1
|
Ma Y, Hou J, Huang D, Zhang Y, Liu Z, Tian M. Expression of protein phosphatase 4 in different tissues under hypoxia. INDIAN J PATHOL MICR 2023; 66:577-583. [PMID: 37530343 DOI: 10.4103/ijpm.ijpm_1179_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Relevant research data shows that there is a certain degree of energy metabolism imbalance in highland residents. Protein phosphatase 4 (PP4) has been found as a new factor in the regulation of sugar and lipid metabolism. Here, we investigate the differential expression of PP4 at a simulated altitude of 4,500 m in the heart, lung, and brain tissues of rats. A hypoxic plateau rat model was established using an animal decompression chamber. A blood routine test was performed by an animal blood cell analyzer on rats cultured for different hypoxia periods at 4,500 m above sea level. Quantitative polymerase chain reaction (qPCR) and western blot were used to detect the changes of protein phosphatase 4 catalytic subunit (PP4C) gene and protein in heart, lung, and brain tissues. The PP4C gene with the highest expression level found in rats slowly entering the high altitude area (20 m-2200 m-7 d-4500 m-3 d) was about twice as high as the low elevation group (20 m above sea level). The simulated high-altitude hypoxia induced an increase of PP4C expression level in all tissues, and the expression in the lung tissue was twice as expressed as heart and brain tissue at high altitude (P < 0.05). These results suggest that the PP4 phosphatase complex is ubiquitously expressed in rat tissues and likely involved in adaptation to or disease associated with high-altitude hypoxia.
Collapse
Affiliation(s)
- Yanyan Ma
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province; Medical College of Qinghai University, Xining, Qinghai Province, China
| | - Jing Hou
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Dengliang Huang
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Yaogang Zhang
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Zhe Liu
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Meiyuan Tian
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province; Medical College of Qinghai University, Xining, Qinghai Province, China
| |
Collapse
|
2
|
Ağaşcıoğlu E, Çolak R, Çakatay U. Redox status biomarkers in the fast-twitch extensor digitorum longus resulting from the hypoxic exercise. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:433-447. [PMID: 35967949 PMCID: PMC9350571 DOI: 10.18999/nagjms.84.2.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
The fast-twitch muscle may be affected from over-produced reactive oxygen species (ROS) during hypoxia/hypoxic exercise. The study aims to investigate redox status biomarkers in the fast-twitch extensor digitorum longus (EDL) muscle after hypoxic exercise. Male Sprague Dawley rats (eight-week-old) were randomly divided into six groups of the experimental "live high train high (LHTH), live high train low (LHTL) and live low train low (LLTL)" and their respective controls. Before the EDLs' extraction, the animals exercised for a 4-week familiarization period, then they exercised for four-weeks at different altitudes. The LHTH group had higher ratios of lipid hydroperoxides (LHPs) than the experimental groups of LHTL (p=0.004) and LLTL (p=0.002), while having no difference than its control 'LH'. Similarly, a higher percentage of advanced oxidation protein products (AOPP) was determined in the LHTH than the LHTL (p=0.041) and LLTL (p=0.048). Furthermore, oxidation of thiol fractions was the lowest in the LHTH and LH. However, redox biomarkers and thiol fractions illustrated no significant change in the LHTL and LLTL that might ensure redox homeostasis due to higher oxygen consumption. The study shows that not hypoxic exercise/exercise, but hypoxia might itself lead to a redox imbalance in the fast-twitch EDL muscle.
Collapse
Affiliation(s)
- Eda Ağaşcıoğlu
- Department of Recreation, Faculty of Sports Sciences, Lokman Hekim University, Ankara, Turkey
| | - Rıdvan Çolak
- Department of Physical Education and Sports, Ardahan University, Ardahan, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
3
|
Santocildes G, Viscor G, Pagès T, Ramos-Romero S, Torres JL, Torrella JR. Physiological Effects of Intermittent Passive Exposure to Hypobaric Hypoxia and Cold in Rats. Front Physiol 2021; 12:673095. [PMID: 34135770 PMCID: PMC8201611 DOI: 10.3389/fphys.2021.673095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
The benefits of intermittent hypobaric hypoxia (IHH) exposure for health and its potential use as a training tool are well-documented. However, since hypobaric hypoxia and cold are environmental factors always strongly associated in the biosphere, additive or synergistic adaptations could have evolved in animals' genomes. For that reason, the aim of the present study was to investigate body composition and hematological and muscle morphofunctional responses to simultaneous intermittent exposure to hypoxia and cold. Adult male rats were randomly divided into four groups: (1) control, maintained in normoxia at 25°C (CTRL); (2) IHH exposed 4 h/day at 4,500 m (HYPO); (3) intermittent cold exposed 4 h/day at 4°C (COLD); and (4) simultaneously cold and hypoxia exposed (COHY). At the end of 9 and 21 days of exposure, blood was withdrawn and gastrocnemius (GAS) and tibialis anterior muscles, perigonadal and brown adipose tissue, diaphragm, and heart were excised. GAS transversal sections were stained for myofibrillar ATPase and succinate dehydrogenase for fiber typing and for endothelial ATPase to assess capillarization. Hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and glucose transporter 1 (GLUT1) from GAS samples were semi-quantified by Western blotting. COLD and HYPO underwent physiological adjustments such as higher brown adipose tissue weight and increase in blood-related oxygen transport parameters, while avoiding some negative effects of chronic exposure to cold and hypoxia, such as body weight and muscle mass loss. COHY presented an additive erythropoietic response and was prevented from right ventricle hypertrophy. Intermittent cold exposure induced muscle angiogenesis, and IHH seems to indicate better muscle oxygenation through fiber area reduction.
Collapse
Affiliation(s)
- Garoa Santocildes
- Secció de Fisiologia, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Ginés Viscor
- Secció de Fisiologia, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Pagès
- Secció de Fisiologia, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sara Ramos-Romero
- Secció de Fisiologia, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Departament de Química Biològica, Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Josep Lluís Torres
- Departament de Química Biològica, Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Joan Ramon Torrella
- Secció de Fisiologia, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Liu C, Chen X, Guo G, Xu X, Li X, Wei Q, Shen Y, Li H, Hao J, Tian YP, He K. Effects of Intermittent Normoxia on Chronic Hypoxic Pulmonary Hypertension and Right Ventricular Hypertrophy in Rats. High Alt Med Biol 2021; 22:184-192. [PMID: 33989063 DOI: 10.1089/ham.2020.0110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Liu, Chunlei, Xu Chen, Ge Guo, Xiang Xu, Xin Li, Qingxia Wei, Yanying Shen, Hanlu Li, Jianxiu Hao, Ya Ping Tian, and Kunlun He. Effects of intermittent normoxia on chronic hypoxic pulmonary hypertension and right ventricular hypertrophy in rats. High Alt Med Biol. 22: 184-192, 2021. Background: Individuals with chronically low arterial oxygen tension owing to high altitude develop elevated rates of pulmonary hypertension (PH) and right ventricular (RV) hypertrophy. However, the effects of the frequency and duration of normoxic exposure on PH and RV hypertrophy have not been adequately assessed; thus, we aimed to analyze the same. Materials and Methods: PH and RV hypertrophy were induced in 60 rats using a hypobaric chamber. Of these 60 rats, every 10 were exposed to normoxic conditions for 30 minutes once (1T/D), three times (3T/D), or five times daily (5T/D), or for one 150-minute recovery daily (1LT/D). Furthermore, 10 rats were housed in a normoxic environment, and another 10 were subjected to continuous hypoxia. After 4 weeks, hemodynamic measurements were recorded, and the hearts were harvested for pathomorphological observations. Results: Average pulmonary arterial pressures (PAP) of control rats and those exposed to hypobaric hypoxia were 14.1 and 32.3 mmHg, respectively. After 30 minutes of exposure to normoxia 3T/D, 5T/D, or 1LT/D, PAP values were reduced to 27.1, 27.9, or 26.8 mmHg, respectively. Four weeks of hypoxic exposure elevated the RV/heart weight (HW) ratios, while exposure to normoxia 3T/D, 5T/D, and 1LT/D significantly reduced RV/HW. In addition, exposure to normoxia 3T/D, 5T/D, 1LT/D reduced the percentage wall thickness of the pulmonary artery as well as the hypertrophy indices of atrial natriuretic peptide, brain natriuretic peptide, and myosin heavy chain 7 (MYH-7). Conclusions: Thirty-minute exposure to normoxic conditions of 3T/D, 5T/D, or 1LT/D effectively ameliorates PH and RV thickening.
Collapse
Affiliation(s)
- Chunlei Liu
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xu Chen
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing, China
| | - Ge Guo
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiang Xu
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Qingxia Wei
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing, China
| | - Yanying Shen
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing, China
| | - Hanlu Li
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing, China
| | - Jianxiu Hao
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing, China
| | - Ya Ping Tian
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Transformation Medicine Centre, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Effects of Living High-Training Low and High on Body Composition and Metabolic Risk Markers in Overweight and Obese Females. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3279710. [PMID: 32104687 PMCID: PMC7036094 DOI: 10.1155/2020/3279710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
This study examined the effects of 4 weeks of living high-training low and high (LHTLH) under moderate hypoxia on body weight, body composition, and metabolic risk markers of overweight and obese females. Nineteen healthy overweight or obese females participated in this study. Participants were assigned to the normoxic training group (NG) or the LHTLH group (HG). The NG participants lived and trained at sea level. The HG participants stayed for approximately 10 hours in a simulated 2300 m normobaric state of hypoxia for six days a week and trained for 2 hours 3 times a week under the same simulated hypoxia. The interventions lasted for 4 weeks. All groups underwent dietary restriction based on resting metabolic rate. The heart rate of the participants was monitored every ten minutes during exercise to ensure that the intensity was in the aerobic range. Compared with the preintervention values, body weight decreased significantly in both the NG and the HG (−8.81 ± 2.09% and −9.09 ± 1.15%, respectively). The fat mass of the arm, leg, trunk, and whole body showed significant reductions in both the NG and the HG, but no significant interaction effect was observed. The percentage of lean soft tissue mass loss in the total body weight loss tended to be lower in the HG (27.61% versus 15.94%, P=0.085). Between the NG and the HG, significant interaction effects of serum total cholesterol (−12.66 ± 9.09% versus −0.05 ± 13.36%,) and apolipoprotein A1 (−13.66 ± 3.61% versus −5.32 ± 11.07%, P=0.042) were observed. A slight increase in serum high-density lipoprotein cholesterol (HDL-C) was observed in the HG (1.12 ± 12.34%) but a decrease was observed in the NG (−11.36 ± 18.91%). The interaction effect of HDL-C between NG and HG exhibited a significant trend (P=0.055). No added effects on serum triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), or APO-B were observed after 4 weeks of LHTLH. In conclusion, 4 weeks of LHTLH combined with dietary restriction could effectively reduce the body weight and body fat mass of overweight and obese females. Compared with training and sleeping under normoxia, no additive benefit of LHTLH on the loss of body weight and body fat mass was exhibited. However, LHTLH may help to relieve the loss of lean soft tissue mass and serum HDL-C.
Collapse
|
6
|
Alterations in the innate immune system due to exhausting exercise in intensively trained rats. Sci Rep 2020; 10:967. [PMID: 31969634 PMCID: PMC6976645 DOI: 10.1038/s41598-020-57783-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023] Open
Abstract
It is known that intensive physical activity alters the immune system's functionality. However, the influence of the intensity and duration of exercise needs to be studied in more depth. We aimed to establish the changes in the innate immune response induced by two programmes of intensive training in rats compared to sedentary rats. A short training programme included 2 weeks of intensive training, ending with an exhaustion test (short training with exhaustion, S-TE). A second training programme comprised 5-week training including two exhaustion tests and three trainings per week. In this case, immune status was assessed before (T), immediately after (TE) and 24 h after (TE24) an additional final exhaustion test. Biomarkers such as phagocytic activity, macrophage cytokine and reactive oxygen species (ROS) production, and natural killer (NK) cell activity were quantified. S-TE was not enough to induce changes in the assessed innate immunity biomarkers. However, the second training was accompanied by a decrease in the phagocytic activity, changes in the pattern of cytokine secretion and ROS production by macrophages and reduced NK cell proportion but increased NK cytotoxic activity. In conclusion, a 5-week intense training programme, but not a shorter training, induced alterations in the innate immune system functionality.
Collapse
|
7
|
Umeda A, Miyagawa K, Mochida A, Takeda H, Takeda K, Okada Y, Gozal D. Intermittent hypoxia, energy expenditure, and visceral adipocyte recovery. Respir Physiol Neurobiol 2019; 273:103332. [PMID: 31628989 DOI: 10.1016/j.resp.2019.103332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Body weight of patients with obstructive sleep apnea after initiation of nasal continuous positive airway pressure appears to increase. We hypothesized that intermittent hypoxia (IH) will decrease energy expenditure (EE), and that normoxic recovery will lead to body weight gains. METHODS C57BL/6 J male mice were exposed to either 12 h/day of mild IH (alternating FIO2-10-11% and 21%; 640 s cycle), or severe IH (FIO2-6-7%-21%; 180 s cycle) or sham IH daily for 4 or 8 weeks. After exposures, EE was evaluated while mice were kept under normoxia for 5 weeks and organ histology was evaluated. RESULTS EE was not decreased by IH. However, visceral white adipocyte size after normoxic recovery was significantly increased in severe IH in an intensity-dependent manner. CONCLUSION Our hypothesis that IH would decrease EE was not corroborated. However, IH and normoxic recovery seem to promote severity-dependent enlargement of visceral adipocytes, likely reflecting altered energy preservation mechanisms induced by IH.
Collapse
Affiliation(s)
- Akira Umeda
- Department of Respiratory Medicine, International University of Health and Welfare (IUHW) Shioya Hospital, Japan.
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Japan
| | - Atsumi Mochida
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Japan
| | - Yasumasa Okada
- Department of Internal Medicine, National Hospital Organization Murayama Medical Center, Japan
| | - David Gozal
- Department of Child Health, MU Women's and Children's Hospital, University of Missouri, USA
| |
Collapse
|
8
|
Viscor G, Torrella JR, Corral L, Ricart A, Javierre C, Pages T, Ventura JL. Physiological and Biological Responses to Short-Term Intermittent Hypobaric Hypoxia Exposure: From Sports and Mountain Medicine to New Biomedical Applications. Front Physiol 2018; 9:814. [PMID: 30038574 PMCID: PMC6046402 DOI: 10.3389/fphys.2018.00814] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, the altitude acclimatization responses elicited by short-term intermittent exposure to hypoxia have been subject to renewed attention. The main goal of short-term intermittent hypobaric hypoxia exposure programs was originally to improve the aerobic capacity of athletes or to accelerate the altitude acclimatization response in alpinists, since such programs induce an increase in erythrocyte mass. Several model programs of intermittent exposure to hypoxia have presented efficiency with respect to this goal, without any of the inconveniences or negative consequences associated with permanent stays at moderate or high altitudes. Artificial intermittent exposure to normobaric hypoxia systems have seen a rapid rise in popularity among recreational and professional athletes, not only due to their unbeatable cost/efficiency ratio, but also because they help prevent common inconveniences associated with high-altitude stays such as social isolation, nutritional limitations, and other minor health and comfort-related annoyances. Today, intermittent exposure to hypobaric hypoxia is known to elicit other physiological response types in several organs and body systems. These responses range from alterations in the ventilatory pattern to modulation of the mitochondrial function. The central role played by hypoxia-inducible factor (HIF) in activating a signaling molecular cascade after hypoxia exposure is well known. Among these targets, several growth factors that upregulate the capillary bed by inducing angiogenesis and promoting oxidative metabolism merit special attention. Applying intermittent hypobaric hypoxia to promote the action of some molecules, such as angiogenic factors, could improve repair and recovery in many tissue types. This article uses a comprehensive approach to examine data obtained in recent years. We consider evidence collected from different tissues, including myocardial capillarization, skeletal muscle fiber types and fiber size changes induced by intermittent hypoxia exposure, and discuss the evidence that points to beneficial interventions in applied fields such as sport science. Short-term intermittent hypoxia may not only be useful for healthy people, but could also be considered a promising tool to be applied, with due caution, to some pathophysiological states.
Collapse
Affiliation(s)
- Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Joan R. Torrella
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Luisa Corral
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Antoni Ricart
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Casimiro Javierre
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Teresa Pages
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Josep L. Ventura
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|