1
|
Zhao C, Wu Z, Yao Z, Zhang F, Zhao R, Cao X, Ling S, Jiang X. The tumorigenic effect of the high expression of ABRACL in glioma and its potential as a therapeutic target. Heliyon 2024; 10:e36597. [PMID: 39286126 PMCID: PMC11402703 DOI: 10.1016/j.heliyon.2024.e36597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Gliomas are the most common malignant intracranial tumors, with no effective treatments. Better understanding and identification of novel targets are urgently warranted. Actin-binding Rho activating C-terminal like (ABRACL) has been reported as an oncogene in several cancer types. However, the potential roles of ABRACL in the tumorigenesis of malignant glioma remain unknown. We discovered that ABRACL is highly expressed in different sub-types of gliomas in both CGGA and TCGA databases, which was further validated in glioblastoma cell lines and normal human astrocyte lines. RT-qPCR, Western blotting and immunohistochemistry demonstrated that ABRACL expression in glioma tissues was upregulated along with the increasing WHO grades. Further survival analysis of glioma patients also revealed that the overall survival of patients in the ABRACL high expression level group were significantly shorter than those in the low expression level group. Knockdown of ABRACL inhibited the proliferation, cell migration, invasion and cytodynamics behaviors in glioma cell lines via activating STAT3 signaling, which also induced apoptosis and cell cycle arrest. Conversely, overexpressing ABRACL promoted cell renewing and migration, enabled more flexible cell deformation, supporting ABRACL being a bona fide oncogene. Intracranial orthotopic xenograft experiment further confirmed that ABRACL downregulation significantly suppressed glioma growth. These results have demonstrated that the tumorigenic effect of ABRACL is partly mediated by STAT3, whose expression also correlates with clinical prognosis. ABRACL facilitates glioma malignancy phenotype through regulating the cytoskeleton by activating STAT3 pathway, suggesting that it may represent a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Chenhui Zhao
- Department of Neurosurgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Zeyu Wu
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Zhipeng Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Rui Zhao
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Xiaoxiang Cao
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Shizhang Ling
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Xiaochun Jiang
- Department of Neurosurgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| |
Collapse
|
2
|
Jayathirtha M, Jayaweera T, Whitham D, Petre BA, Neagu AN, Darie CC. Two-Dimensional Polyacrylamide Gel Electrophoresis Coupled with Nanoliquid Chromatography-Tandem Mass Spectrometry-Based Identification of Differentially Expressed Proteins and Tumorigenic Pathways in the MCF7 Breast Cancer Cell Line Transfected for Jumping Translocation Breakpoint Protein Overexpression. Int J Mol Sci 2023; 24:14714. [PMID: 37834160 PMCID: PMC10572688 DOI: 10.3390/ijms241914714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The identification of new genes/proteins involved in breast cancer (BC) occurrence is widely used to discover novel biomarkers and understand the molecular mechanisms of BC initiation and progression. The jumping translocation breakpoint (JTB) gene may act both as a tumor suppressor or oncogene in various types of tumors, including BC. Thus, the JTB protein could have the potential to be used as a biomarker in BC, but its neoplastic mechanisms still remain unknown or controversial. We previously analyzed the interacting partners of JTBhigh protein extracted from transfected MCF7 BC cell line using SDS-PAGE complemented with in-solution digestion, respectively. The previous results suggested the JTB contributed to the development of a more aggressive phenotype and behavior for the MCF7 BC cell line through synergistic upregulation of epithelial-mesenchymal transition (EMT), mitotic spindle, and fatty acid metabolism-related pathways. In this work, we aim to complement the previously reported JTB proteomics-based experiments by investigating differentially expressed proteins (DEPs) and tumorigenic pathways associated with JTB overexpression using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Statistically different gel spots were picked for protein digestion, followed by nanoliquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis. We identified six DEPs related to the JTBhigh condition vs. control that emphasize a pro-tumorigenic (PT) role. Twenty-one proteins, which are known to be usually overexpressed in cancer cells, emphasize an anti-tumorigenic (AT) role when low expression occurs. According to our previous results, proteins that have a PT role are mainly involved in the activation of the EMT process. Interestingly, JTB overexpression has been correlated here with a plethora of significant upregulated and downregulated proteins that sustain JTB tumor suppressive functions. Our present and previous results sustain the necessity of the complementary use of different proteomics-based methods (SDS-PAGE, 2D-PAGE, and in-solution digestion) followed by tandem mass spectrometry to avoid their limitations, with each method leading to the delineation of specific clusters of DEPs that may be merged for a better understanding of molecular pathways and neoplastic mechanisms related to the JTB's role in BC initiation and progression.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Brîndușa Alina Petre
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd., No. 11, 700506 Iasi, Romania
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd., No. 20A, 700505 Iasi, Romania;
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| |
Collapse
|
3
|
Troumpoukis D, Vasileiou AR, Siskos N, Stylianopoulou E, Ypsilantis P, Skavdis G, Grigoriou ME. Characterization of the Abracl-Expressing Cell Populations in the Embryonic Mammalian Telencephalon. Biomolecules 2023; 13:1337. [PMID: 37759737 PMCID: PMC10527439 DOI: 10.3390/biom13091337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Abracl (ABRA C-terminal-like protein) is a small, non-typical winged-helix protein that shares similarity with the C-terminal domain of the protein ABRA (Actin-Binding Rho-Activating protein). The role of Abracl in the cell remains elusive, although in cancer cells, it has been implicated in proliferation, migration and actin dynamics. Our previous study showed that Abracl mRNA was expressed in the dividing cells of the subpallial subventricular zone (SVZ), in the developing cortical plate (CP), and in the diencephalic SVZ; however, the molecular identities of the Abracl-expressing cell populations were not defined in that work. In this study, we use double immunofluorescence to characterize the expression of Abracl on sections of embryonic murine (E11.5-E18.5) and feline (E30/31-E33/34) telencephalon; to this end, we use a battery of well-known molecular markers of cycling (Ki67, Ascl1, Dlx2) or post-mitotic (Tubb3, Gad65/67, Lhx6 and Tbr1) cells. Our experiments show that Abracl protein has, compared to the mRNA, a broader expression domain, including, apart from proliferating cells of the subpallial and diencephalic SVZ, post-mitotic cells occupying the subpallial and pallial mantle (including the CP), as well as subpallial-derived migrating interneurons. Interestingly, in late embryonic developmental stages, Abracl was also transiently detected in major telencephalic fiber tracts.
Collapse
Affiliation(s)
- Dimitrios Troumpoukis
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece (E.S.)
| | - Andreas Rafail Vasileiou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece (E.S.)
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece;
| | - Nikistratos Siskos
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece (E.S.)
| | - Electra Stylianopoulou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece (E.S.)
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece;
| | - Petros Ypsilantis
- Laboratory of Experimental Surgery and Surgical Research, Department of Medicine, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece
| | - George Skavdis
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece;
| | - Maria E. Grigoriou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-681 00 Alexandroupolis, Greece (E.S.)
| |
Collapse
|
4
|
Balog S, Fujiwara R, Pan SQ, El-Baradie KB, Choi HY, Sinha S, Yang Q, Asahina K, Chen Y, Li M, Salomon M, Ng SWK, Tsukamoto H. Emergence of highly profibrotic and proinflammatory Lrat+Fbln2+ HSC subpopulation in alcoholic hepatitis. Hepatology 2023; 78:212-224. [PMID: 36181700 PMCID: PMC10977045 DOI: 10.1002/hep.32793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Relative roles of HSCs and portal fibroblasts in alcoholic hepatitis (AH) are unknown. We aimed to identify subpopulations of collagen type 1 alpha 1 (Col1a1)-expressing cells in a mouse AH model by single-cell RNA sequencing (scRNA-seq) and filtering the cells with the HSC (lecithin retinol acyltransferase [Lrat]) and portal fibroblast (Thy-1 cell surface antigen [Thy1] and fibulin 2 [Fbln2]) markers and vitamin A (VitA) storage. APPROACH AND RESULTS Col1a1-green fluorescent protein (GFP) mice underwent AH, CCl 4 , and bile duct ligation (BDL) procedures to have comparable F1-F2 liver fibrosis. Col1a1-expressing cells were sorted via FACS by VitA autofluorescence and GFP for single-cell RNA sequencing. In AH, approximately 80% of Lrat+Thy1-Fbln2- activated HSCs were VitA-depleted (vs. ~13% in BDL and CCl 4 ). Supervised clustering identified a subset co-expressing Lrat and Fbln2 (Lrat+Fbln2+), which expanded 44-fold, 17-fold, and 1.3-fold in AH, BDL, and CCl 4 . Lrat+Fbln2+ cells had 3-15-times inductions of profibrotic, myofibroblastic, and immunoregulatory genes versus Lrat+Fbln2- cells, but 2-4-times repressed HSC-selective genes. AH activated HSCs had up-regulated inflammatory (chemokine [C-X-C motif] ligand 2 [Cxcl2], chemokine [C-C motif] ligand 2), antimicrobial (Il-33, Zc3h12a), and antigen presentation (H2-Q6, H2-T23) genes versus BDL and CCl 4 . Computational deconvolution of AH versus normal human bulk-liver RNA-sequencing data supported an expansion of LRAT+FBLN2+ cells in AH; AH patient liver immunohistochemistry showed FBLN2 staining along fibrotic septa enriched with LRAT+ cells; and in situ hybridization confirmed co-expression of FBLN2 with CXCL2 and/or human leukocyte antigen E in patient AH. Finally, HSC tracing in Lrat-Cre;Rosa26mTmG mice detected GFP+FBLN2+ cells in AH. CONCLUSION A highly profibrotic, inflammatory, and immunoregulatory Lrat+Fbln2+ subpopulation emerges from HSCs in AH and may contribute to the inflammatory and immunoreactive nature of AH.
Collapse
Affiliation(s)
- Steven Balog
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Reika Fujiwara
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie Q. Pan
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Khairat B. El-Baradie
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Hye Yeon Choi
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Sonal Sinha
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Qihong Yang
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Kinji Asahina
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Central Research Laboratory, Shiga University of Medical Sciences, Seta Tsukinowa-cho Otsu, Shiga, Japan
| | - Yibu Chen
- USC Libraries Bioinformatic Services of the University of Southern California, Los Angeles, California, USA
| | - Meng Li
- USC Libraries Bioinformatic Services of the University of Southern California, Los Angeles, California, USA
| | - Matthew Salomon
- Department Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Stanley W.-K. Ng
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- University of Michigan, Ann Arbor, Michigan, USA
- Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
5
|
Liu B, Guan Y, Wang M, Han Y, Wang W, Wang Y, Wu P. ABRACL as a potential prognostic biomarker and correlates with immune infiltration in low-grade gliomas. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
6
|
Li J, Chen H. Actin-binding Rho activating C-terminal like (ABRACL) transcriptionally regulated by MYB proto-oncogene like 2 (MYBL2) promotes the proliferation, invasion, migration and epithelial-mesenchymal transition of breast cancer cells. Bioengineered 2022; 13:9019-9031. [PMID: 35341461 PMCID: PMC9162028 DOI: 10.1080/21655979.2022.2056821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the most common malignant tumor in females with high incidence and mortality. Actin-binding Rho activating C-terminal like (ABRACL) was highly expressed in several cancers. We aimed to investigate the function and mechanism of ABRACL in breast cancer. In this study, biological information analysis predicted the expression of ABRACL and MYB proto-oncogene-like 2 (MYBL2) in breast cancer tissues and their possible relationship. With the application of RT-qPCR and western blot, the mRNA and protein expression of ABRACL and MYBL2 in breast cancer cell lines were assessed. After ABRACL interference, an assessment of cell proliferation was carried out using cell counting kit (CCK)-8, colony formation, and western blot. The invasive and migratory abilities of cells were determined by transwell and wound healing assays. The epithelial-mesenchymal transition (EMT) process was assayed utilizing western blot. The relationship between ABRACL and MYBL2 was confirmed by luciferase reporter assay and chromatin immunoprecipitation (ChIP). The above experiments were done again after MYBL2 overexpression in breast cancer cells with ABRACL deletion. Results revealed that ABRACL and MYBL2 were highly expressed in breast cancer tissues and cells. ABRACL knockdown suppressed the proliferation, invasion, migration, and EMT of breast cancer cells. MYBL2 transcriptionally activated ABRACL. Besides, MYBL2 overexpression reversed the effects of ABRACL knockdown on cell malignant biological behaviors. To conclude, ABRACL could be transcriptionally regulated by MYBL2 to promote cell malignant biological behaviors in breast cancer cells, implying the potential of ABRACL being a promising target for the improvement of breast cancer therapy.
Collapse
Affiliation(s)
- Jie Li
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Chen
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
7
|
Baker LA, Momen M, McNally R, Berres ME, Binversie EE, Sample SJ, Muir P. Biologically Enhanced Genome-Wide Association Study Provides Further Evidence for Candidate Loci and Discovers Novel Loci That Influence Risk of Anterior Cruciate Ligament Rupture in a Dog Model. Front Genet 2021; 12:593515. [PMID: 33763109 PMCID: PMC7982834 DOI: 10.3389/fgene.2021.593515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/01/2021] [Indexed: 11/20/2022] Open
Abstract
Anterior cruciate ligament (ACL) rupture is a common condition that disproportionately affects young people, 50% of whom will develop knee osteoarthritis (OA) within 10 years of rupture. ACL rupture exhibits both hereditary and environmental risk factors, but the genetic basis of the disease remains unexplained. Spontaneous ACL rupture in the dog has a similar disease presentation and progression, making it a valuable genomic model for ACL rupture. We leveraged the dog model with Bayesian mixture model (BMM) analysis (BayesRC) to identify novel and relevant genetic variants associated with ACL rupture. We performed RNA sequencing of ACL and synovial tissue and assigned single nucleotide polymorphisms (SNPs) within differentially expressed genes to biological prior classes. SNPs with the largest effects were on chromosomes 3, 5, 7, 9, and 24. Selection signature analysis identified several regions under selection in ACL rupture cases compared to controls. These selection signatures overlapped with genome-wide associations with ACL rupture as well as morphological traits. Notable findings include differentially expressed ACSF3 with MC1R (coat color) and an association on chromosome 7 that overlaps the boundaries of SMAD2 (weight and body size). Smaller effect associations were within or near genes associated with regulation of the actin cytoskeleton and the extracellular matrix, including several collagen genes. The results of the current analysis are consistent with previous work published by our laboratory and others, and also highlight new genes in biological pathways that have not previously been associated with ACL rupture. The genetic associations identified in this study mirror those found in human beings, which lays the groundwork for development of disease-modifying therapies for both species.
Collapse
Affiliation(s)
- Lauren A Baker
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mehdi Momen
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Rachel McNally
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark E Berres
- Bioinformatics Resource Center, Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Emily E Binversie
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Susannah J Sample
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Peter Muir
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
8
|
miR-145-5p Inhibits the Proliferation, Migration, and Invasion of Esophageal Carcinoma Cells by Targeting ABRACL. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6692544. [PMID: 33728339 PMCID: PMC7937467 DOI: 10.1155/2021/6692544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/31/2022]
Abstract
Objective The study is aimed at investigating the regulatory relationship between miR-145-5p and ABRACL, and has tried at clarifying the mechanisms underlying the proliferation, migration, and invasion of esophageal carcinoma (EC) cells. Methods Gene expression data related to EC were accessed from TCGA database, and the “edgeR” package was used to screen differentially expressed genes. TargetScan, miRDB, and miRTarBase databases were used to predict potential targets for the target miRNA miR-145-5p. qRT-PCR and Western blot were performed to assess the expression of miR-145-5p and ABRACL in EC cells. Dual-luciferase reporter assay was performed to validate the targeting relationship between miR-145-5p and ABRACL. Functional experiments including CCK-8 assay, Transwell migration, and invasion assays were used to detect the proliferation, migration, and invasion of EC cells. Results The expression of miR-145-5p was significantly decreased in EC, while ABRACL was remarkably increased. In addition, there was a negative correlation identified between miR-145-5p and ABRACL mRNA. Overexpressing miR-145-5p was able to suppress cell proliferation, migration, and invasion, whereas silencing miR-145-5p posed an opposite effect. In the meantime, ABRACL was identified as a direct target of miR-145-5p by dual-luciferase reporter assay. Furthermore, miR-145-5p could inhibit the expression of ABRACL, in turn inhibiting the proliferation, migration, and invasion of EC cells. Conclusion miR-145-5p functions on the proliferation, migration, and invasion of EC cells via targeting ABRACL, and it may be a novel therapeutic target in EC treatment.
Collapse
|
9
|
Hsiao BY, Chen CH, Chi HY, Yen PR, Yu YZ, Lin CH, Pang TL, Lin WC, Li ML, Yeh YC, Chou TY, Chen MY. Human Costars Family Protein ABRACL Modulates Actin Dynamics and Cell Migration and Associates with Tumorigenic Growth. Int J Mol Sci 2021; 22:ijms22042037. [PMID: 33670794 PMCID: PMC7922284 DOI: 10.3390/ijms22042037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
Regulation of cellular actin dynamics is pivotal in driving cell motility. During cancer development, cells migrate to invade and spread; therefore, dysregulation of actin regulators is often associated with cancer progression. Here we report the role of ABRACL, a human homolog of the Dictyostelium actin regulator Costars, in migration and tumorigenic growth of cancer cells. We found a correlation between ABRACL expression and the migratory ability of cancer cells. Cell staining revealed the colocalization of ABRACL and F-actin signals at the leading edge of migrating cells. Analysis of the relative F-/G-actin contents in cells lacking or overexpressing ABRACL suggested that ABRACL promotes cellular actin distribution to the polymerized fraction. Physical interaction between ABRACL and cofilin was supported by immunofluorescence staining and proximity ligation. Additionally, ABRACL hindered cofilin-simulated pyrene F-actin fluorescence decay in vitro, indicating a functional interplay. Lastly, analysis on a colorectal cancer cohort demonstrated that high ABRACL expression was associated with distant metastasis, and further exploration showed that depletion of ABRACL expression in colon cancer cells resulted in reduced cell proliferation and tumorigenic growth. Together, results suggest that ABRACL modulates actin dynamics through its interaction with cofilin and thereby regulates cancer cell migration and participates in cancer pathogenesis.
Collapse
Affiliation(s)
- Bo-Yuan Hsiao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Chia-Hsin Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Ho-Yi Chi
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Pei-Ru Yen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Ying-Zhen Yu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Chia-Hsin Lin
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Te-Ling Pang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Wei-Chi Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Min-Lun Li
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Teh-Ying Chou
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Mei-Yu Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-(02)-2826-7269
| |
Collapse
|
10
|
EZH2 knockdown in tamoxifen-resistant MCF-7 cells unravels novel targets for regaining sensitivity towards tamoxifen. Breast Cancer 2020; 28:355-367. [PMID: 32990923 DOI: 10.1007/s12282-020-01166-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Acquired resistance to drug involves multilayered genetic and epigenetic regulation. Inhibition of EZH2 has proven to reverse the tamoxifen resistance back to the sensitive state in breast cancer. However, the molecular players involved in EZH2-mediated effects on tamoxifen-resistant MCF-7 cells are unknown. This study was conducted to understand the global change in proteome profile of tamoxifen-resistant MCF-7 breast cancer cells upon EZH2 knockdown. METHODS Tamoxifen resistance MCF-7 breast cancer cells were established using increasing concentrations of 4-hydroxy tamoxifen. Using label free proteomics approach, we studied the alteration in total proteome in resistant cells as well as cells transfected with siEZH2 in comparison to sensitive and cells transfected with non-targeting siRNA. RESULTS Here, we report list of proteins that were previously not recognized for their role in tamoxifen resistance and hold a close association with breast cancer patient survival. Proteins Annexin A2, CD44, nucleosome assembly protein 1, and lamin A/C were among the most upregulated protein in tamoxifen-resistant cells that were found to be abrogated upon EZH2 knockdown. The study suggests the involvement for various proteins in acquiring resistance towards tamoxifen and anticipates further research for investigating their therapeutic potentials. CONCLUSION Overall, we propose that targeting EZH2 or the molecules down the cascade might be helpful in reacquiring sensitivity to tamoxifen in breast cancer.
Collapse
|