1
|
Montgomery H. Learning from living: chance, curiosity and colleagues. Exp Physiol 2025; 110:525-528. [PMID: 39703991 PMCID: PMC11963892 DOI: 10.1113/ep092460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Affiliation(s)
- Hugh Montgomery
- Centre for Human Health and PerformanceUniversity College LondonLondonUK
| |
Collapse
|
2
|
Dautova A, Khazhieva E, Isaeva E, Khabibulinna I, Shamratova V. Influence of motor activity and polymorphism I/D of ACE on the affinity of oxygen for hemoglobin. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224801020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The influence of rs4646994 polymorphism of the ACE gene on the affinity of oxygen for hemoglobin among young men with different levels of physical activity has been studied. 245 young men aged 20-22 years were included in the study. All young men were divided into three groups depending on their motor activity: low (LMA), average (AMA) and high (HMA). SatO2, pO2, pCO2, p50 and HbO2 were analyzed in capillary blood of all examined young men. It was found out that I/I genotype of the ACE gene is associated with a decrease in the affinity of oxygen for hemoglobin both in LMA (p=0.022) and in HMA (p=0.000096). The intensification of physical activity among I/D and D/D genotypes is accompanied by an increase in the level of hemoglobin oxygenation in blood, while the I/I genotype with part of HbO2 does not change depending on motor activity. These features can be explained by the shift of the oxygen dissociation curve to the left among young men with the *D allele genotype, with an increase in physical activity. On the contrary, the I/I genotype of the ACE gene have efficient oxygen extraction to tissues, regardless of the level of motor activity compared to the D/D genotype.
Collapse
|
3
|
Naureen Z, Perrone M, Paolacci S, Maltese PE, Dhuli K, Kurti D, Dautaj A, Miotto R, Casadei A, Fioretti B, Beccari T, Romeo F, Bertelli M. Genetic test for the personalization of sport training. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020012. [PMID: 33170162 PMCID: PMC8023127 DOI: 10.23750/abm.v91i13-s.10593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 11/23/2022]
Abstract
Genetic variants may contribute to confer elite athlete status. However, this does not mean that a person with favourable genetic traits would become a champion because multiple genetic interactions and epigenetic contributions coupled with confounding environmental factors shape the overall phenotype. This opens up a new area in sports genetics with respect to commercial genetic testing. The analysis of genetic polymorphisms linked to sport performance would provide insights into the potential of becoming an elite endurance or power performer. This mini-review aims to highlight genetic interactions that are associated with performance phenotypes and their potentials to be used as markers for talent identification and trainability.
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman.
| | - Marco Perrone
- Division of Cardiology, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| | - Francesco Romeo
- Division of Cardiology, University of Rome Tor Vergata, Rome, Italy.
| | - Matteo Bertelli
- MAGI'S LAB, Rovereto (TN), Italy; EBTNA-LAB, Rovereto (TN), Italy; MAGI EUREGIO, Bolzano, Italy.
| |
Collapse
|
4
|
Effects of 8 weeks of moderate-intensity resistance training on muscle changes in postmenopausal women with different angiotensin-converting enzyme insertion/deletion polymorphisms of interest. Menopause 2020; 26:899-905. [PMID: 31124915 DOI: 10.1097/gme.0000000000001364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The aim of the study was to explore the association between angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism and muscle adaptations to moderate-intensity resistance training in postmenopausal women. METHODS Forty healthy postmenopausal Chinese women (aged 53-66 years) were recruited and grouped by ACE I/D polymorphism (the homozygous deletion genotype [DD], n = 12; the I allele carriers [II/ID], n = 28). All participants performed an 8-week full-body resistance training program at moderate intensity with 15-repetition maximum. Upper- and lower-limb muscle mass, grip and back strength, anatomical cross-sectional area of the rectus femoris (ACSARF), isokinetic knee extension strength (MVCKE) and knee flexion strength were measured before and after training. RESULTS Our results showed significant genotype × time interaction in ACSARF and MVCKE (P = 0.007 and P = 0.03, respectively) with the DD group having greater changes in corresponding parameters than the I-allele carriers (P = 0.012 and P = 0.018, respectively). Multivariate linear regression results showed that the ACE DD genotype was positively related to the grip strength adaptation (r = 0.48, P = 0.05). CONCLUSIONS This study improves our understanding of the association between the ACE I/D polymorphism and muscular responses to moderate intensity resistance training among postmenopausal women and revealed that the DD genotype has predominant adaptations in grip strength, rectus femoris size, and knee extensor strength.
Collapse
|
5
|
The influence of angiotensin-converting enzyme gene ID polymorphism on human physical fitness performance in European and other populations. SPORT SCIENCES FOR HEALTH 2017. [DOI: 10.1007/s11332-016-0340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Shader RI. Forgotten Influences and Reflections on Exercise and on the End of the Year 2017. Clin Ther 2017; 39:2331-2336. [PMID: 29180060 DOI: 10.1016/j.clinthera.2017.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
|
7
|
Avellanas Chavala ML. A journey between high altitude hypoxia and critical patient hypoxia: What can it teach us about compression and the management of critical disease? Med Intensiva 2017; 42:380-390. [PMID: 28919307 DOI: 10.1016/j.medin.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/15/2017] [Indexed: 01/02/2023]
Abstract
High altitude sickness (hypobaric hypoxia) is a form of cellular hypoxia similar to that suffered by critically ill patients. The study of mountaineers exposed to extreme hypoxia offers the advantage of involving a relatively homogeneous and healthy population compared to those typically found in Intensive Care Units (ICUs), which are heterogeneous and generally less healthy. Knowledge of altitude physiology and pathology allows us to understanding how hypoxia affects critical patients. Comparable changes in mitochondrial biogenesis between both groups may reflect similar adaptive responses and suggest therapeutic interventions based on the protection or stimulation of such mitochondrial biogenesis. Predominance of the homozygous insertion (II) allele of the angiotensin-converting enzyme gene is present in both individuals who perform successful ascensions without oxygen above 8000 m and in critical patients who overcome certain disease conditions.
Collapse
|
8
|
Rees T, Hardy L, Güllich A, Abernethy B, Côté J, Woodman T, Montgomery H, Laing S, Warr C. The Great British Medalists Project: A Review of Current Knowledge on the Development of the World's Best Sporting Talent. Sports Med 2016; 46:1041-58. [PMID: 26842017 PMCID: PMC4963454 DOI: 10.1007/s40279-016-0476-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The literature base regarding the development of sporting talent is extensive, and includes empirical articles, reviews, position papers, academic books, governing body documents, popular books, unpublished theses and anecdotal evidence, and contains numerous models of talent development. With such a varied body of work, the task for researchers, practitioners and policy makers of generating a clear understanding of what is known and what is thought to be true regarding the development of sporting talent is particularly challenging. Drawing on a wide array of expertise, we address this challenge by avoiding adherence to any specific model or area and by providing a reasoned review across three key overarching topics: (a) the performer; (b) the environment; and (c) practice and training. Within each topic sub-section, we review and calibrate evidence by performance level of the samples. We then conclude each sub-section with a brief summary, a rating of the quality of evidence, a recommendation for practice and suggestions for future research. These serve to highlight both our current level of understanding and our level of confidence in providing practice recommendations, but also point to a need for future studies that could offer evidence regarding the complex interactions that almost certainly exist across domains.
Collapse
Affiliation(s)
- Tim Rees
- Department of Sport and Physical Activity, Faculty of Management, Bournemouth University, Dorset House, Talbot Campus, Fern Barrow, Poole, BH12 5BB, UK.
| | - Lew Hardy
- Sport, Health and Exercise Sciences, Bangor University, George Building, Bangor, Gwynedd, LL57 2PZ, UK
| | - Arne Güllich
- Department of Sport Science, University of Kaiserslautern, Erwin Schrödinger Street, 67663, Kaiserslautern, Germany
| | - Bruce Abernethy
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioral Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jean Côté
- School of Kinesiology and Health Studies, SKHS Building 28 Division Street, Queen's University, Kingston, ON, K7L 3N, Canada
| | - Tim Woodman
- Sport, Health and Exercise Sciences, Bangor University, George Building, Bangor, Gwynedd, LL57 2PZ, UK
| | - Hugh Montgomery
- School of Life and Medical Sciences, University College London, Rockefeller Building, 20, University Street, London, WC1E 6DE, UK
| | - Stewart Laing
- UK Sport, 21 Bloomsbury Street, London, WC1B 3HF, UK
| | - Chelsea Warr
- UK Sport, 21 Bloomsbury Street, London, WC1B 3HF, UK
| |
Collapse
|
9
|
Dhamrait SS, Maubaret C, Pedersen-Bjergaard U, Brull DJ, Gohlke P, Payne JR, World M, Thorsteinsson B, Humphries SE, Montgomery HE. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies. Bioessays 2016; 38 Suppl 1:S107-18. [DOI: 10.1002/bies.201670909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/11/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Sukhbir S. Dhamrait
- Centre for Cardiovascular Genetics, BHF Laboratories; University College London; London UK
- Department of Cardiology; Western Sussex Hospitals NHS Trust; West Sussex UK
| | - Cecilia Maubaret
- Centre INSERM U897-Epidemiologie-Biostatistique; Bordeaux France
| | - Ulrik Pedersen-Bjergaard
- Department of Cardiology, Nephrology and Endocrinology; Hillerød Hospital; Hillerød Denmark
- Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - David J. Brull
- Centre for Cardiovascular Genetics, BHF Laboratories; University College London; London UK
- Department of Cardiology; The Whittington Hospital NHS Trust; London UK
| | - Peter Gohlke
- Institute of Experimental and Clinical Pharmacology; University Hospital of Schleswig-Holstein; Kiel Germany
| | - John R. Payne
- Centre for Cardiovascular Genetics, BHF Laboratories; University College London; London UK
- Scottish National Advanced Heart Failure Service; Golden Jubilee National Hospital; Clydebank UK
| | - Michael World
- Royal Centre for Defence Medicine; Queen Elizabeth Hospital; Birmingham UK
| | - Birger Thorsteinsson
- Department of Cardiology, Nephrology and Endocrinology; Hillerød Hospital; Hillerød Denmark
- Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - Steve E. Humphries
- Centre for Cardiovascular Genetics, BHF Laboratories; University College London; London UK
| | - Hugh E. Montgomery
- UCL and National Centre for Sport, Exercise & Health; University College London; London UK
- UCL Institute for Human Health and Performance; University College London; London UK
| |
Collapse
|
10
|
Hennis PJ, O'Doherty AF, Levett DZH, Grocott MPW, Montgomery HM. Genetic factors associated with exercise performance in atmospheric hypoxia. Sports Med 2016; 45:745-61. [PMID: 25682119 PMCID: PMC4544548 DOI: 10.1007/s40279-015-0309-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background and Objective ‘Natural selection’ has been shown to have enriched the genomes of high-altitude native populations with genetic variants of advantage in this hostile hypoxic environment. In lowlanders who ascend to altitude, genetic factors may also contribute to the substantial interindividual variation in exercise performance noted at altitude. We performed a systematic literature review to identify genetic variants of possible influence on human hypoxic exercise performance, commenting on the strength of any identified associations. Criteria for considering studies for this review All studies of the association of genetic factors with human hypoxic exercise performance, whether at sea level using ‘nitrogen dilution of oxygen’ (normobaric hypoxia), or at altitude or in low-pressure chambers (field or chamber hypobaric hypoxia, respectively) were sought for review. Search strategy for identification of studies Two electronic databases were searched (Ovid MEDLINE, Embase) up to 31 January 2014. We also searched the reference lists of relevant articles for eligible studies. All studies published in English were included, as were studies in any language for which the abstract was available in English. Data collection and analysis Studies were selected and data extracted independently by two reviewers. Differences regarding study inclusion were resolved through discussion. The quality of each study was assessed using a scoring system based on published guidelines for conducting and reporting genetic association studies. Results A total of 11 studies met all inclusion criteria and were included in the review. Subject numbers ranged from 20 to 1,931 and consisted of healthy individuals in all cases. The maximum altitude of exposure ranged from 2,690 to 8,848 m. The exercise performance phenotypes assessed were mountaineering performance (n = 5), running performance (n = 2), and maximum oxygen consumption (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{V} $$\end{document}V˙O2max) (n = 4). In total, 13 genetic polymorphisms were studied, four of which were associated with hypoxic exercise performance. The adenosine monophosphate deaminase (AMPD1) C34T (rs17602729), beta2-adrenergic receptor (ADRB2) Gly16Arg single nucleotide polymorphism (SNP) (rs1042713), and androgen receptor CAG repeat polymorphisms were associated with altitude performance in one study, and the angiotensin I-converting enzyme (ACE) insertion/deletion (I/D) (rs4646994) polymorphism was associated with performance in three studies. The median score achieved in the study quality analysis was 6 out of 10 for case–control studies, 8 out of 10 for cohort studies with a discrete outcome, 6 out of 9 for cohort studies with a continuous outcome, and 4.5 out of 8 for genetic admixture studies. Conclusion The small number of articles identified in the current review and the limited number of polymorphisms studied in total highlights that the influence of genetic factors on exercise performance in hypoxia has not been studied in depth, which precludes firm conclusions being drawn. Support for the association between the ACE-I allele and improved high-altitude performance was the strongest, with three studies identifying a relationship. Analysis of study quality highlights the need for future studies in this field to improve the conduct and reporting of genetic association studies. Electronic supplementary material The online version of this article (doi:10.1007/s40279-015-0309-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philip J Hennis
- UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, University College London Centre for Altitude Space and Extreme Environment Medicine, 170 Tottenham Court Road, London, W1T 7HA, UK,
| | | | | | | | | |
Collapse
|
11
|
Dhamrait SS, Maubaret C, Pedersen-Bjergaard U, Brull DJ, Gohlke P, Payne JR, World M, Thorsteinsson B, Humphries SE, Montgomery HE. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies. ACTA ACUST UNITED AC 2015; 1:70-81. [PMID: 27347560 PMCID: PMC4915277 DOI: 10.1002/icl3.1019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
Abstract
Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8‐fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role.
Collapse
Affiliation(s)
- Sukhbir S Dhamrait
- Centre for Cardiovascular Genetics, BHF Laboratories University College London London UK; Department of Cardiology Western Sussex Hospitals NHS Trust West Sussex UK
| | | | - Ulrik Pedersen-Bjergaard
- Department of Cardiology, Nephrology and Endocrinology Hillerød Hospital Hillerød Denmark; Faculty of Health Sciences University of Copenhagen Copenhagen Denmark
| | - David J Brull
- Centre for Cardiovascular Genetics, BHF Laboratories University College London London UK; Department of Cardiology The Whittington Hospital NHS Trust London UK
| | - Peter Gohlke
- Institute of Experimental and Clinical Pharmacology University Hospital of Schleswig-Holstein Kiel Germany
| | - John R Payne
- Centre for Cardiovascular Genetics, BHF Laboratories University College London London UK; Scottish National Advanced Heart Failure Service Golden Jubilee National Hospital Clydebank UK
| | - Michael World
- Royal Centre for Defence Medicine Queen Elizabeth Hospital Birmingham UK
| | - Birger Thorsteinsson
- Department of Cardiology, Nephrology and Endocrinology Hillerød Hospital Hillerød Denmark; Faculty of Health Sciences University of Copenhagen Copenhagen Denmark
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, BHF Laboratories University College London London UK
| | - Hugh E Montgomery
- UCL and National Centre for Sport, Exercise & Health University College London London UK; UCL Institute for Human Health and Performance University College London London UK
| |
Collapse
|
12
|
Brzeziańska E, Domańska D, Jegier A. Gene doping in sport - perspectives and risks. Biol Sport 2014; 31:251-9. [PMID: 25435666 PMCID: PMC4203840 DOI: 10.5604/20831862.1120931] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 12/16/2022] Open
Abstract
In the past few years considerable progress regarding the knowledge of the human genome map has been achieved. As a result, attempts to use gene therapy in patients' management are more and more often undertaken. The aim of gene therapy is to replace defective genes in vivo and/or to promote the long-term endogenous synthesis of deficient protein. In vitro studies improve the production of human recombinant proteins, such as insulin (INS), growth hormone (GH), insulin-like growth factor-1 (IGF-1) and erythropoietin (EPO), which could have therapeutic application. Unfortunately, genetic methods developed for therapeutic purposes are increasingly being used in competitive sports. Some new substances (e.g., antibodies against myostatin or myostatin blockers) might be used in gene doping in athletes. The use of these substances may cause an increase of body weight and muscle mass and a significant improvement of muscle strength. Although it is proven that uncontrolled manipulation of genetic material and/or the introduction of recombinant proteins may be associated with health risks, athletes are increasingly turning to banned gene doping. At the same time, anti-doping research is undertaken in many laboratories around the world to try to develop and refine ever newer techniques for gene doping detection in sport. Thanks to the World Anti-Doping Agency (WADA) and other sports organizations there is a hope for real protection of athletes from adverse health effects of gene doping, which at the same time gives a chance to sustain the idea of fair play in sport.
Collapse
Affiliation(s)
- E Brzeziańska
- Department of Molecular Bases of Medicine, Medical University of Lodz
| | - D Domańska
- Department of Molecular Bases of Medicine, Medical University of Lodz
| | - A Jegier
- Department of Sports Medicine, Medical University of Lodz
| |
Collapse
|
13
|
Verlengia R, Rebelo AC, Crisp AH, Kunz VC, dos Santos Carneiro Cordeiro MA, Hirata MH, Crespo Hirata RD, Silva E. Lack of Association Between ACE Indel Polymorphism and Cardiorespiratory Fitness in Physically Active and Sedentary Young Women. Asian J Sports Med 2014; 5:e22768. [PMID: 25520764 PMCID: PMC4267487 DOI: 10.5812/asjsm.22768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 04/04/2014] [Indexed: 11/22/2022] Open
Abstract
Background: Polymorphisms at the angiotensin-converting enzyme gene (ACE), such as the indel [rs1799752] variant in intron 16, have been shown to be associated with aerobic performance of athletes and non-athletes. However, the relationship between ACE indel polymorphism and cardiorespiratory fitness has not been always demonstrated. Objectives: The relationship between ACE indel polymorphism and cardiorespiratory fitness was investigated in a sample of young Caucasian Brazilian women. Patients and Methods: This study investigated 117 healthy women (aged 18 to 30 years) who were grouped as physically active (n = 59) or sedentary (n = 58). All subjects performed an incremental exercise test (ramp protocol) on a cycle-ergometer with 20-25 W/min increments. Blood samples were obtained for DNA extraction and to analyze metabolic and hormonal profiles. ACE indel polymorphism was determined by polymerase chain reaction (PCR) and fragment size analysis. Results: The physically active group had higher values of peak oxygen uptake (VO2 peak), carbon dioxide output (VCO2), ventilation (VE) and power output than the sedentary group (P < 0.05) at the peak of the exercise test. However, heart rate (HR), systolic blood pressure (SBP) and diastolic blood pressure (DBP) did not differ between groups. There was no relationship between ACE indel polymorphism and cardiorespiratory variables during the test in both the physically active and sedentary groups, even when the dominant (DD vs. D1 + 2) and recessive (2 vs. DI + DD) models of inheritance were tested. Conclusions: These results do not support the concept that the genetic variation at the ACE locus contributes to the cardiorespiratory responses at the peak of exercise test in physically active or sedentary healthy women. This indicates that other factors might mediate these responses, including the physical training level of the women.
Collapse
Affiliation(s)
- Rozangela Verlengia
- College of Health Sciences, Methodist University of Piracicaba, Piracicaba, Brazil
- Corresponding author: Rozangela Verlengia, College of Health Sciences, Methodist University of Piracicaba, Piracicaba, Sao Paulo, Brazil. Tel: +55-151931241558, Fax: +55-151931241659, E-mail:, E-mail:
| | - Ana C. Rebelo
- Department of Morphology, Federal University of Goias, Goiania, Brazil
| | - Alex H. Crisp
- College of Health Sciences, Methodist University of Piracicaba, Piracicaba, Brazil
| | - Vandeni C. Kunz
- Adventist University of Sao Paulo, Engenheiro Coellho, Sao Paulo, Brazil
| | | | - Mario H. Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ester Silva
- Department of Physiotherapy, Federal University of Sao Carlos, Sao Carlos, Brazil
| |
Collapse
|
14
|
De Filippi P, Saeidi K, Ravaglia S, Dardis A, Angelini C, Mongini T, Morandi L, Moggio M, Di Muzio A, Filosto M, Bembi B, Giannini F, Marrosu G, Rigoldi M, Tonin P, Servidei S, Siciliano G, Carlucci A, Scotti C, Comelli M, Toscano A, Danesino C. Genotype-phenotype correlation in Pompe disease, a step forward. Orphanet J Rare Dis 2014; 9:102. [PMID: 25103075 PMCID: PMC4249737 DOI: 10.1186/s13023-014-0102-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 06/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pompe's disease is a progressive myopathy caused by mutations in the lysosomal enzyme acid alphaglucosidase gene (GAA). A wide clinical variability occurs also in patients sharing the same GAA mutations, even within the same family. METHODS For a large series of GSDII patients we collected some clinical data as age of onset of the disease, presence or absence of muscular pain, Walton score, 6-Minute Walking Test, Vital Capacity, and Creatine Kinase. DNA was extracted and tested for GAA mutations and some genetic polymorphisms able to influence muscle properties (ACE, ACTN3, AGT and PPARα genes).We compared the polymorphisms analyzed in groups of patients with Pompe disease clustered for their homogeneous genotype. RESULTS We have been able to identify four subgroups of patients completely homogeneous for their genotype, and two groups homogeneous as far as the second mutation is defined "very severe" or "potentially less severe". When disease free life was studied we observed a high significant difference between groups. The DD genotype in the ACE gene and the XX genotype in the ACTN3 gene were significantly associated to an earlier age of onset of the disease. The ACE DD genotype was also associated to the presence of muscle pain. CONCLUSIONS We demonstrate that ACE and ACTN3 polymorphisms are genetic factors able to modulate the clinical phenotype of patients affected with Pompe disease.
Collapse
Affiliation(s)
- Paola De Filippi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Djarova T, Bardarev D, Boyanov D, Kaneva R, Atanasov P. Performance enhancing genetic variants, oxygen uptake, heart rate, blood pressure and body mass index of elite high altitude mountaineers. ACTA ACUST UNITED AC 2013; 100:289-301. [PMID: 24058088 DOI: 10.1556/aphysiol.100.2013.3.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIM To analyse and compare the ACE (angiotensin-converting enzyme), ACTN3 (actinin-3) and AMPD1 (adenosine monophosphate deaminase 1) genetic variants, oxygen uptake (VO2max), heart rate (HR), blood pressure (BP) and body mass index (BMI) of elite high altitude mountaineers and average athletes. METHODS Elite Bulgarian alpinists (n = 5) and control group of athletes (n = 72) were recruited. VO2max was measured using a treadmill graded protocol. HR, BP and BMI were recorded. Genotyping was done by polymerase chain reaction (PCR) amplification followed by agarose gel electrophoresis. Chi2-test and Fisher's exact test were used for statistical analysis. RESULTS Alpinists showed significantly higher frequencies of 60% ACE I allele (p = 0.002), 50% ACTN3 X allele (p = 0.032) and 30% AMPD1 T allele (p = 0.003) compared to controls - 39%, 36%, 13%, respectively. ACE ID genotype prevalence and null DD genotype were observed in mountaineers. Higher absolute VO2max, but no differences in VO2max ml kg-1 min-1, HR, oxygen pulse, blood pressure and BMI were found. CONCLUSIONS The ID genotype and higher frequencies of ACE I allele could contribute to successful high altitude ascents in mountaineers. The genetic make-up of the two mountaineers who made the summit of Mt Everest was distinctive, revealing ACE ID genotype, mutant ACTN3 XX and AMPD1 TT genotypes.
Collapse
Affiliation(s)
- T Djarova
- University of Zululand, South Africa Department of Biochemistry and Microbiology Private Bag X1001 KwaDlangezwa 3886 South Africa
| | | | | | | | | |
Collapse
|
16
|
Pokrywka A, Kaliszewski P, Majorczyk E, Zembroń-Łacny A. Genes in sport and doping. Biol Sport 2013; 30:155-61. [PMID: 24744482 PMCID: PMC3944571 DOI: 10.5604/20831862.1059606] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 11/19/2022] Open
Abstract
Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes’ genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes’ genotyping and gene doping possibilities, including their development and detection techniques.
Collapse
|
17
|
Astin R, Bentham R, Djafarzadeh S, Horscroft JA, Kuc RE, Leung PS, Skipworth JRA, Vicencio JM, Davenport AP, Murray AJ, Takala J, Jakob SM, Montgomery H, Szabadkai G. No evidence for a local renin-angiotensin system in liver mitochondria. Sci Rep 2013; 3:2467. [PMID: 23959064 PMCID: PMC3747509 DOI: 10.1038/srep02467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/22/2013] [Indexed: 01/01/2023] Open
Abstract
The circulating, endocrine renin-angiotensin system (RAS) is important to circulatory homeostasis, while ubiquitous tissue and cellular RAS play diverse roles, including metabolic regulation. Indeed, inhibition of RAS is associated with improved cellular oxidative capacity. Recently it has been suggested that an intra-mitochondrial RAS directly impacts on metabolism. Here we sought to rigorously explore this hypothesis. Radiolabelled ligand-binding and unbiased proteomic approaches were applied to purified mitochondrial sub-fractions from rat liver, and the impact of AngII on mitochondrial function assessed. Whilst high-affinity AngII binding sites were found in the mitochondria-associated membrane (MAM) fraction, no RAS components could be detected in purified mitochondria. Moreover, AngII had no effect on the function of isolated mitochondria at physiologically relevant concentrations. We thus found no evidence of endogenous mitochondrial AngII production, and conclude that the effects of AngII on cellular energy metabolism are not mediated through its direct binding to mitochondrial targets.
Collapse
Affiliation(s)
- Ronan Astin
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- Institute for Human Health and Performance, University College London, London, United Kingdom
| | - Robert Bentham
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- Center of Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, United Kingdom
| | - Siamak Djafarzadeh
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - James A. Horscroft
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom
| | - Rhoda E. Kuc
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital Cambridge, United Kingdom
| | - Po Sing Leung
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - James R. A. Skipworth
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- Institute for Human Health and Performance, University College London, London, United Kingdom
| | - Jose M. Vicencio
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Anthony P. Davenport
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital Cambridge, United Kingdom
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Stephan M. Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Hugh Montgomery
- Institute for Human Health and Performance, University College London, London, United Kingdom
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
18
|
|
19
|
Abstract
This article is a review of the rationale and methodology of a translational study conducted at altitude investigating the potential role of nitrate supplements to improve tolerance to hypoxia, and a discussion of the applicability of the findings to intensive care medicine.
Collapse
Affiliation(s)
- Steve Dauncey
- FY1 in Anaesthetics, St John's Hospital, Livingston, Scotland
| |
Collapse
|
20
|
Puthucheary Z, Skipworth JRA, Rawal J, Loosemore M, Van Someren K, Montgomery HE. The ACE gene and human performance: 12 years on. Sports Med 2011; 41:433-48. [PMID: 21615186 DOI: 10.2165/11588720-000000000-00000] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Some 12 years ago, a polymorphism of the angiotensin I-converting enzyme (ACE) gene became the first genetic element shown to impact substantially on human physical performance. The renin-angiotensin system (RAS) exists not just as an endocrine regulator, but also within local tissue and cells, where it serves a variety of functions. Functional genetic polymorphic variants have been identified for most components of RAS, of which the best known and studied is a polymorphism of the ACE gene. The ACE insertion/deletion (I/D) polymorphism has been associated with improvements in performance and exercise duration in a variety of populations. The I allele has been consistently demonstrated to be associated with endurance-orientated events, notably, in triathlons. Meanwhile, the D allele is associated with strength- and power-orientated performance, and has been found in significant excess among elite swimmers. Exceptions to these associations do exist, and are discussed. In theory, associations with ACE genotype may be due to functional variants in nearby loci, and/or related genetic polymorphism such as the angiotensin receptor, growth hormone and bradykinin genes. Studies of growth hormone gene variants have not shown significant associations with performance in studies involving both triathletes and military recruits. The angiotensin type-1 receptor has two functional polymorphisms that have not been shown to be associated with performance, although studies of hypoxic ascent have yielded conflicting results. ACE genotype influences bradykinin levels, and a common gene variant in the bradykinin 2 receptor exists. The high kinin activity haplotye has been associated with increased endurance performance at an Olympic level, and similar results of metabolic efficiency have been demonstrated in triathletes. Whilst the ACE genotype is associated with overall performance ability, at a single organ level, the ACE genotype and related polymorphism have significant associations. In cardiac muscle, ACE genotype has associations with left ventricular mass changes in response to stimulus, in both the health and diseased states. The D allele is associated with an exaggerated response to training, and the I allele with the lowest cardiac growth response. In light of the I-allele association with endurance performance, it seems likely that other regulatory mechanisms exist. Similarly in skeletal muscle, the D allele is associated with greater strength gains in response to training, in both healthy individuals and chronic disease states. As in overall performance, those genetic polymorphisms related to the ACE genotype, such as the bradykinin 2 gene, also influence skeletal muscle strength. Finally, the ACE genotype may influence metabolic efficiency, and elite mountaineers have demonstrated an excess of I alleles and I/I genotype frequency in comparison to controls. Interestingly, this was not seen in amateur climbers. Corroboratory evidence exists among high-altitude settlements in both South America and India, where the I allele exists in greater frequency in those who migrated from the lowlands. Unfortunately, if the ACE genotype does influence metabolic efficiency, associations with peak maximal oxygen consumption have yet to be rigorously demonstrated. The ACE genotype is an important but single factor in the determinant of sporting phenotype. Much of the mechanisms underlying this remain unexplored despite 12 years of research.
Collapse
Affiliation(s)
- Zudin Puthucheary
- University College London Institute for Human Health and Performance, London, UK.
| | | | | | | | | | | |
Collapse
|
21
|
Seripa D, Paroni G, Matera MG, Gravina C, Scarcelli C, Corritore M, D’Ambrosio LP, Urbano M, D’Onofrio G, Copetti M, Kehoe PG, Panza F, Pilotto A. Angiotensin-converting enzyme (ACE) genotypes and disability in hospitalized older patients. AGE (DORDRECHT, NETHERLANDS) 2011; 33:409-419. [PMID: 21076879 PMCID: PMC3168594 DOI: 10.1007/s11357-010-9192-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/28/2010] [Indexed: 05/29/2023]
Abstract
The association between angiotensin-converting enzyme (ACE) genotypes and functional decline in older adults remains controversial. To assess if ACE gene variations influences functional abilities at older age, the present study explored the association between the common ACE insertion/deletion (I/D) polymorphism and disability measured with activities of daily living (ADL) in hospitalized older patients. We analyzed the frequency of the ACE genotypes (I/I, I/D, and D/D) in a population of 2,128 hospitalized older patients divided according to presence or absence of ADL disability. Logistic regression analysis adjusted for possible confounding factors, identified an association between the I/I genotype with ADL disability (OR=1.54, 95% CI 1.04-2.29). This association was significant in men (OR=2.01, 95% CI 1.07-3.78), but not in women (OR=1.36, 95% CI 0.82-2.25). These results suggested a possible role of the ACE polymorphism as a genetic marker for ADL disability in hospitalized older patients.
Collapse
Affiliation(s)
- Davide Seripa
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Giulia Paroni
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Maria G. Matera
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Carolina Gravina
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Carlo Scarcelli
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Michele Corritore
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Luigi P. D’Ambrosio
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Maria Urbano
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Grazia D’Onofrio
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Massimiliano Copetti
- Unit of Biostatistics, IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Patrick G. Kehoe
- Dementia Research Group, Institute of Clinical Neurosciences, The John James Building, Frenchay Hospital, University of Bristol, Bristol, UK
| | - Francesco Panza
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Alberto Pilotto
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| |
Collapse
|
22
|
Anderson PJ, Miller AD, O'Malley KA, Ceridon ML, Beck KC, Wood CM, Wiste HJ, Mueller JJ, Johnson JB, Johnson BD. Incidence and Symptoms of High Altitude Illness in South Pole Workers: Antarctic Study of Altitude Physiology (ASAP). CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2011; 5:27-35. [PMID: 21695160 PMCID: PMC3114308 DOI: 10.4137/ccrpm.s6882] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Each year, the US Antarctic Program rapidly transports scientists and support personnel from sea level (SL) to the South Pole (SP, 2835 m) providing a unique natural laboratory to quantify the incidence of acute mountain sickness (AMS), patterns of altitude related symptoms and the field effectiveness of acetazolamide in a highly controlled setting. We hypothesized that the combination of rapid ascent (3 hr), accentuated hypobarism (relative to altitude), cold, and immediate exertion would increase altitude illness risk. Methods: Medically screened adults (N = 246, age = 37 ± 11 yr, 30% female, BMI = 26 ± 4 kg/m2) were recruited. All underwent SL and SP physiological evaluation, completed Lake Louise symptom questionnaires (LLSQ, to define AMS), and answered additional symptom related questions (eg, exertional dyspnea, mental status, cough, edema and general health), during the 1st week at altitude. Acetazolamide, while not mandatory, was used by 40% of participants. Results: At SP, the barometric pressure resulted in physiological altitudes that approached 3400 m, while T °C averaged −42, humidity 0.03%. Arterial oxygen saturation averaged 89% ± 3%. Overall, 52% developed LLSQ defined AMS. The most common symptoms reported were exertional dyspnea-(87%), sleeping difficulty-(74%), headache-(66%), fatigue-(65%), and dizziness/lightheadedness-(46%). Symptom severity peaked on days 1–2, yet in >20% exertional dyspnea, fatigue and sleep problems persisted through day 7. AMS incidence was similar between those using acetazolamide and those abstaining (51 vs. 52%, P = 0.87). Those who used acetazolamide tended to be older, have less altitude experience, worse symptoms on previous exposures, and less SP experience. Conclusion: The incidence of AMS at SP tended to be higher than previously reports in other geographic locations at similar altitudes. Thus, the SP constitutes a more intense altitude exposure than might be expected considering physical altitude alone. Many symptoms persist, possibly due to extremely cold, arid conditions and the benefits of acetazolamide appeared negligible, though it may have prevented more severe symptoms in higher risk subjects.
Collapse
Affiliation(s)
- Paul J Anderson
- Health Partners Occupational and Environmental Medicine Residency, St. Paul, MN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
High-altitude illnesses encompass the pulmonary and cerebral syndromes that occur in non-acclimatized individuals after rapid ascent to high altitude. The most common syndrome is acute mountain sickness (AMS) which usually begins within a few hours of ascent and typically consists of headache variably accompanied by loss of appetite, nausea, vomiting, disturbed sleep, fatigue, and dizziness. With millions of travelers journeying to high altitudes every year and sleeping above 2,500 m, acute mountain sickness is a wide-spread clinical condition. Risk factors include home elevation, maximum altitude, sleeping altitude, rate of ascent, latitude, age, gender, physical condition, intensity of exercise, pre-acclimatization, genetic make-up, and pre-existing diseases. At higher altitudes, sleep disturbances may become more profound, mental performance is impaired, and weight loss may occur. If ascent is rapid, acetazolamide can reduce the risk of developing AMS, although a number of high-altitude travelers taking acetazolamide will still develop symptoms. Ibuprofen can be effective for headache. Symptoms can be rapidly relieved by descent, and descent is mandatory, if at all possible, for the management of the potentially fatal syndromes of high-altitude pulmonary and cerebral edema. The purpose of this review is to combine a discussion of specific risk factors, prevention, and treatment options with a summary of the basic physiologic responses to the hypoxia of altitude to provide a context for managing high-altitude illnesses and advising the non-acclimatized high-altitude traveler.
Collapse
|
24
|
Levett DZH, Martin DS, Wilson MH, Mitchell K, Dhillon S, Rigat F, Montgomery HE, Mythen MG, Grocott MPW. Design and conduct of Caudwell Xtreme Everest: an observational cohort study of variation in human adaptation to progressive environmental hypoxia. BMC Med Res Methodol 2010; 10:98. [PMID: 20964858 PMCID: PMC2988011 DOI: 10.1186/1471-2288-10-98] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 10/21/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The physiological responses to hypoxaemia and cellular hypoxia are poorly understood, and inter-individual differences in performance at altitude and outcome in critical illness remain unexplained. We propose a model for exploring adaptation to hypoxia in the critically ill: the study of healthy humans, progressively exposed to environmental hypobaric hypoxia (EHH). The aim of this study was to describe the spectrum of adaptive responses in humans exposed to graded EHH and identify factors (physiological and genetic) associated with inter-individual variation in these responses. METHODS DESIGN Observational cohort study of progressive incremental exposure to EHH. SETTING University human physiology laboratory in London, UK (75 m) and 7 field laboratories in Nepal at 1300 m, 3500 m, 4250 m, 5300 m, 6400 m, 7950 m and 8400 m. PARTICIPANTS 198 healthy volunteers and 24 investigators trekking to Everest Base Camp (EBC) (5300 m). A subgroup of 14 investigators studied at altitudes up to 8400 m on Everest. MAIN OUTCOME MEASURES Exercise capacity, exercise efficiency and economy, brain and muscle Near Infrared Spectroscopy, plasma biomarkers (including markers of inflammation), allele frequencies of known or suspected hypoxia responsive genes, spirometry, neurocognitive testing, retinal imaging, pupilometry. In nested subgroups: microcirculatory imaging, muscle biopsies with proteomic and transcriptomic tissue analysis, continuous cardiac output measurement, arterial blood gas measurement, trans-cranial Doppler, gastrointestinal tonometry, thromboelastography and ocular saccadometry. RESULTS Of 198 healthy volunteers leaving Kathmandu, 190 reached EBC (5300 m). All 24 investigators reached EBC. The completion rate for planned testing was more than 99% in the investigator group and more than 95% in the trekkers. Unique measurements were safely performed at extreme altitude, including the highest (altitude) field measurements of exercise capacity, cerebral blood flow velocity and microvascular blood flow at 7950 m and arterial blood gas measurement at 8400 m. CONCLUSIONS This study demonstrates the feasibility and safety of conducting a large healthy volunteer cohort study of human adaptation to hypoxia in this difficult environment. Systematic measurements of a large set of variables were achieved in 222 subjects and at altitudes up to 8400 m. The resulting dataset is a unique resource for the study of genotype:phenotype interactions in relation to hypoxic adaptation.
Collapse
Affiliation(s)
- Denny Z H Levett
- Centre for Altitude Space and Extreme Environment Medicine, UCL Institute of Human Health and Performance, First Floor, Charterhouse Building, UCL Archway Campus, Highgate Hill, London, N19 5LW, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Martin DS, Levett DZH, Grocott MPW, Montgomery HE. Variation in human performance in the hypoxic mountain environment. Exp Physiol 2010; 95:463-70. [DOI: 10.1113/expphysiol.2009.047589] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
A role for succinate dehydrogenase genes in low chemoresponsiveness to hypoxia? Clin Auton Res 2010; 19:335-42. [PMID: 19768395 DOI: 10.1007/s10286-009-0028-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
Abstract
The detection of hypoxia by the carotid bodies elicits a ventilatory response of utmost importance for tolerance to high altitude. Germline mutations in three genes encoding subunit B, C and D of succinate dehydrogenase (SDHB, SDHC and SDHD) have been associated with paragangliomas of the carotid body. We hypothesized that SDH dysfunction within the carotid body could result in low chemoresponsiveness and intolerance to high altitude. The frequency of polymorphisms of SDHs, hypoxia-inducible factor type 1 (HIF1alpha) and angiotensin converting enzyme (ACE) genes was compared between 40 subjects with intolerance to high altitude and a low hypoxic ventilatory response at exercise (HVRe < or = 0.5 ml min(-1) kg(-1); HVR- group) and 41 subjects without intolerance to high altitude and a high HVRe (> or = 0.80 ml min(-1) kg(-1); HVR+). We found no significant association between low or high HVRe and (1) the allele frequencies for nine single nucleotide polymorphisms (SNPs) in the SDHD and SDHB genes, (2) the ACE insertion/deletion polymorphism and (3) four SNPs in the HIF1alpha gene. However, a marginal significant association was found between the synonymous polymorphism c.18A>C of the SDHB gene and chemoresponsiveness: 8/40 (20%) in the HVR- group and 3/41 (7%) in the HVR+ group (p = 0.12). A principal component analysis showed that no subject carrying the 18C allele had both high ventilatory and cardiac response to hypoxia. In conclusion, no clear association was found between gene variants involved in oxygen sensing and chemoresponsiveness, although some mutations in the SDHB and SDHD genes deserve further investigations in a larger population.
Collapse
|
27
|
Murray AJ. Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. Genome Med 2009; 1:117. [PMID: 20090895 PMCID: PMC2808733 DOI: 10.1186/gm117] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In most tissues of the body, cellular ATP production predominantly occurs via mitochondrial oxidative phosphorylation of reduced intermediates, which are in turn derived from substrates such as glucose and fatty acids. In order to maintain ATP homeostasis, and therefore cellular function, the mitochondria require a constant supply of fuels and oxygen. In many disease states, or in healthy individuals at altitude, tissue oxygen levels fall and the cell must meet this hypoxic challenge to maintain energetics and limit oxidative stress. In humans at altitude and patients with respiratory disease, loss of skeletal muscle mitochondrial density is a consistent finding. Recent studies that have used cultured cells and genetic mouse models have elucidated a number of elegant adaptations that allow cells with a diminished mitochondrial population to function effectively in hypoxia. This article reviews these findings alongside studies of hypoxic human skeletal muscle, putting them into the context of whole-body physiology and acclimatization to high-altitude hypoxia. A number of current controversies are highlighted, which may eventually be resolved by a systems physiology approach that considers the time-or tissue-dependent nature of some adaptive responses. Future studies using high-throughput metabolomic, transcriptomic, and proteomic technologies to investigate hypoxic skeletal muscle in humans and animal models could resolve many of these controversies, and a case is therefore made for the integration of resulting data into computational models that account for factors such as duration and extent of hypoxic exposure, subjects' backgrounds, and whether data have been acquired from active or sedentary individuals. An integrated and more quantitative understanding of the body's metabolic response to hypoxia and the conditions under which adaptive processes occur could reveal much about the ways that tissues function in the very many disease states where hypoxia is a critical factor.
Collapse
Affiliation(s)
- Andrew J Murray
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
28
|
Abstract
Performance enhancing polymorphisms (PEPs) are examples of natural genetic variation that affect the outcome of athletic challenges. Elite athletes, and what separates them from the average competitor, have been the subjects of discussion and debate for decades. While training, diet, and mental fitness are all clearly important contributors to achieving athletic success, the fact that individuals reaching the pinnacle of their chosen sports often share both physical and physiological attributes suggests a role for genetics. That multiple members of a family often participate in highly competitive events, such as the Olympics, further supports this argument. In this review, we discuss what is known regarding the genes and gene families, including the mitochondrial genome, that are believed to play a role in human athletic performance. Where possible, we describe the physiological impact of the critical gene variants and consider predictions about other potentially important genes. Finally, we discuss the implications of these findings on the future for competitive athletics.
Collapse
Affiliation(s)
- Elaine A Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
29
|
The effect of angiotensin-converting enzyme genotype on acute mountain sickness and summit success in trekkers attempting the summit of Mt. Kilimanjaro (5,895 m). Eur J Appl Physiol 2008; 105:373-9. [DOI: 10.1007/s00421-008-0913-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2008] [Indexed: 11/26/2022]
|
30
|
Angiotensin-converting enzyme D allele does not influence susceptibility to acute hypoxic respiratory failure in children. Intensive Care Med 2008; 34:2279-83. [PMID: 18787808 DOI: 10.1007/s00134-008-1260-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The D allele of the I/D polymorphism in the angiotensin-converting enzyme (ACE) gene has been associated with an increased risk of ARDS in critically ill adults and severity of bronchopulmonary dysplasia in pre-term infants. We hypothesised that the presence of the hypoxia-associated ACE D allele would increase susceptibility to acute hypoxic respiratory failure (AHRF) in a cohort of critically ill children. DESIGN AND SETTING Single-centre prospective observational cohort study. PATIENTS Children under 16 years of age requiring admission to a tertiary general PICU. MEASUREMENTS AND RESULTS A total of 216 Caucasian patients were enrolled. Thirty (13.9%) children developed AHRF and 13 were diagnosed with ARDS (6.0%). There was no significant difference in ACE D allele frequency between patient groups with or without AHRF (0.53 vs. 0.54). CONCLUSIONS Variation in ACE activity does not influence the development of paediatric AHRF. This may reflect a different pathogenesis from adult ARDS.
Collapse
|