaobing Zhu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hao Wu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yuqi Wang
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
8
|
Liu X, Wei X, Niu W, Wang D, Wang B, Zhuang H. Downregulation of FOXK2 is associated with poor prognosis in patients with gastric cancer. Mol Med Rep 2018; 18:4356-4364. [PMID: 30221666 PMCID: PMC6172389 DOI: 10.3892/mmr.2018.9466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/27/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX)K2 (FOXK2) is a member of the FOX transcription factor family. It has been suggested previously that FOXK2 is required to suppress tumor growth; however, the exact role of FOXK2 in gastric cancer remains to be elucidated. In the present study, the association between FOXK2 expression and the clinicopathological characteristics of patients with gastric cancer was investigated. The prognostic value of FOXK2 expression and the significance of clinicopathological parameters in the overall survival (OS) and progression-free survival of patients were also determined by survival analysis. To investigate the functional roles of FOXK2, it was downregulated in BGC-823 cells using small interfering (si)RNA, and upregulated using a FOXK2 plasmid. Colony formation, Cell Counting Kit-8 and cell proliferation analyses were conducted to examine the proliferation of gastric cancer cells. Transwell and wound-healing assays were performed to investigate the effect of FOXK2 expression on gastric cancer cell migration and invasion. The clinical data demonstrated that FOXK2 expression was reduced in high-grade gastric cancer tissues, and a low level of FOXK2 expression indicated a poor prognosis. The data obtained from the Human Protein Atlas revealed that patients with gastric cancer and a high level of FOXK2 expression had a longer OS time. The results of colony formation assays, Transwell and wound healing assays demonstrated that FOXK2 repressed the proliferation, invasion and migration of gastric cancer cells, respectively. The findings indicated that FOXK2 may serve as a promising therapeutic target in gastric cancer. Taken together, the findings of the present study demonstrated that FOXK2 functions as a tumor suppressor in gastric cancer; the loss of FOXK2 may induce the growth and invasion of gastric cancer cells.
Collapse
Affiliation(s)
- Xi Liu
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Xiaodong Wei
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Wei Niu
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300050, P.R. China
| | - Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|