1
|
Malkiely Y, Endeshaw G, Maler I, Elnekave E. Non-typhoidal Salmonella contamination of food sources from animal origin in Israel between 2007 and 2021. Prev Vet Med 2025; 239:106508. [PMID: 40081183 DOI: 10.1016/j.prevetmed.2025.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Non-typhoidal Salmonella (NTS) are one of the main causes of food poisoning, a major global threat for human health. Consumption of contaminated food products of animal origin contributes to majority of the NTS illness outbreaks. Poultry, an important protein source, is considered the main animal source for NTS. However, contamination with different serotypes of NTS may be attributed to various animal hosts. We aimed to determine the prevalence, trends, and potential risk factors for NTS contamination of food sources in Israel. A dataset including 192,340 test results for the detection of NTS contamination in food products in Israel between 2007 and 2021 was analyzed. Food samples were collected as part of routine testing and targeted programs for NTS detection from different facilities, such as food factories and slaughterhouses. The collected food samples included: non-thermally treated (raw) and mainly thermally treated ready-to-eat (RTE) products. Data were summarized and associations between NTS detection and different covariates were estimated using either: (i) Poisson regression model; or (ii) ꭕ2-tests. The odds ratio (OR) or prevalence ratio and 95 % confidence intervals (CI95 %) were calculated. The number of food products tested for NTS identification and further serotype classification has declined in recent years. However, the percentage of NTS positive results increased over time, reaching 18.11 % positive samples by 2021. The risk for NTS contamination was significantly higher in raw vs. RTE products: OR (CI95 %) = 290.60 (239.39-352.76), p < 0.001. The percentage of samples found positive for NTS in RTE products varied between sources, yet remained below 0.49 % for each source. However, in raw products, the NTS prevalence ranged between 1.05 % and 35.03 %, with food products from the chicken source significantly more positively associated with NTS contamination in comparison beef, fish, pig and turkey sources. Imported food, and slaughterhouses had a significantly higher prevalence of NTS contamination compare to factories food hygiene testing. With certain facilities, within each category, demonstrating significantly higher contamination compared to others. Moreover, the ten most common serotypes reported in human infections throughout this period were mostly found in chicken and turkey sources. The identification of certain sources and facilities/importers/slaughterhouses which may pose higher risk for NTS contamination was possible despite the declining resources invested in sampling and classification of NTS isolates in recent years. Therefore, our study further emphasizes the potential and importance of establishing a real-time surveillance for better tracing of NTS contaminations in food sources to protect public health.
Collapse
Affiliation(s)
- Yuval Malkiely
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Israel
| | - Gashaw Endeshaw
- Food hygiene laboratory, Kimron Veterinary Institute, Israel
| | - Ilana Maler
- Food hygiene laboratory, Kimron Veterinary Institute, Israel
| | - Ehud Elnekave
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
2
|
Sodagari HR, Shrestha RD, Agunos A, Gow SP, Varga C. Comparison of antimicrobial resistance among Salmonella enterica serovars isolated from Canadian turkey flocks, 2013-2021. Poult Sci 2023; 102:102655. [PMID: 37030258 PMCID: PMC10113892 DOI: 10.1016/j.psj.2023.102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) in Salmonella from turkeys has raised a food safety concern in Canada as certain serovars have been implicated in human salmonellosis outbreaks in recent years. While several studies evaluated AMR in broiler chickens in Canada, there are limited studies that assess AMR in turkey flocks. This study analyzed data collected between 2013 and 2021 by the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) farm turkey surveillance program to determine the prevalence of AMR and differences in resistance patterns among Salmonella serovars recovered from turkey flocks. Salmonella isolates were tested for susceptibility to 14 antimicrobials using a microbroth dilution method. Hierarchical clustering dendrograms were constructed to compare the individual AMR status of Salmonella serovars. Differences in the probability of resistance between Salmonella serovars were determined using generalized estimating equation logistic regression models to account for farm-level clustering. Of the 1,367 Salmonella isolates detected, 55.3% were resistant to at least one antimicrobial and 25.3% were multidrug resistant (MDR) (resistant to ≥3 antimicrobial classes). The Salmonella isolates exhibited high resistance to tetracycline (43.3%), streptomycin (47.2%), and sulfisoxazole (29.1%). The 3 most frequently occurring serovars were S. Uganda (22.9%), S. Hadar (13.5%), and S. Reading (12.0%). Streptomycin-sulfisoxazole-tetracycline (n = 204) was the most frequent MDR pattern identified. Heatmaps showed that S. Reading exhibited coresistance to the quinolone class antimicrobials, ciprofloxacin, and nalidixic acid; S. Heidelberg to gentamicin and sulfisoxazole; and S. Agona to ampicillin and ceftriaxone. Salmonella Hadar isolates had higher odds of resistance to tetracycline (OR: 152.1, 95% CI: 70.6-327.4) while the probability of being resistant to gentamicin and ampicillin was significantly higher in S. Senftenberg than in all the other serovars. Moreover, S. Uganda had the highest odds of being MDR (OR: 4.7, 95% CI: 3.7-6.1). The high resistance observed warrants a reassessment of the drivers for AMR, including AMU strategies and other production factors. Differences in AMR patterns highlight the need to implement serovar-specific mitigation strategies.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rima D Shrestha
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Agnes Agunos
- Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Sheryl P Gow
- Public Health Agency of Canada, Saskatoon, Saskatchewan, Canada
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Rincón-Gamboa SM, Poutou-Piñales RA, Carrascal-Camacho AK. Analysis of the assessment of antimicrobial susceptibility. Non-typhoid Salmonella in meat and meat products as model (systematic review). BMC Microbiol 2021; 21:223. [PMID: 34340654 PMCID: PMC8328484 DOI: 10.1186/s12866-021-02268-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The scientific publications of antimicrobial susceptibilities and resistance must be precise, with interpretations adjusted to the standard. In this frame, knowledge of antimicrobial resistance is fundamental in pathogenic microorganisms such as Salmonella spp., known for many annual deaths worldwide. The objective of this work was to compare the interpretation of standards, the concentrations, and the breakpoints, to study antimicrobial resistance in Non-Typhoidal Salmonella (NTS) isolated from beef, pork, and chicken meat, meat products, and propose additional considerations that improve the use and usefulness of published results. RESULTS After refining the search based on meeting the inclusion and exclusion criteria, 48 papers were selected. In 33 (68.8%) of them, the disc diffusion method was used, in 11 (22.9%) the MIC determination method, and in 4 (8.33%) were used both. In 24 (50%) of the articles, the selection of a different (correct) standard could have had an impact on the interpretation of antimicrobial susceptibility, which observed when considering three scenarios, i) comparison between the year of the isolation versus the implemented standard, ii) comparison between the year of submission versus implemented standard and iii) comparison between the year of publication versus implemented standard. CONCLUSIONS The most frequent scenario was the inadequate selection of standards, indicating that some studies had not ensured that applied standards kept in line with the date of isolation, date of publication and interpretation of susceptibilities. We proposed 2 years for standards use for resistance and multi-resistance interpretations. On the other hand, we invite researchers to publish their results in the shortest possible time, and editors and reviewers of scientific journals to prioritise these types of studies and verify the correspondence between the standard cited and the one used and the one to be taken into account.
Collapse
Affiliation(s)
- Sandra M Rincón-Gamboa
- Laboratorio de Microbiología de Alimentos. Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Laboratorio Biotecnología Molecular. Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Raúl A Poutou-Piñales
- Laboratorio Biotecnología Molecular. Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.
| | - Ana K Carrascal-Camacho
- Laboratorio de Microbiología de Alimentos. Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| |
Collapse
|
4
|
Rincón-Gamboa SM, Poutou-Piñales RA, Carrascal-Camacho AK. Antimicrobial Resistance of Non-Typhoid Salmonella in Meat and Meat Products. Foods 2021; 10:1731. [PMID: 34441509 PMCID: PMC8392175 DOI: 10.3390/foods10081731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica serovars are associated with numerous annual deaths worldwide and are responsible for a large number of foodborne diseases. Within this frame of reference, knowledge of antimicrobial susceptibility represents the fundamental approach of most Salmonella treatments. Therefore, scientific publications of antimicrobial susceptibilities and resistance must be precise, with interpretations adjusted to a particular standard. Hence, the three objectives in this study were: (i) to describe the frequency of antimicrobial-resistant isolates of Non-Typhoidal Salmonella (NTS) isolated from beef, pork, chicken meat, and other meat products; (ii) to describe the distribution of serovars and their multi-resistance to antibiotics for clinical use (veterinary and human) between 1996 and 2019; and (iii) to propose additional considerations that could improve the use and usefulness of the published results. Our results determined that the predominant isolates came from poultry. Enteritidis and Typhimurium were the most reported serovars by MIC (with both having the highest resistance to TET) while the lowest resistance was to CIP and CRO for Enteritidis and Typhimurium, respectively. The multi-resistance pattern AMP AMC CEP GEN KAN STR TET was the most frequently observed pattern by MIC in Montevideo and Seftenberg, while, for disc diffusion, the pattern AMP STR TET was the most frequent in the Bredeney serotype. In conclusion, researchers should carry out homogeneous sampling procedures, identify the types of the samples, use standard identification methods, and employ appropriate standards for antimicrobial susceptibility interpretation. Additionally, there is also a need for all WHO members to comply with the WHA 73.5 resolution. Our final recommendation is for all producers to reduce antibiotic prophylactic use.
Collapse
Affiliation(s)
- Sandra M. Rincón-Gamboa
- Laboratorio de Microbiología de Alimentos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110-23, Colombia; (S.M.R.-G.); (A.K.C.-C.)
- Laboratorio Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110-23, Colombia
| | - Raúl A. Poutou-Piñales
- Laboratorio Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110-23, Colombia
| | - Ana K. Carrascal-Camacho
- Laboratorio de Microbiología de Alimentos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110-23, Colombia; (S.M.R.-G.); (A.K.C.-C.)
| |
Collapse
|
5
|
Wang X, Biswas S, Paudyal N, Pan H, Li X, Fang W, Yue M. Antibiotic Resistance in Salmonella Typhimurium Isolates Recovered From the Food Chain Through National Antimicrobial Resistance Monitoring System Between 1996 and 2016. Front Microbiol 2019; 10:985. [PMID: 31134024 PMCID: PMC6514237 DOI: 10.3389/fmicb.2019.00985] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/18/2019] [Indexed: 11/23/2022] Open
Abstract
Salmonella is a major foodborne pathogen which causes widespread contamination and infection worldwide. Salmonella Typhimurium is one of the leading serovars responsible for human and animal salmonellosis, globally. The increasing rate of antibiotic resistance in Salmonella Typhimurium poses a significant global concern, and an improved understanding of the distribution of antibiotic resistance patterns in Salmonella Typhimurium is essential for choosing the suitable antibiotic for the treatment of infections. To evaluate the roles of animal and human in antibiotic resistance dissemination, this study aims to categorize 11,447 S. Typhimurium strains obtained across the food-chain, including food animals, retail meats and humans for 21 years in the United States by analyzing minimum inhibitory concentrations (MICs) values for 27 antibiotics. Random Forest Algorithm and Hierarchical Clustering statistics were used to group the strains according to their minimum inhibitory concentration values. Classification and Regression Tree analysis was used to identify the best classifier for human- and animal-populations’ isolates. We found the persistent population or multi-drug resistant strains of S. Typhimurium across the four time periods (1996∼2000, 2001∼2005, 2006∼2010, 2011∼2016). Importantly, we also detected that there was more diversity in the MIC patterns among S. Typhimurium strains isolated between 2011 and 2016, which suggests significant emergence of diversified multi-drug resistant strains. The most frequently observed (43%) antibiotic resistance patterns found in S. Typhimurium were tetra-resistant pattern ASSuT (ampicillin, streptomycin, sulfonamides, and tetracycline) and the penta-resistant pattern ACSSuT (ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline). Animals (mainly swine and bovine) are the major source for these two frequently found antibiotic resistance patterns. The occurrence of antibiotic resistant strains from humans and chicken is alarming. Strains were mostly susceptible to fluoroquinolones. Together, this study helped in understanding the expansion of dynamics of antibiotic resistance of S. Typhimurium and recommended fluoroquinolones as a possible treatment options against S. Typhimurium infection.
Collapse
Affiliation(s)
- Xuchu Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Silpak Biswas
- CATG Microbiology and Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Narayan Paudyal
- CATG Microbiology and Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hang Pan
- CATG Microbiology and Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoliang Li
- CATG Microbiology and Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Weihuan Fang
- CATG Microbiology and Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Min Yue
- CATG Microbiology and Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
6
|
Gad AH, Abo-Shama UH, Harclerode KK, Fakhr MK. Prevalence, Serotyping, Molecular Typing, and Antimicrobial Resistance of Salmonella Isolated From Conventional and Organic Retail Ground Poultry. Front Microbiol 2018; 9:2653. [PMID: 30455678 PMCID: PMC6230656 DOI: 10.3389/fmicb.2018.02653] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/17/2018] [Indexed: 01/23/2023] Open
Abstract
Ground poultry is marketed as a healthier alternative to ground beef despite the fact that poultry is a major source of foodborne Salmonella. The objectives of this study were to determine the prevalence of Salmonella in Oklahoma retail ground poultry and to characterize representative isolates by serotyping, antimicrobial resistance, PFGE patterns, and large plasmid profiling. A total of 199 retail ground poultry samples (150 ground turkey and 49 ground chicken) were investigated. The overall prevalence of Salmonella in ground poultry was 41% (82/199), and the incidence in conventional samples (47%, 66/141) was higher than in organic samples (27%, 16/58). The prevalence of Salmonella in organic ground chicken and organic ground turkey was 33% (3/9) and 26% (13/49), respectively. Twenty six Salmonella isolates (19 conventional and 7 organic) were chosen for further characterization. The following six serotypes and number of isolates per serotype were identified as follows: Tennessee, 8; Saintpaul, 4; Senftenberg, 4; Anatum, 4 (one was Anatum_var._15+); Ouakam, 3; and Enteritidis, 3. Resistance to 16 tested antimicrobials was as follows: gentamycin, 100% (26/26); ceftiofur, 100% (26/26); amoxicillin/clavulanic acid, 96% (25/26); streptomycin, 92% (24/26); kanamycin, 88% (23/26); ampicillin, 85% (22/26); cephalothin, 81% (21/26); tetracycline, 35% (9/26); sulfisoxazole, 27% (7/26); nalidixic acid, 15% (4/26); and cefoxitin, 15% (4/26). All isolates were susceptible to amikacin, chloramphenicol, ceftriaxone, and trimethoprim/sulfamethoxazole. All screened isolates were multidrug resistant (MDR) and showed resistance to 4-10 antimicrobials; isolates from organic sources showed resistance to 5-7 antimicrobials. PFGE was successful in clustering the Salmonella isolates into distinct clusters that each represented one serotype. PFGE was also used to investigate the presence of large plasmids using S1 nuclease digestion. A total of 8/26 (31%) Salmonella isolates contained a ∼100 Kb plasmid that was present in all Anatum and Ouakam isolates. In conclusion, the presence of multidrug resistant Salmonella with various serotypes, PFGE profiles, and large plasmids in ground poultry stresses the importance of seeking novel interventions to reduce the risk of this foodborne pathogen. Multidrug resistance (MDR) is considered a high additional risk and continued surveillance at the retail level could minimize the risk for the consumer.
Collapse
Affiliation(s)
- Ahmed H. Gad
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Usama H. Abo-Shama
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
- Microbiology and Immunology Department, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | | | - Mohamed K. Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
7
|
Yeh JC, Chen CL, Chiou CS, Lo DY, Cheng JC, Kuo HC. Comparison of prevalence, phenotype, and antimicrobial resistance of Salmonella serovars isolated from turkeys in Taiwan. Poult Sci 2018; 97:279-288. [PMID: 29077916 DOI: 10.3382/ps/pex293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/14/2017] [Indexed: 12/17/2022] Open
Abstract
Salmonella spp. is a foodborne pathogen that causes zoonotic disease worldwide. The aim of this study was to investigate the prevalence of antimicrobial resistance of Salmonella isolated from turkey farms in Taiwan. During the past 2 yr, 243 strains of Salmonella were isolated from 2,040 samples (11.9%) from turkey farms, including 32.5% (52/160) from the intestines of 12-day-old turkey poults, 14.2% (119/840) from feces collected from the turkey growing periods, and 6.9% (72/1,040) from finishing periods. S. Albany (35.0%, 85/243), S. Schwarzengrund (23.0%, 56/243), and S. Hadar (19.3%, 47/243) were the most common serovars on turkey farms. For these strains, a high frequency of resistance was observed against florfenicol (97.5%), oxytetracycline (89.3%), doxycycline (78.6%), colistin (77.8%), ampicillin (75.7%), amoxicillin (75.3%), trimethoprim-sulfamethoxazole (73.7%), chloramphenicol (69.1%), and nalidixic acid (67.9%). floR (63.8%), tet (A) (60.5%), blaPSE (57.6%), blaTEM (42.0%), blaCTX-M (34.2%), cmlA (34.2%), and tet (D) (29.2%) were the most common resistance genes found in this study. The int1 gene was identified in 72.4% (176/243) of Salmonella isolates in which the conserved region 3' of class 1 integrons also was amplified, whereas none had the int2 gene. This study demonstrates that imported and fattening turkeys could be a reservoir for Salmonella isolates resistant to multiple antimicrobials. These results also reinforce the need to develop strategies and implement specific control procedures to reduce the development of antimicrobial resistance.
Collapse
Affiliation(s)
- J-C Yeh
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - C-L Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - C-S Chiou
- Central Regional Laboratory, Centers for Disease Control, Taichung, Taiwan
| | - D-Y Lo
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - J-C Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - H-C Kuo
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
8
|
Pan H, Paudyal N, Li X, Fang W, Yue M. Multiple Food-Animal-Borne Route in Transmission of Antibiotic-Resistant Salmonella Newport to Humans. Front Microbiol 2018; 9:23. [PMID: 29410657 PMCID: PMC5787089 DOI: 10.3389/fmicb.2018.00023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
Characterization of transmission routes of Salmonella among various food-animal reservoirs and their antibiogram is crucial for appropriate intervention and medical treatment. Here, we analyzed 3728 Salmonella enterica serovar Newport (S. Newport) isolates collected from various food-animals, retail meats and humans in the United States between 1996 and 2015, based on their minimum inhibitory concentration (MIC) toward 27 antibiotics. Random Forest and Hierarchical Clustering statistic was used to group the isolates according to their MICs. Classification and Regression Tree (CART) analysis was used to identify the appropriate antibiotic and its cut-off value between human- and animal-population. Two distinct populations were revealed based on the MICs of individual strain by both methods, with the animal population having significantly higher MICs which correlates to antibiotic-resistance (AR) phenotype. Only ∼9.7% (267/2763) human isolates could be attributed to food-animal origins. Furthermore, the isolates of animal origin had less diverse antibiogram than human isolates (P < 0.001), suggesting multiple sources involved in human infections. CART identified trimethoprim-sulfamethoxazole to be the best classifier for differentiating the animal and human isolates. Additionally, two typical AR patterns, MDR-Amp and Tet-SDR dominant in bovine- or turkey-population, were identified, indicating that distinct food-animal sources could be involved in human infections. The AR analysis suggested fluoroquinolones (i.e., ciprofloxacin), but not extended-spectrum cephalosporins (i.e., ceftriaxone, cefoxitin), is the adaptive choice for empirical therapy. Antibiotic-resistant S. Newport from humans has multiple origins, with distinct food-animal-borne route contributing to a significant proportion of heterogeneous isolates.
Collapse
Affiliation(s)
- Hang Pan
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China
| | - Narayan Paudyal
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China
| | - Xiaoliang Li
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Weihuan Fang
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Min Yue
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
9
|
Serotype distribution of Salmonella isolates from turkey ground meat and meat parts. BIOMED RESEARCH INTERNATIONAL 2013; 2013:281591. [PMID: 23936785 PMCID: PMC3722973 DOI: 10.1155/2013/281591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/10/2013] [Accepted: 06/16/2013] [Indexed: 11/25/2022]
Abstract
The aim of the study was to find out the serotype distribution of 169 Salmonella colonies recovered from 112 Salmonella positive ground turkey (115 colonies) and 52 turkey meat parts (54 colonies). Out of 15 Salmonella serotypes: S. Corvallis, S. Kentucky, S. Bredeney, S. Virchow, S. Saintpaul and S. Agona were identified as the predominant serovars at the rates of 27%, 13%, 12%, 12%, 11%, and 10%, respectively. Other serotypes were below 6% of the total isolates. All S. Kentucky and S. Virchow and most of the S. Corvallis (39/46) and S. Heidelberg (9/9) serotypes were recovered from ground turkey. The results indicate that turkey ground meat and meat parts were contaminated with quite distinct Salmonella serotypes. This is the first study reporting Salmonella serotype distribution in turkey meat and S. Corvallis as predominant serotype in poultry meat in Turkey.
Collapse
|
10
|
Aslam M, Checkley S, Avery B, Chalmers G, Bohaychuk V, Gensler G, Reid-Smith R, Boerlin P. Phenotypic and genetic characterization of antimicrobial resistance in Salmonella serovars isolated from retail meats in Alberta, Canada. Food Microbiol 2012; 32:110-7. [DOI: 10.1016/j.fm.2012.04.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 03/05/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
|
11
|
Iossifidou EG, Abrahim A, Soultos ND, Triantafillou EA, Koidis PA. Antimicrobial resistance profiles in Salmonella spp. and Escherichia coli isolates from turkey samples in Northern Greece. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0299-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
12
|
Sequence analysis and characterization of a transferable hybrid plasmid encoding multidrug resistance and enabling zoonotic potential for extraintestinal Escherichia coli. Infect Immun 2010; 78:1931-42. [PMID: 20160015 DOI: 10.1128/iai.01174-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
ColV plasmids of extraintestinal pathogenic Escherichia coli (ExPEC) encode a variety of fitness and virulence factors and have long been associated with septicemia and avian colibacillosis. These plasmids are found significantly more often in ExPEC, including ExPEC associated with human neonatal meningitis and avian colibacillosis, than in commensal E. coli. Here we describe pAPEC-O103-ColBM, a hybrid RepFIIA/FIB plasmid harboring components of the ColV pathogenicity island and a multidrug resistance (MDR)-encoding island. This plasmid is mobilizable and confers the ability to cause septicemia in chickens, the ability to cause bacteremia resulting in meningitis in the rat model of human disease, and the ability to resist the killing effects of multiple antimicrobial agents and human serum. The results of a sequence analysis of this and other ColV plasmids supported previous findings which indicated that these plasmid types arose from a RepFIIA/FIB plasmid backbone on multiple occasions. Comparisons of pAPEC-O103-ColBM with other sequenced ColV and ColBM plasmids indicated that there is a core repertoire of virulence genes that might contribute to the ability of some ExPEC strains to cause high-level bacteremia and meningitis in a rat model. Examination of a neonatal meningitis E. coli (NMEC) population revealed that approximately 58% of the isolates examined harbored ColV-type plasmids and that 26% of these plasmids had genetic contents similar to that of pAPEC-O103-ColBM. The linkage of the ability to confer MDR and the ability contribute to multiple forms of human and animal disease on a single plasmid presents further challenges for preventing and treating ExPEC infections.
Collapse
|
13
|
Patchanee P, Zewde BM, Tadesse DA, Hoet A, Gebreyes WA. Characterization of Multidrug-ResistantSalmonella entericaSerovar Heidelberg Isolated from Humans and Animals. Foodborne Pathog Dis 2008; 5:839-51. [DOI: 10.1089/fpd.2008.0149] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Prapas Patchanee
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Bayleyegn Molla Zewde
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Daniel A. Tadesse
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Armando Hoet
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Wondwossen A. Gebreyes
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
Foley SL, Lynne AM. Food animal-associated Salmonella challenges: Pathogenicity and antimicrobial resistance1. J Anim Sci 2008; 86:E173-87. [PMID: 17878285 DOI: 10.2527/jas.2007-0447] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salmonellosis is a worldwide health problem; Salmonella infections are the second leading cause of bacterial foodborne illness in the United States. Approximately 95% of cases of human salmonellosis are associated with the consumption of contaminated products such as meat, poultry, eggs, milk, seafood, and fresh produce. Salmonella can cause a number of different disease syndromes including gastroenteritis, bacteremia, and typhoid fever, with the most common being gastroenteritis, which is often characterized by abdominal pain, nausea, vomiting, diarrhea, and headache. Typically the disease is self-limiting; however, with more severe manifestations such as bacteremia, antimicrobial therapy is often administered to treat the infection. Currently, there are over 2,500 identified serotypes of Salmonella. A smaller number of these serotypes are significantly associated with animal and human disease including Typhimurium, Enteritidis, Newport, Heidelberg, and Montevideo. Increasingly, isolates from these serotypes are being detected that demonstrate resistance to multiple antimicrobial agents, including third-generation cephalosporins, which are recommended for the treatment of severe infections. Many of the genes that encode resistance are located on transmissible elements such as plasmids that allow for potential transfer of resistance among strains. Plasmids are also known to harbor virulence factors that contribute to Salmonella pathogenicity. Several serotypes of medical importance, including Typhimurium, Enteritidis, Newport, Dublin, and Choleraesuis, are known to harbor virulence plasmids containing genes that code for fimbriae, serum resistance, and other factors. Additionally, many Salmonella contain pathogenicity islands scattered throughout their genomes that encode factors essential for bacterial adhesion, invasion, and infection. Salmonella have evolved several virulence and antimicrobial resistance mechanisms that allow for continued challenges to our public health infrastructure.
Collapse
Affiliation(s)
- S L Foley
- National Farm Medicine Center, Marshfield Clinic Research Foundation, Marshfield, WI 54449, USA.
| | | |
Collapse
|
15
|
Oloya J, Theis M, Doetkott D, Dyer N, Gibbs P, Khaitsa ML. Evaluation of Salmonella occurrence in domestic animals and humans in North Dakota (2000-2005). Foodborne Pathog Dis 2008; 4:551-63. [PMID: 18041964 DOI: 10.1089/fpd.2007.0014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES To evaluate the occurrence, serotypes, and antimicrobial susceptibility of Salmonellae from domestic animals and humans in North Dakota. MATERIALS AND METHODS Salmonellosis data (2000-2005) in humans (n = 286) and animals (n = 258) were extracted from the North Dakota Department of Health (NDDoH) and North Dakota State University Veterinary Diagnostic Laboratory (NDSU-VDL), and analyzed for temporal and spatial trends, and for other associations. Additionally, random samples of 35, 30, and 15 Salmonella isolates from NDSU-VDL, NDDoH, and North Dakota healthy cattle, respectively, were tested for antimicrobial susceptibility. RESULTS Most animal salmonellosis occurred in cattle (64.7%) sheep (12%), pigs (10.9%), and bison (0.4%) with Salmonella Typhimurium (45.7%) as the predominant serotype; Salmonella Arizona (10.9%) and Dublin (10.5%) were host specific in sheep and cattle respectively. In humans, Salmonella Typhimurium (32.5%) and Salmonella Newport (11.2%) were predominant. Season influenced human (p = 0.027) and animal (p = 0.014) salmonellosis with cases peaking in the spring and summer for animals and humans, respectively. Salmonella Typhimurium case reports in humans were not seasonally related to domestic animals (p = 0.001) nor cattle (p = 0.001). Over time, case reports increased in humans but decreased in domestic animals. Most serotypes from domestic animals were multidrug resistant compared to human isolates. CONCLUSIONS AND APPLICATIONS: Many Salmonella serotypes (17) were involved in North Dakota human and animal salmonellosis with case reports closely related in fall and winter, but not during warmer months. Spatial clustering of human and animal cases was similar. Antimicrobial resistance was widespread but lower in human isolates. These data are helpful in determining future policy, research, and control strategies for salmonellosis in humans and domestic animals.
Collapse
Affiliation(s)
- J Oloya
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, North Dakota
| | | | | | | | | | | |
Collapse
|
16
|
Antibacterial activity of Thonningia sanguinea against some multi-drug resistant strains of Salmonella enterica. Afr Health Sci 2007; 7:155-8. [PMID: 18052869 DOI: 10.5555/afhs.2007.7.3.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
BACKGROUND The emergence of strains of S.enterica with multiple drug resistance (MDR) is of great concern worldwide.The extracts of flowers of Thonningia sanguinea are used in traditional medicine in Ivory Coast to treat diarrhoeal diseases including salmonellosis. Previous studies had shown inhibition of the MDR strain Salmonella Enteritidis lysotype 6. OBJECTIVES The present study focused to investigate the effect of the extract of the flowers of Thonningia sanguinea on some clinical MDR strains of Salmonella namely S. Tyhpi, S. Typhimurium, S. Hadar and a sensitive strain (S. Enteritidis). METHODS The antimicrobial parameters were determined by double dilution with agar slant method. This method led us to determine MIC, IC50 and MBC. RESULTS The MDR strain of S.Typhimurium presented the highest MIC (2.5 mg/ml) whereas the other two MDR strains (S. Hadar, S. Typhi) and the sensitive one (S. Enteritidis) had the same MIC (1.25 mg/ml). The four strains presented the same MBC (2.5 mg/ml). The MDR strain of S. Typhi is the most susceptible strain to the aqueous extract of the flowers of Thonningia sanguinea according to The IC50 values. CONCLUSIONS The aqueous extract of Thonningia sanguinea can provide an alternative therapy for the treatment of salmonellosis, mainly for typhoid fever caused by MDR strains of S Typhi. The extract also inhibits S.Hadar a MDR emerging strain in Ivory Coast.
Collapse
|
17
|
Foley SL, Lynne AM, Nayak R. Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. J Anim Sci 2007; 86:E149-62. [PMID: 17911227 DOI: 10.2527/jas.2007-0464] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salmonellosis is the second leading cause of bacterial foodborne illness in the United States, and the great majority of these infections are associated with the consumption of products such as meat, poultry, eggs, milk, seafood, and fresh produce contaminated with Salmonella. The per capita consumption of meat and poultry in United States has increased significantly over the past century. This increase is especially evident with poultry products, where there has been a nearly 6-fold increase in chicken consumption and 17-fold increase in turkey consumption since 1909. The per capita consumption of pork has also increased over this time from 18.7 to 21.7 kg/yr. With this increase in meat and poultry consumption, the dynamics of animal production and consumer exposure have changed leading to new challenges in limiting salmonellosis. To meet the demands of consumers, more intensive agricultural practices have been adopted, which has likely changed the population characteristics of Salmonella present among poultry flocks and swine populations. In Salmonella isolated from swine in the United States, S. Typhimurium has replaced S. Choleraesuis as the predominant serovar in recent years. Among isolates from turkeys collected in 2004, serovars S. Senftenberg and S. Hadar were most common overall; however, S. Heidelberg was most common from clinical diagnostic sources, potentially indicating increased virulence. Salmonella Heidelberg was also the most commonly detected serovar among chicken isolates from clinically ill birds and Salmonella surveillance samples. Overall among the 10 serovars most commonly associated with human infections, 6 are also found in the top serovars of swine and poultry. These include S. Typhimurium, S. Enteritidis, S. Heidelberg, S. Montevideo, S. Saintpaul, and S. I 4,[5],12:i:-.
Collapse
Affiliation(s)
- S L Foley
- National Farm Medicine Center, Marshfield Clinic Research Foundation, Marshfield, WI 54449, USA.
| | | | | |
Collapse
|