1
|
Siddiqui N, Gupta AK, Dutta T. PhoP induces RyjB expression under acid stress in Escherichia coli. J Biochem 2021; 171:277-285. [PMID: 34967409 PMCID: PMC9077410 DOI: 10.1093/jb/mvab142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Bacterial small RNAs (sRNAs) play a pivotal role in post-transcriptional regulation of gene expression and participate in many physiological circuits. An ~80-nt-long RyjB was earlier identified as a novel sRNA, which appeared to be accumulated in all phases of growth in Escherichia coli. We have taken a comprehensive approach in the current study to understand the regulation of ryjB expression under normal and pH stress conditions. RpoS was not necessary for ryjB expression neither at normal condition nor under acid stress. Hfq also emerged to be unnecessary for RyjB accumulation. Interestingly, RyjB was detected as a novel acid stress induced sRNA. A DNA binding protein PhoP, a component of PhoP/Q regulon, was found to regulate ryjB expression at low pH, as the elimination of phoP allele in the chromosome exhibited a basal level of RyjB expression under acid stress. Ectopic expression of PhoP in ΔphoP cells restored the overabundance of RyjB in the cell. Overexpression of RyjB increased the abundance of sgcA transcripts, with which RyjB shares a 4-nt overlap. The current study increases our knowledge substantially regarding the regulation of ryjB expression in E. coli cell.
Collapse
Affiliation(s)
- Namra Siddiqui
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Amit Kumar Gupta
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Tanmay Dutta
- RNA Biology Laboratory, MS 731, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India. Tel.: +91-11-2659-1508, Fax: +91-11-2658-1102,
| |
Collapse
|
2
|
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in E. coli and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.
Collapse
Affiliation(s)
- Christoph Mayer
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
3
|
Oberholzer AE, Bumann M, Schneider P, Bächler C, Siebold C, Baumann U, Erni B. Crystal Structure of the Phosphoenolpyruvate-binding Enzyme I-Domain from the Thermoanaerobacter tengcongensis PEP: Sugar Phosphotransferase System (PTS). J Mol Biol 2005; 346:521-32. [PMID: 15670601 DOI: 10.1016/j.jmb.2004.11.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 11/29/2004] [Accepted: 11/30/2004] [Indexed: 11/21/2022]
Abstract
Enzyme I (EI), the first component of the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS), consists of an N-terminal protein-binding domain (EIN) and a C-terminal PEP-binding domain (EIC). EI transfers phosphate from PEP by double displacement via a histidine residue on EIN to the general phosphoryl carrier protein HPr. Here, we report the 1.82A crystal structure of the homodimeric EIC domain from Thermoanaerobacter tengcongensis, a saccharolytic eubacterium that grows optimally at 75 degrees C. EIC folds into a (betaalpha)(8) barrel with three large helical insertions between beta2/alpha2, beta3/alpha3 and beta6/alpha6. The large amphipathic dimer interface buries 3750A(2) of accessible surface area per monomer. A comparison with pyruvate phosphate dikinase (PPDK) reveals that the active-site residues in the empty PEP-binding site of EIC and in the liganded PEP-binding site of PPDK have almost identical conformations, pointing to a rigid structure of the active site. In silico models of EIC in complex with the Z and E-isomers of chloro-PEP provide a rational explanation for their difference as substrates and inhibitors of EI. The EIC domain exhibits 54% amino acid sequence identity with Escherichia coli and 60% with Bacillus subtilis EIC, has the same amino acid composition but contains additional salt-bridges and a more complex salt-bridge network than the homology model of E.coli EIC. The easy crystallization of EIC suggests that T.tengcongensis can serve as source for stable homologs of mesophilic proteins that are too labile for crystallization.
Collapse
Affiliation(s)
- Anselm Erich Oberholzer
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
4
|
Prakash S, Cooper G, Singhi S, Saier MH. The ion transporter superfamily. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1618:79-92. [PMID: 14643936 DOI: 10.1016/j.bbamem.2003.10.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We define a novel superfamily of secondary carriers specific for cationic and anionic compounds, which we have termed the ion transporter (IT) superfamily. Twelve recognized and functionally defined families constitute this superfamily. We provide statistical sequence analyses demonstrating that these families were in fact derived from a common ancestor. Further, we characterize the 12 families in terms of (1) the known substrates transported, (2) the modes of transport and energy coupling mechanisms used, (3) the family sizes (in numbers of sequenced protein members in the current NCBI database), (4) the organismal distributions of the members of each family, (5) the size ranges of the constituent proteins, (6) the predicted topologies of these proteins, and (7) the occurrence of non-homologous auxiliary proteins that may either facilitate or be required for transport. No member of the superfamily is known to function in a capacity other than transport. Proteins in several of the constituent families are shown to have arisen by tandem intragenic duplication events, but topological variation has resulted from a variety of dissimilar genetic fusion, splicing and insertional events. The evolutionary relationships between the members of each family are defined, leading to predictions of functionally relevant orthologous relationships. Some but not all of the families include functionally dissimilar paralogues that arose by early extragenic duplication events.
Collapse
Affiliation(s)
- Shraddha Prakash
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | |
Collapse
|
5
|
Abstract
The sgaTBA genes of Escherichia coli encode a putative 12-transmembrane alpha-helical segment (12 TMS) transporter, an enzyme IIB-like protein and an enzyme IIA-like protein of the phosphotransferase system (PTS), respectively. We show that all three proteins as well as the energy-coupling PTS proteins, enzyme I and HPr, are required for the anaerobic utilization and uptake of L-ascorbate in vivo and its phosphoenolpyruvate-dependent phosphorylation in vitro. The transporter exhibits an apparent K(m) for L-ascorbate of 9 micro M and is highly specific. The sgaTBA genes are regulated at the transcriptional level by the yjfQ gene product, as well as by Crp and Fnr. The yjfR gene product is essential for L-ascorbate utilization and probably encodes a cytoplasmic L-ascorbate 6-phosphate lactonase. We conclude that SgaT represents a novel prototypical enzyme IIC that functions with SgaA and SgaB to allow phosphoryl transfer from HPr(his-P) to L-ascorbate via the phosphoryl transfer pathway: [pathway: see text].
Collapse
Affiliation(s)
- Zhongge Zhang
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | | | | | |
Collapse
|
6
|
Greenberg DB, Stülke J, Saier MH. Domain analysis of transcriptional regulators bearing PTS regulatory domains. Res Microbiol 2002; 153:519-26. [PMID: 12437213 DOI: 10.1016/s0923-2508(02)01362-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multidomain transcriptional activators and antiterminators that include PTS regulatory domains (PRDs) were subjected to sequence analyses. All of these transcriptional regulators exhibit one or more N-terminal nucleic acid binding site(s) and two PRD regions. Additionally, we show that the activators contain C-terminal PTS IIB and IIA domains with fully conserved phosphorylation sites (cysteine and histidine, respectively). One activator, LevR has a different domain order than all other activators with a truncated IIA domain preceding (rather than following) the IIB domain, and it has a C-terminal PRD, rather than two adjacent PRDs. Our analyses suggest that the activators and antiterminators arose early, and that domain shuffling either within or between proteins has occurred rarely. The results allow us to propose an evolutionary pathway for the appearance of these transcription factors and to suggest functional significance for these domains and specific residues within them.
Collapse
Affiliation(s)
- David B Greenberg
- Division of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | |
Collapse
|
7
|
Yew WS, Gerlt JA. Utilization of L-ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons. J Bacteriol 2002; 184:302-6. [PMID: 11741871 PMCID: PMC134747 DOI: 10.1128/jb.184.1.302-306.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli K-12 can ferment L-ascorbate. The operon encoding catabolic enzymes in the utilization of L-ascorbate (ula) has been identified; this operon of previously unknown function had been designated the yif-sga operon. Three enzymes in the pathway that produce D-xylulose 5-phosphate have been functionally characterized: 3-keto-L-gulonate 6-phosphate decarboxylase (UlaD), L-xylulose 5-phosphate 3-epimerase (UlaE), and L-ribulose 5-phosphate 4-epimerase (UlaF). Several products of the yia-sgb operon were also functionally characterized, although the substrate and physiological function of the operon remain unknown: 2,3-diketo-L-gulonate reductase (YiaK), 3-keto-L-gulonate kinase (LyxK), 3-keto-L-gulonate 6-phosphate decarboxylase (SgbH), and L-ribulose 5-phosphate 4-epimerase (SgbE).
Collapse
Affiliation(s)
- Wen Shan Yew
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
8
|
Schmidt H, Zhang WL, Hemmrich U, Jelacic S, Brunder W, Tarr PI, Dobrindt U, Hacker J, Karch H. Identification and characterization of a novel genomic island integrated at selC in locus of enterocyte effacement-negative, Shiga toxin-producing Escherichia coli. Infect Immun 2001; 69:6863-73. [PMID: 11598060 PMCID: PMC100065 DOI: 10.1128/iai.69.11.6863-6873.2001] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2001] [Accepted: 08/15/2001] [Indexed: 11/20/2022] Open
Abstract
The selC tRNA gene is a common site for the insertion of pathogenicity islands in a variety of bacterial enteric pathogens. We demonstrate here that Escherichia coli that produces Shiga toxin 2d and does not harbor the locus of enterocyte effacement (LEE) contains, instead, a novel genomic island. In one representative strain (E. coli O91:H(-) strain 4797/97), this island is 33,014 bp long and, like LEE in E. coli O157:H7, is integrated 15 bp downstream of selC. This E. coli O91:H(-) island contains genes encoding a novel serine protease, termed EspI; an adherence-associated locus, similar to iha of E. coli O157:H7; an E. coli vitamin B12 receptor (BtuB); an AraC-type regulatory module; and four homologues of E. coli phosphotransferase proteins. The remaining sequence consists largely of complete and incomplete insertion sequences, prophage sequences, and an intact phage integrase gene that is located directly downstream of the chromosomal selC. Recombinant EspI demonstrates serine protease activity using pepsin A and human apolipoprotein A-I as substrates. We also detected Iha-reactive protein in outer membranes of a recombinant clone and 10 LEE-negative, Shiga toxin-producing E. coli (STEC) strains by immunoblot analysis. Using PCR analysis of various STEC, enteropathogenic E. coli, enterotoxigenic E. coli, enteroaggregative E. coli, uropathogenic E. coli, and enteroinvasive E. coli strains, we detected the iha homologue in 59 (62%) of 95 strains tested. In contrast, espI and btuB were present in only two (2%) and none of these strains, respectively. We conclude that the newly described island occurs exclusively in a subgroup of STEC strains that are eae negative and contain the variant stx(2d )gene.
Collapse
Affiliation(s)
- H Schmidt
- Institut für Hygiene und Mikrobiologie der Universität Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Saier MH. Phylogenetic approaches to the identification and characterization of protein families and superfamilies. MICROBIAL & COMPARATIVE GENOMICS 2001; 1:129-50. [PMID: 9689209 DOI: 10.1089/mcg.1996.1.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With the advent of megabase genome sequencing, the need for computational analyses increases exponentially. Sequencing errors must be corrected, encoded proteins must be identified, functions must be assigned to these proteins, and distant phylogenetic relationships must be recognized in order to maximize the yield of information obtainable from genome sequencing projects. Both the computer and the human brain have their limitations, but using them in combination, the biologist can vastly extend his or her analytic capabilities. Computer techniques can be used to estimate protein structure, function, biogenesis, and evolution. In this review, the application of available computer programs to several protein families, particularly transport, receptor, and transcriptional regulatory protein families, illustrate our current capabilities and limitations. Although some multidomain protein families are evolutionarily homogeneous, others have mosaic origins. Evidence concerning the nature and frequency of occurrence of domain shuffling, splicing, fusion, deletion, and duplication during evolution of specific protein families is evaluated. It is shown that specific families of enzymes, receptors, transport proteins, and transcriptional regulatory proteins share a common evolutionary origin, frequently diverging in function because of domain splicing and ligation. Some large families arose gradually over evolutionary time, whereas others developed suddenly, due to bursts of intragenic or intergenic (or both) duplication events occurring over relatively short periods of time. It is argued that energy coupling to transport was a late occurrence, superimposed on preexisting mechanisms of solute facilitation. It is also shown that several transport protein families have evolved independently of each other, employing different routes, at different times in evolutionary history, to give topologically similar transmembrane protein complexes.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla, USA
| |
Collapse
|
10
|
Reizer J, Paulsen IT, Reizer A, Titgemeyer F, Saier MH. Novel phosphotransferase system genes revealed by bacterial genome analysis: the complete complement of pts genes in mycoplasma genitalium. MICROBIAL & COMPARATIVE GENOMICS 2001; 1:151-64. [PMID: 9689210 DOI: 10.1089/mcg.1996.1.151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete sequence of the Mycoplasma genitalium chromosome has recently been determined. We here report analyses of the genes encoding proteins of the phosphoenolpyruvate:sugar phosphotransferase system, PTS. These genes encode (1) Enzyme I, (2) HPr, (3) a glucose-specific Enzyme IICBA, (4) an inactive glucose-specific Enzyme IIB, lacking the active site cysteyl residue, and (5) a fructose-specific Enzyme IIABC. Some of the unique features of these genes and their enzyme products are as follows. (1) Each of the genes is encoded within a distinct operon. (2) Both Enzyme I and HPr have basic isoelectric points. (3) The glucose-specific Enzyme IIC bears a centrally located, hydrophilic, 200 amino acyl residue insert that lacks sequence similarity with any protein in the current database. (4) The fructose-specific Enzyme II has a domain order (IIABC), different from those of previously characterized fructose permeases, and its IIA domain more closely resembles the IIANtr protein of Escherichia coli than other fructose-specific IIA domains. The potential significance of these novel features is discussed.
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California at San Diego, La Jolla, USA
| | | | | | | | | |
Collapse
|
11
|
Lalioui L, Le Bouguénec C. afa-8 Gene cluster is carried by a pathogenicity island inserted into the tRNA(Phe) of human and bovine pathogenic Escherichia coli isolates. Infect Immun 2001; 69:937-48. [PMID: 11159989 PMCID: PMC97973 DOI: 10.1128/iai.69.2.937-948.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently described a new afimbrial adhesin, AfaE-VIII, produced by animal strains associated with diarrhea and septicemia and by human isolates associated with extraintestinal infections. Here, we report that the afa-8 operon, encoding AfaE-VIII adhesin, from the human blood isolate Escherichia coli AL862 is carried by a 61-kb genomic region with characteristics typical of a pathogenicity island (PAI), including a size larger than 10 kb, the presence of an integrase-encoding gene, the insertion into a tRNA locus (pheR), and the presence of a small direct repeat at each extremity. Moreover, the G+C content of the afa-8 operon (46.4%) is lower than that of the E. coli K-12/MG1655 chromosome (50.8%). Within this PAI, designated PAI I(AL862), we identified open reading frames able to code for products similar to proteins involved in sugar utilization. Four probes spanning these sequences hybridized with 74.3% of pathogenic afa-8-positive E. coli strains isolated from humans and animals, 25% of human pathogenic afa-8-negative E. coli strains, and only 8% of fecal strains (P = 0.05), indicating that these sequences are strongly associated with the afa-8 operon and that this genetic association may define a PAI widely distributed among human and animal afa-8-positive strains. One of the distinctive features of this study is that E. coli AL862 also carries another afa-8-containing PAI (PAI II(AL862)), which appeared to be similar in size and genetic organization to PAI I(AL862) and was inserted into the pheV gene. We investigated the insertion sites of afa-8-containing PAI in human and bovine pathogenic E. coli strains and found that this PAI preferentially inserted into the pheV gene.
Collapse
Affiliation(s)
- L Lalioui
- Unité de Pathogénie Bactérienne des Muqueuses, Institut Pasteur, 75724 Paris Cedex 15, France
| | | |
Collapse
|
12
|
Saier MH. Families of transmembrane transporters selective for amino acids and their derivatives. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 8):1775-1795. [PMID: 10931885 DOI: 10.1099/00221287-146-8-1775] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Milton H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| |
Collapse
|
13
|
Magnet S, Courvalin P, Lambert T. Activation of the cryptic aac(6')-Iy aminoglycoside resistance gene of Salmonella by a chromosomal deletion generating a transcriptional fusion. J Bacteriol 1999; 181:6650-5. [PMID: 10542165 PMCID: PMC94128 DOI: 10.1128/jb.181.21.6650-6655.1999] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica subsp. enterica serotype Enteritidis BM4361 and BM4362 were isolated from the same patient. BM4361 was susceptible to aminoglycosides, whereas BM4362 was resistant to tobramycin owing to synthesis of a 6'-N-acetyltransferase type I [AAC(6')-I]. Comparative analysis of nucleotide sequences, pulsed-field gel electrophoresis patterns, and Southern hybridizations indicated that the chromosomal aac(6')-Iy genes for the enzyme in both strains were identical and that BM4362 derived from BM4361 following a ca. 60-kb deletion that occurred 1.5 kb upstream from the resistance gene. Northern hybridizations showed that aac(6')-Iy was silent in BM4361 and highly expressed in BM4362 due to a transcriptional fusion. Primer extension mapping identified the transcriptional start site for aac(6')-Iy in BM4362: 5 bp downstream from the promoter of the nmpC gene. Study of the distribution of aac(6')-Iy by PCR and Southern hybridization with a specific probe indicated that the gene, although not found in S. enterica subsp. arizonae, was specific for Salmonella. In this bacterial genus, aac(6')-Iy was located downstream from a cluster of seven open reading frames analogous to an Escherichia coli locus that encodes enzymes putatively involved in carbohydrate transport or metabolism. This genomic environment suggests a role in the catabolism of a specific sugar for AAC(6')-Iy in Salmonella.
Collapse
MESH Headings
- Acetyltransferases/chemistry
- Acetyltransferases/genetics
- Acetyltransferases/metabolism
- Aminoglycosides
- Anti-Bacterial Agents/pharmacology
- Blotting, Northern
- Blotting, Southern
- Cloning, Molecular
- DNA, Bacterial/analysis
- Drug Resistance, Microbial/genetics
- Electrophoresis, Gel, Pulsed-Field
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Humans
- Microbial Sensitivity Tests
- Molecular Sequence Data
- Polymerase Chain Reaction/methods
- Salmonella Infections/microbiology
- Salmonella enteritidis/drug effects
- Salmonella enteritidis/enzymology
- Salmonella enteritidis/genetics
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- S Magnet
- Unité des Agents Antibactériens, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
14
|
Paulsen IT, Sliwinski MK, Saier MH. Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. J Mol Biol 1998; 277:573-92. [PMID: 9533881 DOI: 10.1006/jmbi.1998.1609] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have conducted genome sequence analyses of seven prokaryotic microorganisms for which completely sequenced genomes are available (Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Bacillus subtilis, Mycoplasma genitalium, Synechocystis PCC6803 and Methanococcus jannaschii). We report the distribution of encoded known and putative polytopic cytoplasmic membrane transport proteins within these genomes. Transport systems for each organism were classified according to (1) putative membrane topology, (2) protein family, (3) bioenergetics, and (4) substrate specificities. The overall transport capabilities of each organism were thereby estimated. Probable function was assigned to greater than 90% of the putative transport proteins identified. The results show the following: (1) Numbers of transport systems in eubacteria are approximately proportional to genome size and correspond to 9.7 to 10.8% of the total encoded genes except for H. pylori (5.4%), Synechocystis (4.7%) and M. jannaschii (3.5%) which exhibit substantially lower proportions. (2) The distribution of topological types is similar in all seven organisms. (3) Transport systems belonging to 67 families were identified within the genomes of these organisms, and about half of these families are also found in eukaryotes. (4) 12% of these families are found exclusively in Gram-negative bacteria, but none is found exclusively in Gram-positive bacteria, cyanobacteria or archaea. (5) Two superfamilies, the ATP-binding cassette (ABC) and major facilitator (MF) superfamilies account for nearly 50% of all transporters in each organism, but the relative representation of these two transporter types varies over a tenfold range, depending on the organism. (6) Secondary, pmf-dependent carriers are 1.5 to threefold more prevalent than primary ATP-dependent carriers in E. coli, H. influenzae, H. pylori and B. subtilis while primary carriers are about twofold more prevalent in M. genitalium and Synechocystis. M. jannaschii exhibits a slight preference for secondary carriers. (7) Bioenergetics of transport generally correlate with the primary forms of energy generated via available metabolic pathways but ecological niche and substrate availability may also be determining factors. (8) All organisms display a similar range of transport specificities with quantitative differences presumably reflective of disparate ecological niches. (9) M. jannaschii and Synechocystis have a two to threefold increased proportion of transporters for inorganic ions with a concomitant decrease in transporters for organic compounds. (10) 6 to 18% of all transporters in these bacteria probably function as drug export systems showing that these systems are prevalent in non-pathogenic as well as pathogenic organisms. (11) All seven prokaryotes examined encode proteins homologous to known channel proteins, but none of the channel types identified occurs in all of these organisms. (12) The phosphoenolpyruvate:sugar phosphotransferase system is prevalent in the large genome organisms, E. coli and B. subtilis, and is present in the small genome organisms, H. influenzae and M. genitalium, but is totally lacking in H. pylori, Synechocystis and M. jannaschii. Details of the information summarized in this article are available on our web sites, and this information will be periodically updated and corrected as new sequence and biochemical data become available.
Collapse
Affiliation(s)
- I T Paulsen
- Department of Biology, University of California at San Diego, La Jolla, CA, 92093-0116, USA
| | | | | |
Collapse
|
15
|
Reizer J, Reizer A. A voyage along the bases: novel phosphotransferase genes revealed by in silico analyses of the Escherichia coli genome. Res Microbiol 1996; 147:458-71. [PMID: 9092011 DOI: 10.1016/0923-2508(96)84000-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J Reizer
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | |
Collapse
|