1
|
Abstract
Mutations in approximately 80 genes have been implicated as the cause of various genetic kidney diseases. However, gene delivery to kidney cells from the blood is inefficient because of the natural filtering functions of the glomerulus, and research into and development of gene therapy directed toward kidney disease has lagged behind as compared with hepatic, neuromuscular, and ocular gene therapy. This lack of progress is in spite of numerous genetic mouse models of human disease available to the research community and many vectors in existence that can theoretically deliver genes to kidney cells with high efficiency. In the past decade, several groups have begun to develop novel injection techniques in mice, such as retrograde ureter, renal vein, and direct subcapsular injections to help resolve the issue of gene delivery to the kidney through the blood. In addition, the ability to retarget vectors specifically toward kidney cells has been underutilized but shows promise. This review discusses how recent advances in gene delivery to the kidney and the field of gene therapy can leverage the wealth of knowledge of kidney genetics to work toward developing gene therapy products for patients with kidney disease.
Collapse
Affiliation(s)
- Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA
| | - Michael A Barry
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Barry MA, Rubin JD, Lu SC. Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Lett 2020; 594:1918-1946. [PMID: 31944286 PMCID: PMC7311308 DOI: 10.1002/1873-3468.13731] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
Adenoviruses (Ads) are robust vectors for therapeutic applications and vaccines, but their use can be limited by differences in their in vitro and in vivo pharmacologies. This review emphasizes that there is not just one Ad, but a whole virome of diverse viruses that can be used as therapeutics. It discusses that true vector targeting involves not only retargeting viruses, but importantly also detargeting the viruses from off-target cells.
Collapse
Affiliation(s)
- Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - Shao-Chia Lu
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Hagedorn C, Kreppel F. Capsid Engineering of Adenovirus Vectors: Overcoming Early Vector-Host Interactions for Therapy. Hum Gene Ther 2018; 28:820-832. [PMID: 28854810 DOI: 10.1089/hum.2017.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adenovirus-based vectors comprise the most frequently used vector type in clinical studies to date. Both intense lab research and insights from the clinical trials reveal the importance of a comprehensive understanding of vector-host interactions. Especially for systemic intravenous adenovirus vector delivery, it is paramount to develop safe and efficacious vectors. Very early vector-host interactions that take place in blood long before the first cell is being transduced are phenomena triggered by the surface, shape, and size of the adenovirus vector particles. Not surprisingly, a multitude of different technologies ranging from genetics to chemistry has been developed to alter the adenovirus vector surface. In this review, we discuss the most important technologies and evaluate them for their suitability to overcome hurdles imposed by early vector-host interactions.
Collapse
Affiliation(s)
- Claudia Hagedorn
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten, Germany
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten, Germany
| |
Collapse
|
4
|
Ma YY, Wang XJ, Han Y, Li G, Wang HJ, Wang SB, Chen XY, Liu FL, He XL, Tong XM, Mou XZ. Loss of coxsackie and adenovirus receptor expression in human colorectal cancer: A potential impact on the efficacy of adenovirus-mediated gene therapy in Chinese Han population. Mol Med Rep 2016; 14:2541-7. [PMID: 27485384 PMCID: PMC4991754 DOI: 10.3892/mmr.2016.5536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 05/11/2016] [Indexed: 01/05/2023] Open
Abstract
The coxsackie and adenovirus receptor (CAR) is considered a tumor suppressor and critical factor for the efficacy of therapeutic strategies that employ the adenovirus. However, data on CAR expression levels in colorectal cancer are conflicting and its clinical relevance remains to be elucidated. Immunohistochemistry was performed on tissue microarrays containing 251 pairs of colon cancer and adjacent normal tissue samples from Chinese Han patients to assess the expression levels of CAR. Compared with healthy mucosa, decreased CAR expression (40.6% vs. 95.6%; P<0.001) was observed in colorectal cancer samples. The CAR immunopositivity in tumor tissues was not significantly associated with gender, age, tumor size, differentiation, TNM stage, lymph node metastasis or distant metastasis in patients with colon cancer. However, expression of CAR is present in 83.3% of the tumor tissues from patient with colorectal liver metastasis, which was significantly higher than those without liver metastasis (39.6%; P=0.042). At the plasma membrane, CAR was observed in 29.5% normal mucosa samples, which was significantly higher than in colorectal cancer samples (4.0%; P<0.001). In addition, the survival analysis demonstrated that the expression level of CAR has no association with the prognosis of colorectal cancer. CAR expression was observed to be downregulated in colorectal cancer, and it exerts complex effects during colorectal carcinogenesis, potentially depending on the stage of the cancer development and progression. High CAR expression may promote liver metastasis. With regard to oncolytic therapy, CAR expression analysis should be performed prior to adenoviral oncolytic treatment to stratify Chinese Han patients for treatment.
Collapse
Affiliation(s)
- Ying-Yu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiao-Jun Wang
- Department of Anus, Rectum and Colon Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310014, P.R. China
| | - Yong Han
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Gang Li
- Colorectal Department of Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Hui-Ju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Shi-Bing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Fan-Long Liu
- Department of Anus, Rectum and Colon Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiang-Lei He
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiang-Min Tong
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
5
|
Yao XL, Yoshioka Y, Ruan GX, Chen YZ, Mizuguchi H, Mukai Y, Okada N, Gao JQ, Nakagawa S. Optimization and internalization mechanisms of PEGylated adenovirus vector with targeting peptide for cancer gene therapy. Biomacromolecules 2012; 13:2402-9. [PMID: 22746837 DOI: 10.1021/bm300665u] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have previously developed a novel adenovirus vector (Adv) that targeted tumor tissues/vasculatures after systemic administration. The surface of this Adv is conjugated with CGKRK tumor homing peptide by the cross-linking reaction of polyethyleneglycol (PEG). In this study, we showed that the condition of PEG modification was important to minimize the gene expression in normal tissues after systemic treatment. When Adv was modified only with PEG-linked CGKRK, its luciferase expression was enhanced even in the liver tissue, as well as the tumor tissue. However, in the reaction with the mixture of non-cross-linking PEG and PEG-linked CGKRK, we found out that the best modification could suppress its gene expression in the liver, without losing that in the tumor. We also studied the internalization mechanisms of CGKRK-conjugated Adv. Results suggested that there is a specific interaction of the CGKRK peptide with a receptor at the cell surface enabling efficient internalization of CGKRK-conjugated Adv. The presence of cell-surface heparan sulfate is important receptor for the cellular binding and uptake of CGKRK-conjugated Adv. Moreover, macropinocytosis-mediated endocytosis is also important in endocytosis of CGKRK-conjugated Adv, aside from clathrin-mediated and caveolae-mediated endocytosis. These results could help evaluate the potentiality of CGKRK-conjugated Adv as a prototype vector with suitable efficacy and safety for systemic cancer gene therapy.
Collapse
Affiliation(s)
- Xing-Lei Yao
- Institute of Pharmaceutics, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Polymer coatings for delivery of nucleic acid therapeutics. J Control Release 2012; 161:537-53. [PMID: 22366547 DOI: 10.1016/j.jconrel.2012.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/08/2012] [Accepted: 02/11/2012] [Indexed: 12/15/2022]
Abstract
Gene delivery remains the greatest challenge in applying nucleic acid therapeutic for a broad range of diseases. Combining stability during the delivery phase with activation and transgene expression following arrival at the target site requires sophisticated vectors that can discriminate between cell types and respond to target-associated conditions to trigger expression. Efficient intravenous delivery is the greatest single hurdle, with synthetic vectors frequently found to be unstable in the harsh conditions of the bloodstream, and viral vectors often recognized avidly by both the innate and the adaptive immune system. Both types of vectors benefit from coating with hydrophilic polymers. Self-assembling polyelectrolyte non-viral vectors can achieve both steric and lateral stabilization following surface coating, endowing them with much improved systemic circulation properties and better access to disseminated targets; similarly viral vectors can be 'stealthed' and their physical properties modulated by surface coating. Both types of vectors may also have their tropism changed following chemical linkage of novel ligands to the polymer coating. These families of vectors go some way towards realizing the goal of efficient systemic delivery of genes and should find a range of important uses in bringing this still-emerging field to fruition.
Collapse
|
7
|
Tumor vascular targeted delivery of polymer-conjugated adenovirus vector for cancer gene therapy. Mol Ther 2011; 19:1619-25. [PMID: 21673661 DOI: 10.1038/mt.2011.112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previously, we generated a cancer-specific gene therapy system using adenovirus vectors (Adv) conjugated to polyethylene glycol (Adv-PEG). Here, we developed a novel Adv that targets both tumor tissues and tumor vasculatures after systemic administration by conjugating CGKRK tumor vasculature homing peptide to the end of a 20-kDa PEG chain (Adv-PEG(CGKRK)). In a primary tumor model, systemic administration of Adv-PEG(CGKRK) resulted in ~500- and 100-fold higher transgene expression in tumor than that of unmodified Adv and Adv-PEG, respectively. In contrast, the transgene expression of Adv-PEG(CGKRK) in liver was about 400-fold lower than that of unmodified Adv, and was almost the same as that of Adv-PEG. We also demonstrated that transgene expression with Adv-PEG(CGKRK) was enhanced in tumor vessels. Systemic administration of Adv-PEG(CGKRK) expressing the herpes simplex virus thymidine kinase (HSVtk) gene (Adv-PEG(CGKRK)-HSVtk) showed superior antitumor effects against primary tumors and metastases with negligible side effects by both direct cytotoxic effects and inhibition of tumor angiogenesis. These results indicate that Adv-PEG(CGKRK) has potential as a prototype Adv with suitable efficacy and safety for systemic cancer gene therapy against both primary tumors and metastases.
Collapse
|
8
|
Wonganan P, Croyle MA. PEGylated Adenoviruses: From Mice to Monkeys. Viruses 2010; 2:468-502. [PMID: 21994645 PMCID: PMC3185605 DOI: 10.3390/v2020468] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/20/2010] [Accepted: 01/25/2010] [Indexed: 12/13/2022] Open
Abstract
Covalent modification with polyethylene glycol (PEG), a non-toxic polymer used in food, cosmetic and pharmaceutical preparations for over 60 years, can profoundly influence the pharmacokinetic, pharmacologic and toxciologic profile of protein and peptide-based therapeutics. This review summarizes the history of PEGylation and PEG chemistry and highlights the value of this technology in the context of the design and development of recombinant viruses for gene transfer, vaccination and diagnostic purposes. Specific emphasis is placed on the application of this technology to the adenovirus, the most potent viral vector with the most highly characterized toxicity profile to date, in several animal models.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; E-Mail:
| | - Maria A. Croyle
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; E-Mail:
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-512-471-1972; Fax: +1-512-471-7474
| |
Collapse
|
9
|
Espenlaub S, Wortmann A, Engler T, Corjon S, Kochanek S, Kreppel F. Reductive amination as a strategy to reduce adenovirus vector promiscuity by chemical capsid modification with large polysaccharides. J Gene Med 2009; 10:1303-14. [PMID: 18837065 DOI: 10.1002/jgm.1262] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Chemical capsid modification of adenovirus vectors with synthetic polymers has been shown to aid in overcoming typical barriers for adenovirus vector-mediated gene transfer. Carbohydrate-based polymers for covalent modification of adenovirus vectors have been largely neglected so far. We utilized a reductive amination strategy to generate a novel class of adenovirus-based glycovectors with a mannan derivative. METHODS Reductive amination to covalently couple polysaccharides to the capsid surface of adenovirus serotype 5-based vectors was investigated utilizing an oxidized derivative of mannan. After biochemical and physical characterization of mannanylated vectors, their performance was analysed in vitro in cell lines and primary human cells, and in vivo in mice after local and systemic vector injection. RESULTS We describe the successful modification of adenovirus vectors with large polysaccharides by reductive amination. The particles were efficiently modified, physically intact and, importantly, detargeted from the natural Coxsackie and adenovirus receptor/integrin pathway in vitro. In addition, they exhibited significantly decreased transduction of muscle after local delivery and of liver after systemic delivery in mice. However, despite the modification of 60% of capsid surface amino groups, mannanylated particles were unable to evade neutralizing anti-Ad5 antibodies. CONCLUSIONS Mannanylated vectors are a paradigm for a novel class of glycoviruses modified with large polysaccharides. Vector promiscuity as one of the important hurdles for Ad-mediated gene transfer could be significantly decreased in vivo, whereas mannanylated vectors were unable to escape from anti-adenovirus antibodies. Our studies provide a detailed analysis of mannan-modified Ad vectors and suggest further improvements for this novel class of glycovectors.
Collapse
|
10
|
Gray SJ, Samulski RJ. Optimizing gene delivery vectors for the treatment of heart disease. Expert Opin Biol Ther 2008; 8:911-22. [PMID: 18549322 DOI: 10.1517/14712598.8.7.911] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Cardiac gene therapy is approaching reality, with clinical trials entering Phase II/III. Even so, challenges exist to improve the efficacy of even the most successful therapies. OBJECTIVE The merits of different gene therapy vectors are weighed to assess the current feasibility of each in specific cardiac applications. Major obstacles are discussed, along with recent advances in vector development to overcome or circumvent those difficulties. METHODS This review focuses primarily on gene delivery via naked DNA, adenovirus, lentivirus, and adeno-associated virus (AAV) vectors. CONCLUSION Gene therapy via adenovirus and AAV vectors has developed into a promising option for the treatment of heart disease. The merits of gene therapy compared with emerging stem cell and microRNA-based treatments are discussed.
Collapse
Affiliation(s)
- Steven J Gray
- University of North Carolina at Chapel Hill, Gene Therapy Center, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
11
|
Kreppel F, Kochanek S. Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol Ther 2007; 16:16-29. [PMID: 17912234 DOI: 10.1038/sj.mt.6300321] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The chemical modification of adenovirus (Ad) gene transfer vectors with synthetic polymers is a promising strategy for overcoming typical in vivo hurdles associated with Ad-mediated gene delivery. Polymer-modified Ad vectors induce significantly reduced innate immune responses, can evade pre-existing anti-Ad antibodies, allow for repeated vector delivery, and have been used for developing novel retargeting strategies. The most widely used polymers for covalent chemical capsid surface modification are poly-N-(2-hydroxypropyl)methacrylamide (poly-HPMA) and polyethylene glycol (PEG), and the latter is in wide clinical use for modifying protein biopharmaceuticals. In this review, we critically compare the properties of various polymers with respect to Ad vector shielding and retargeting, and identify areas for future research on polymer-modified viral vectors. We describe the potential technical pitfalls of polymer modification of Ad vectors and provide a technical guide for avoiding these while establishing polymer modification techniques in the laboratory.
Collapse
|
12
|
Baoutina A, Alexander IE, Rasko JEJ, Emslie KR. Potential Use of Gene Transfer in Athletic Performance Enhancement. Mol Ther 2007; 15:1751-66. [PMID: 17680029 DOI: 10.1038/sj.mt.6300278] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After only a short history of three decades from concept to practice, gene therapy has recently been shown to have potential to treat serious human diseases. Despite this success, gene therapy remains in the realm of experimental medicine, and much additional preclinical and clinical study will be necessary for proving the efficacy and safety of this approach in the treatment of diseases in humans. However, a potential complicating factor is that advances in gene transfer technology could be misused to enhance athletic performance in sports, in a practice termed "gene doping". Moreover, gene doping could be a precursor to a broader controversial agenda of human "genetic enhancement" with the potential for a significant long-term impact on society. This review addresses the possible ways in which knowledge and experience gained in gene therapy in animals and humans may be abused for enhancing sporting prowess. We provide an overview of recent progress in gene therapy, with potential application to gene doping and with the major focus on candidate performance-enhancement genes. We also discuss the current status of preclinical studies and of clinical trials that use these genes for therapeutic purposes. Current knowledge about the association between the natural "genetic make-up" of humans and their physical characteristics and performance potential is also presented. We address issues associated with the safety of gene transfer technologies in humans, especially when used outside a strictly controlled clinical setting, and the obstacles to translating gene transfer strategies from animal studies to humans. We also address the need for development and implementation of measures to prevent abuse of gene transfer technologies, and to pursue research on strategies for its detection in order to discourage this malpractice among athletes.
Collapse
Affiliation(s)
- Anna Baoutina
- National Measurement Institute, Pymble, New South Wales, Australia.
| | | | | | | |
Collapse
|
13
|
Bacman SR, Williams SL, Hernandez D, Moraes CT. Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a 'differential multiple cleavage-site' model. Gene Ther 2007; 14:1309-18. [PMID: 17597792 PMCID: PMC2771437 DOI: 10.1038/sj.gt.3302981] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/12/2007] [Accepted: 04/10/2007] [Indexed: 11/09/2022]
Abstract
The ability to manipulate mitochondrial DNA (mtDNA) heteroplasmy would provide a powerful tool to treat mitochondrial diseases. Recent studies showed that mitochondria-targeted restriction endonucleases can modify mtDNA heteroplasmy in a predictable and efficient manner if it recognizes a single site in the mutant mtDNA. However, the applicability of such model is limited to mutations that create a novel cleavage site, not present in the wild-type mtDNA. We attempted to extend this approach to a 'differential multiple cleavage site' model, where an mtDNA mutation creates an extra restriction site to the ones normally present in the wild-type mtDNA. Taking advantage of a heteroplasmic mouse model harboring two haplotypes of mtDNA (NZB/BALB) and using adenovirus as a gene vector, we delivered a mitochondria-targeted Scal restriction endonuclease to different mouse tissues. Scal recognizes five sites in the NZB mtDNA but only three in BALB mtDNA. Our results showed that changes in mtDNA heteroplasmy were obtained by the expression of mitochondria-targeted ScaI in both liver, after intravenous injection, and in skeletal muscle, after intramuscular injection. Although mtDNA depletion was an undesirable side effect, our data suggest that under a regulated expression system, mtDNA depletion could be minimized and restriction endonucleases recognizing multiple sites could have a potential for therapeutic use.
Collapse
Affiliation(s)
- SR Bacman
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - SL Williams
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - D Hernandez
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - CT Moraes
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Cell Biology and Anatomy, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
14
|
Abstract
Gene delivery vectors based on Adenoviral (Ad) vectors have enormous potential for the treatment of both hereditary and acquired disease. Detailed structural analysis of the Ad virion, combined with functional studies has broadened our knowledge of the structure/function relationships between Ad vectors and host cells/tissues and substantial achievement has been made towards a thorough understanding of the biology of Ad vectors. The widespread use of Ad vectors for clinical gene therapy is compromised by their inherent immunogenicity. The generation of safer and more effective Ad vectors, targeted to the site of disease, has therefore become a great ambition in the field of Ad vector development. This review provides a synopsis of the structure/function relationships between Ad vectors and host systems and summarizes the many innovative approaches towards achieving Ad vector targeting.
Collapse
Affiliation(s)
- Samuel K. Campos
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Michael A. Barry
- Department of Internal Medicine, Department of Immunology, Division of Infectious Diseases, Translational Immunovirology Program, Molecular Medicine Program, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
15
|
Seymour LW. The future of gene therapy in the UK. Trends Biotechnol 2006; 24:347-9. [PMID: 16782218 DOI: 10.1016/j.tibtech.2006.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 05/03/2006] [Accepted: 06/02/2006] [Indexed: 11/27/2022]
Abstract
Gene therapy encompasses a spectrum of therapeutic strategies, ranging from the compelling concept of using wild type copies of genes to correct the root cause of recessive genetic disorders through to using genes to mediate powerful and selective toxicity to cancer cells. Inspirational for the general public as well as the bioscience community, gene therapy has been grabbing the headlines--for good and bad reasons--regularly for the past 15 years. In this personal appraisal, Professor Len Seymour assesses the progress of gene therapy in the UK and what it might deliver in the foreseeable future.
Collapse
Affiliation(s)
- Leonard W Seymour
- Department of Clinical Pharmacology, University of Oxford, Radcliffe Infirmary, Woodstock Road, OX2 6HE, UK.
| |
Collapse
|