1
|
Berdecka D, De Smedt SC, De Vos WH, Braeckmans K. Non-viral delivery of RNA for therapeutic T cell engineering. Adv Drug Deliv Rev 2024; 208:115215. [PMID: 38401848 DOI: 10.1016/j.addr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Adoptive T cell transfer has shown great success in treating blood cancers, resulting in a growing number of FDA-approved therapies using chimeric antigen receptor (CAR)-engineered T cells. However, the effectiveness of this treatment for solid tumors is still not satisfactory, emphasizing the need for improved T cell engineering strategies and combination approaches. Currently, CAR T cells are mainly manufactured using gammaretroviral and lentiviral vectors due to their high transduction efficiency. However, there are concerns about their safety, the high cost of producing them in compliance with current Good Manufacturing Practices (cGMP), regulatory obstacles, and limited cargo capacity, which limit the broader use of engineered T cell therapies. To overcome these limitations, researchers have explored non-viral approaches, such as membrane permeabilization and carrier-mediated methods, as more versatile and sustainable alternatives for next-generation T cell engineering. Non-viral delivery methods can be designed to transport a wide range of molecules, including RNA, which allows for more controlled and safe modulation of T cell phenotype and function. In this review, we provide an overview of non-viral RNA delivery in adoptive T cell therapy. We first define the different types of RNA therapeutics, highlighting recent advancements in manufacturing for their therapeutic use. We then discuss the challenges associated with achieving effective RNA delivery in T cells. Next, we provide an overview of current and emerging technologies for delivering RNA into T cells. Finally, we discuss ongoing preclinical and clinical studies involving RNA-modified T cells.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Szukiewicz D. Epigenetic regulation and T-cell responses in endometriosis – something other than autoimmunity. Front Immunol 2022; 13:943839. [PMID: 35935991 PMCID: PMC9355085 DOI: 10.3389/fimmu.2022.943839] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is defined as the presence of endometrial-like glands and stroma located outside the uterine cavity. This common, estrogen dependent, inflammatory condition affects up to 15% of reproductive-aged women and is a well-recognized cause of chronic pelvic pain and infertility. Despite the still unknown etiology of endometriosis, much evidence suggests the participation of epigenetic mechanisms in the disease etiopathogenesis. The main rationale is based on the fact that heritable phenotype changes that do not involve alterations in the DNA sequence are common triggers for hormonal, immunological, and inflammatory disorders, which play a key role in the formation of endometriotic foci. Epigenetic mechanisms regulating T-cell responses, including DNA methylation and posttranslational histone modifications, deserve attention because tissue-resident T lymphocytes work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental conditions. Thus, a failure to precisely regulate immune cell transcription may result in compromised immunological integrity of the organ with an increased risk of inflammatory disorders. The coexistence of endometriosis and autoimmunity is a well-known occurrence. Recent research results indicate regulatory T-cell (Treg) alterations in endometriosis, and an increased number of highly active Tregs and macrophages have been found in peritoneal fluid from women with endometriosis. Elimination of the regulatory function of T cells and an imbalance between T helper cells of the Th1 and Th2 types have been reported in the endometria of women with endometriosis-associated infertility. This review aims to present the state of the art in recognition epigenetic reprogramming of T cells as the key factor in the pathophysiology of endometriosis in the context of T-cell-related autoimmunity. The new potential therapeutic approaches based on epigenetic modulation and/or adoptive transfer of T cells will also be outlined.
Collapse
|
3
|
Nakanishi H, Itaka K. Synthetic mRNA for ex vivo therapeutic applications. Drug Metab Pharmacokinet 2022; 44:100447. [DOI: 10.1016/j.dmpk.2022.100447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/06/2023]
|
4
|
Beck JD, Reidenbach D, Salomon N, Sahin U, Türeci Ö, Vormehr M, Kranz LM. mRNA therapeutics in cancer immunotherapy. Mol Cancer 2021; 20:69. [PMID: 33858437 PMCID: PMC8047518 DOI: 10.1186/s12943-021-01348-0] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 02/08/2023] Open
Abstract
Synthetic mRNA provides a template for the synthesis of any given protein, protein fragment or peptide and lends itself to a broad range of pharmaceutical applications, including different modalities of cancer immunotherapy. With the ease of rapid, large scale Good Manufacturing Practice-grade mRNA production, mRNA is ideally poised not only for off-the shelf cancer vaccines but also for personalized neoantigen vaccination. The ability to stimulate pattern recognition receptors and thus an anti-viral type of innate immune response equips mRNA-based vaccines with inherent adjuvanticity. Nucleoside modification and elimination of double-stranded RNA can reduce the immunomodulatory activity of mRNA and increase and prolong protein production. In combination with nanoparticle-based formulations that increase transfection efficiency and facilitate lymphatic system targeting, nucleoside-modified mRNA enables efficient delivery of cytokines, costimulatory receptors, or therapeutic antibodies. Steady but transient production of the encoded bioactive molecule from the mRNA template can improve the pharmacokinetic, pharmacodynamic and safety properties as compared to the respective recombinant proteins. This may be harnessed for applications that benefit from a higher level of expression control, such as chimeric antigen receptor (CAR)-modified adoptive T-cell therapies. This review highlights the advancements in the field of mRNA-based cancer therapeutics, providing insights into key preclinical developments and the evolving clinical landscape.
Collapse
Affiliation(s)
- Jan D Beck
- BioNTech SE, An der Goldgrube 12, 55131, Mainz, Germany
| | - Daniel Reidenbach
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University gGmbH, Freiligrathstraße 12, 55131, Mainz, Germany
| | - Nadja Salomon
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University gGmbH, Freiligrathstraße 12, 55131, Mainz, Germany
| | - Ugur Sahin
- BioNTech SE, An der Goldgrube 12, 55131, Mainz, Germany
| | - Özlem Türeci
- BioNTech SE, An der Goldgrube 12, 55131, Mainz, Germany
| | | | - Lena M Kranz
- BioNTech SE, An der Goldgrube 12, 55131, Mainz, Germany.
| |
Collapse
|
5
|
Rahman MM, Zhou N, Huang J. An Overview on the Development of mRNA-Based Vaccines and Their Formulation Strategies for Improved Antigen Expression In Vivo. Vaccines (Basel) 2021; 9:244. [PMID: 33799516 PMCID: PMC8001631 DOI: 10.3390/vaccines9030244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
The mRNA-based vaccine approach is a promising alternative to traditional vaccines due to its ability for prompt development, high potency, and potential for secure administration and low-cost production. Nonetheless, the application has still been limited by the instability as well as the ineffective delivery of mRNA in vivo. Current technological improvements have now mostly overcome these concerns, and manifold mRNA vaccine plans against various forms of malignancies and infectious ailments have reported inspiring outcomes in both humans and animal models. This article summarizes recent mRNA-based vaccine developments, advances of in vivo mRNA deliveries, reflects challenges and safety concerns, and future perspectives, in developing the mRNA vaccine platform for extensive therapeutic use.
Collapse
Affiliation(s)
- Md. Motiar Rahman
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (N.Z.); (J.H.)
| | - Nan Zhou
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (N.Z.); (J.H.)
| | - Jiandong Huang
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (N.Z.); (J.H.)
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
6
|
Harris E, Zimmerman D, Warga E, Bamezai A, Elmer J. Nonviral gene delivery to T cells with Lipofectamine LTX. Biotechnol Bioeng 2021; 118:1693-1706. [PMID: 33480049 DOI: 10.1002/bit.27686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Retroviral gene delivery is widely used in T cell therapies for hematological cancers. However, viral vectors are expensive to manufacture, integrate genes in semirandom patterns, and their transduction efficiency varies between patients. In this study, several nonviral gene delivery vehicles, promoters, and additional variables were compared to optimize nonviral transgene delivery and expression in both Jurkat and primary T cells. Transfection of Jurkat cells was maximized to a high efficiency (63.0% ± 10.9% EGFP+ cells) by transfecting cells with Lipofectamine LTX in X-VIVO 15 media. However, the same method yielded a much lower transfection efficiency in primary T cells (8.1% ± 0.8% EGFP+ ). Subsequent confocal microscopy revealed that a majority of the lipoplexes did not enter the primary T cells, which might be due to relatively low expression levels of heparan sulfate proteoglycans detected via messenger RNA-sequencing. Pyrin and HIN (PYHIN) DNA sensors (e.g., AIM2 and IFI16) that can induce apoptosis or repress transcription after binding cytoplasmic DNA were also detected at high levels in primary T cells. Therefore, transfection of primary T cells appears to be limited at the level of cellular uptake or DNA sensing in the cytoplasm. Both of these factors should be considered in the development of future viral and nonviral T cell gene delivery methods.
Collapse
Affiliation(s)
- Emily Harris
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania, USA
| | - Devon Zimmerman
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania, USA
| | - Eric Warga
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania, USA
| | - Anil Bamezai
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Jacob Elmer
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania, USA
| |
Collapse
|
7
|
Sultana N, Sharkar MTK, Hadas Y, Chepurko E, Zangi L. In Vitro Synthesis of Modified RNA for Cardiac Gene Therapy. Methods Mol Biol 2021; 2158:281-294. [PMID: 32857381 DOI: 10.1007/978-1-0716-0668-1_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Modified mRNA (modRNA) is a promising new gene therapy approach that has safely and effectively delivered genes into different tissues, including the heart. Current efforts to use DNA-based or viral gene therapy to induce cardiac regeneration postmyocardial infarction (MI) or in heart failure (HF) have encountered key challenges, e.g., genome integration and delayed and noncontrolled expression. By contrast, modRNA is a transient, safe, non-immunogenic, and controlled gene delivery method that is not integrated into the genome. For most therapeutic applications, especially in regenerative medicine, the ability to deliver genes to the heart transiently and with control is vital for achieving therapeutic effect. Additionally, modRNA synthesis is comparatively simple and inexpensive compared to other gene delivery methods (e.g., protein), though a simple, clear in vitro transcription (IVT) protocol for synthesizing modRNA is needed for it to be more widely used. Here, we describe a simple and improved step-by-step IVT protocol to synthesize modRNA for in vitro or in vivo applications.
Collapse
Affiliation(s)
- Nishat Sultana
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohammad Tofael Kabir Sharkar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yoav Hadas
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Chepurko
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lior Zangi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Abstract
Adoptive T cell therapy has proven effective against hematologic malignancies and demonstrated efficacy against a variety of solid tumors in preclinical studies and clinical trials. Nonetheless, antitumor responses against solid tumors remain modest, highlighting the need to enhance the effectiveness of this therapy. Genetic modification of T cells with RNA has been explored to enhance T-cell antigen specificity, effector function, and migration to tumor sites, thereby potentiating antitumor immunity. This review describes the rationale for RNA-electroporated T cell modifications and provides an overview of their applications in preclinical and clinical investigations for the treatment of hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Fernanda Pohl-Guimarães
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Lan B Hoang-Minh
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Duane A Mitchell
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Raes L, Stremersch S, Fraire JC, Brans T, Goetgeluk G, De Munter S, Van Hoecke L, Verbeke R, Van Hoeck J, Xiong R, Saelens X, Vandekerckhove B, De Smedt S, Raemdonck K, Braeckmans K. Intracellular Delivery of mRNA in Adherent and Suspension Cells by Vapor Nanobubble Photoporation. NANO-MICRO LETTERS 2020; 12:185. [PMID: 34138203 PMCID: PMC7770675 DOI: 10.1007/s40820-020-00523-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/22/2020] [Indexed: 05/23/2023]
Abstract
Efficient and safe cell engineering by transfection of nucleic acids remains one of the long-standing hurdles for fundamental biomedical research and many new therapeutic applications, such as CAR T cell-based therapies. mRNA has recently gained increasing attention as a more safe and versatile alternative tool over viral- or DNA transposon-based approaches for the generation of adoptive T cells. However, limitations associated with existing nonviral mRNA delivery approaches hamper progress on genetic engineering of these hard-to-transfect immune cells. In this study, we demonstrate that gold nanoparticle-mediated vapor nanobubble (VNB) photoporation is a promising upcoming physical transfection method capable of delivering mRNA in both adherent and suspension cells. Initial transfection experiments on HeLa cells showed the importance of transfection buffer and cargo concentration, while the technology was furthermore shown to be effective for mRNA delivery in Jurkat T cells with transfection efficiencies up to 45%. Importantly, compared to electroporation, which is the reference technology for nonviral transfection of T cells, a fivefold increase in the number of transfected viable Jurkat T cells was observed. Altogether, our results point toward the use of VNB photoporation as a more gentle and efficient technology for intracellular mRNA delivery in adherent and suspension cells, with promising potential for the future engineering of cells in therapeutic and fundamental research applications.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Stephan Stremersch
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Glenn Goetgeluk
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Stijn De Munter
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Lien Van Hoecke
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Rein Verbeke
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Jelter Van Hoeck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Ranhua Xiong
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, 9052, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9000, Ghent, Belgium
| | - Bart Vandekerckhove
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Stefaan De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium.
| |
Collapse
|
10
|
Harris E, Elmer JJ. Optimization of electroporation and other non-viral gene delivery strategies for T cells. Biotechnol Prog 2020; 37:e3066. [PMID: 32808434 DOI: 10.1002/btpr.3066] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
CAR-T therapy is a particularly effective treatment for some types of cancer that uses retroviruses to deliver the gene for a chimeric antigen receptor (CAR) to a patient's T cells ex vivo. The CAR enables the T cells to bind and eradicate cells with a specific surface marker (e.g., CD19+ B cells) after they are transfused back into the patient. This treatment was proven to be particularly effective in treating non-Hodgkin's lymphoma (NHL) and acute lymphoblastic leukemia (ALL), but the current CAR-T cell manufacturing process has a few significant drawbacks. For example, while lentiviral and gammaretroviral transduction are both relatively effective, the process of producing viral vectors is time-consuming and costly. Additionally, patients must undergo follow up appointments for several years to monitor them for any unanticipated side effects associated with the virus. Therefore, several studies have endeavored to find alternative non-viral gene delivery methods that are less expensive, more precise, simple, and safe. This review focuses on the current state of the most promising non-viral gene delivery techniques, including electroporation and transfection with cationic polymers or lipids.
Collapse
Affiliation(s)
- Emily Harris
- Villanova University, Department of Chemical & Biological Engineering, Villanova, Pennsylvania, USA
| | - Jacob J Elmer
- Villanova University, Department of Chemical & Biological Engineering, Villanova, Pennsylvania, USA
| |
Collapse
|
11
|
Abdalla AME, Xiao L, Miao Y, Huang L, Fadlallah GM, Gauthier M, Ouyang C, Yang G. Nanotechnology Promotes Genetic and Functional Modifications of Therapeutic T Cells Against Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903164. [PMID: 32440473 PMCID: PMC7237845 DOI: 10.1002/advs.201903164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/23/2020] [Indexed: 05/24/2023]
Abstract
Growing experience with engineered chimeric antigen receptor (CAR)-T cells has revealed some of the challenges associated with developing patient-specific therapy. The promising clinical results obtained with CAR-T therapy nevertheless demonstrate the urgency of advancements to promote and expand its uses. There is indeed a need to devise novel methods to generate potent CARs, and to confer them and track their anti-tumor efficacy in CAR-T therapy. A potentially effective approach to improve the efficacy of CAR-T cell therapy would be to exploit the benefits of nanotechnology. This report highlights the current limitations of CAR-T immunotherapy and pinpoints potential opportunities and tremendous advantages of using nanotechnology to 1) introduce CAR transgene cassettes into primary T cells, 2) stimulate T cell expansion and persistence, 3) improve T cell trafficking, 4) stimulate the intrinsic T cell activity, 5) reprogram the immunosuppressive cellular and vascular microenvironments, and 6) monitor the therapeutic efficacy of CAR-T cell therapy. Therefore, genetic and functional modifications promoted by nanotechnology enable the generation of robust CAR-T cell therapy and offer precision treatments against cancer.
Collapse
Affiliation(s)
- Ahmed M. E. Abdalla
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Department of BiochemistryCollege of Applied ScienceUniversity of BahriKhartoum1660/11111Sudan
| | - Lin Xiao
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Yu Miao
- Department of Vascular SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Lixia Huang
- Hubei Key Laboratory of Purification and Application of Plant Anti‐Cancer Active IngredientsSchool of Chemistry and Life SciencesHubei University of EducationWuhan430205China
| | - Gendeal M. Fadlallah
- Department of Chemistry and BiologyFaculty of EducationUniversity of GeziraWad‐Medani2667Sudan
| | - Mario Gauthier
- Department of ChemistryUniversity of WaterlooWaterlooN2L 3G1Canada
| | - Chenxi Ouyang
- Department of Vascular SurgeryFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Guang Yang
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
12
|
Foster JB, Barrett DM, Karikó K. The Emerging Role of In Vitro-Transcribed mRNA in Adoptive T Cell Immunotherapy. Mol Ther 2019; 27:747-756. [PMID: 30819612 PMCID: PMC6453504 DOI: 10.1016/j.ymthe.2019.01.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Adoptive T cell therapy is a form of cellular therapy that utilizes human immune cells, often empowered by the expression of recombinant proteins, to attack selected targets present on tumor or infected cells. T cell-based immunotherapy has been progressing over the past several decades, and reached a milestone with the recent US Food and Drug Administration (FDA) approval of chimeric antigen receptor T cell therapy for relapsed and refractory leukemia and lymphoma. Although most studies have used viral vectors, a growing number of researchers have come to appreciate in vitro-transcribed (IVT) mRNA for the development, testing, and application of T cell-based immunotherapeutics. IVT mRNA offers inherent safety features, highly efficient recombinant protein translation, and the ability to control pharmacokinetic properties of the therapy. In this review, we discuss the history of IVT mRNA in adoptive T cell therapy, from tumor-infiltrating lymphocytes and T cell receptor-based therapies to chimeric antigen receptor therapy and gene-editing techniques, as well as prior and ongoing clinical trials.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - David M Barrett
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
13
|
RNA-Modified T Cells Mediate Effective Delivery of Immunomodulatory Cytokines to Brain Tumors. Mol Ther 2018; 27:837-849. [PMID: 30448196 DOI: 10.1016/j.ymthe.2018.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 11/24/2022] Open
Abstract
With the presence of the blood-brain barrier (BBB), successful immunotherapeutic drug delivery to CNS malignancies remains a challenge. Immunomodulatory agents, such as cytokines, can reprogram the intratumoral microenvironment; however, systemic cytokine delivery has limited access to the CNS. To bypass the limitations of systemically administered cytokines, we investigated if RNA-modified T cells could deliver macromolecules directly to brain tumors. The abilities of T cells to cross the BBB and mediate direct cytotoxic killing of intracranial tumors make them an attractive tool as biological carriers. Using T cell mRNA electroporation, we demonstrated that activated T cells can be modified to secrete granulocyte macrophage colony-stimulating factor (GM-CSF) protein while retaining their inherent effector functions in vitro. GM-CSF RNA-modified T cells effectively delivered GM-CSF to intracranial tumors in vivo and significantly extended overall survival in an orthotopic treatment model. Importantly, GM-CSF RNA-modified T cells demonstrated superior anti-tumor efficacy as compared to unmodified T cells alone or in combination with systemic administration of recombinant GM-CSF. Anti-tumor effects were associated with increased IFN-γ secretion locally within the tumor microenvironment and systemic antigen-specific T cell expansion. These findings demonstrate that RNA-modified T cells may serve as a versatile platform for the effective delivery of biological agents to CNS tumors.
Collapse
|
14
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
15
|
Artificial MicroRNAs as Novel Secreted Reporters for Cell Monitoring in Living Subjects. PLoS One 2016; 11:e0159369. [PMID: 27442530 PMCID: PMC4956193 DOI: 10.1371/journal.pone.0159369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 07/02/2016] [Indexed: 01/08/2023] Open
Abstract
Reporter genes are powerful technologies that can be used to directly inform on the fate of transplanted cells in living subjects. Imaging reporter genes are often employed to quantify cell number, location(s), and viability with various imaging modalities. To complement this, reporters that are secreted from cells can provide a low-cost, in vitro diagnostic test to monitor overall cell viability at relatively high frequency without knowing the locations of all cells. Whereas protein-based secretable reporters have been developed, an RNA-based reporter detectable with amplification inherent PCR-based assays has not been previously described. MicroRNAs (miRNAs) are short non-coding RNAs (18–22 nt) that regulate mRNA translation and are being explored as relatively stable blood-based disease biomarkers. We developed an artificial miRNA-based secreted reporter, called Sec-miR, utilizing a coding sequence that is not expressed endogenously and does not have any known vertebrate target. Sec-miR was detectable in both the cells and culture media of transiently transfected cells. Cells stably expressing Sec-miR also reliably secreted it into the culture media. Mice implanted with parental HeLa cells or HeLa cells expressing both Sec-miR and the bioluminescence imaging (BLI) reporter gene Firefly luciferase (FLuc) were monitored over time for tumor volume, FLuc signal via BLI, and blood levels of Sec-miR. Significantly (p<0.05) higher Sec-miR was found in the blood of mice bearing Sec-miR-expressing tumors compared to parental cell tumors at 21 and 28 days after implantation. Importantly, blood Sec-miR reporter levels after day 21 showed a trend towards correlation with tumor volume (R2 = 0.6090; p = 0.0671) and significantly correlated with FLuc signal (R2 = 0.7067; p<0.05). Finally, we could significantly (p<0.01) amplify Sec-miR secretion into the cell media by chaining together multiple Sec-miR copies (4 instead of 1 or 2) within an expression cassette. Overall, we show that a novel complement of BLI together with a unique Sec-miR reporter adds an in vitro RNA-based diagnostic to enhance the monitoring of transplanted cells. While Sec-miR was not as sensitive as BLI for monitoring cell number, it may be more sensitive than clinically-relevant positron emission tomography (PET) reporter assays. Future work will focus on improving cell detectability via improved secretion of Sec-miR reporters from cells and more sensitive detection platforms, as well as, exploring other miRNA sequences to allow multiplexed monitoring of more than one cell population at a time. Continued development may lead to more refined and precise monitoring of cell-based therapies.
Collapse
|
16
|
Blumrosen G, Abazari A, Golberg A, Yarmush ML, Toner M. Single-step electrical field strength screening to determine electroporation induced transmembrane transport parameters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2041-2049. [PMID: 27263825 DOI: 10.1016/j.bbamem.2016.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 05/04/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
The design of effective electroporation protocols for molecular delivery applications requires the determination of transport parameters including diffusion coefficient, membrane resealing, and critical electric field strength for electroporation. The use of existing technologies to determine these parameters is time-consuming and labor-intensive, and often results in large inconsistencies in parameter estimation due to variations in the protocols and setups. In this work, we suggest using a set of concentric electrodes to screen a full range of electric field strengths in a single test to determine the electroporation-induced transmembrane transport parameters. Using Calcein as a fluorescent probe, we developed analytical methodology to determine the transport parameters based on the electroporation-induced pattern of fluorescence loss from cells. A monolayer of normal human dermal fibroblast (NHDF) cells were pre-loaded with Calcein and electroporated with an applied voltage of 750V with 10 and 50 square pulses with 50μs duration. Using our analytical model, the critical electric field strength for electroporation was found for the 10 and 50 pulses experiments. An inverse correlation between the field strength and the molecular transport time decay constant, and a direct correlation between field strength and the membrane permeability were observed. The results of this work can simplify the development of electroporation-assisted technologies for research and therapies.
Collapse
Affiliation(s)
- Gadi Blumrosen
- Department of Computer Science, Tel Aviv University, Israel
| | - Alireza Abazari
- The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Alexander Golberg
- The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Porter School of Environmental Studies, Tel Aviv University, Israel.
| | - Martin L Yarmush
- The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854., United States.
| | - Mehmet Toner
- The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
17
|
Gill S, June CH. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev 2015; 263:68-89. [PMID: 25510272 DOI: 10.1111/imr.12243] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On July 1, 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to CTL019, the anti-CD19 chimeric antigen receptor T-cell therapy developed at the University of Pennsylvania. This is the first personalized cellular therapy for cancer to be so designated and occurred 25 years after the first publication describing genetic redirection of T cells to a surface antigen of choice. The peer-reviewed literature currently contains the outcomes of more than 100 patients treated on clinical trials of anti-CD19 redirected T cells, and preliminary results on many more patients have been presented. At last count almost 30 clinical trials targeting CD19 were actively recruiting patients in North America, Europe, and Asia. Patients with high-risk B-cell malignancies therefore represent the first beneficiaries of an exciting and potent new treatment modality that harnesses the power of the immune system as never before. A handful of trials are targeting non-CD19 hematological and solid malignancies and represent the vanguard of enormous preclinical efforts to develop CAR T-cell therapy beyond B-cell malignancies. In this review, we explain the concept of chimeric antigen receptor gene-modified T cells, describe the extant results in hematologic malignancies, and share our outlook on where this modality is likely to head in the near future.
Collapse
Affiliation(s)
- Saar Gill
- Abramson Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
18
|
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 2014; 13:759-80. [PMID: 25233993 DOI: 10.1038/nrd4278] [Citation(s) in RCA: 1537] [Impact Index Per Article: 139.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In vitro transcribed (IVT) mRNA has recently come into focus as a potential new drug class to deliver genetic information. Such synthetic mRNA can be engineered to transiently express proteins by structurally resembling natural mRNA. Advances in addressing the inherent challenges of this drug class, particularly related to controlling the translational efficacy and immunogenicity of the IVTmRNA, provide the basis for a broad range of potential applications. mRNA-based cancer immunotherapies and infectious disease vaccines have entered clinical development. Meanwhile, emerging novel approaches include in vivo delivery of IVT mRNA to replace or supplement proteins, IVT mRNA-based generation of pluripotent stem cells and genome engineering using IVT mRNA-encoded designer nucleases. This Review provides a comprehensive overview of the current state of mRNA-based drug technologies and their applications, and discusses the key challenges and opportunities in developing these into a new class of drugs.
Collapse
Affiliation(s)
- Ugur Sahin
- 1] TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany. [2] BioNTech Corporation, An der Goldgrube 12, 55131 Mainz, Germany
| | - Katalin Karikó
- 1] BioNTech Corporation, An der Goldgrube 12, 55131 Mainz, Germany. [2] Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Özlem Türeci
- TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
19
|
Abstract
Recent clinical success has underscored the potential for immunotherapy based on the adoptive cell transfer (ACT) of engineered T lymphocytes to mediate dramatic, potent, and durable clinical responses. This success has led to the broader evaluation of engineered T-lymphocyte-based adoptive cell therapy to treat a broad range of malignancies. In this review, we summarize concepts, successes, and challenges for the broader development of this promising field, focusing principally on lessons gleaned from immunological principles and clinical thought. We present ACT in the context of integrating T-cell and tumor biology and the broader systemic immune response.
Collapse
Affiliation(s)
- Marco Ruella
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
20
|
Abstract
Adoptive immunotherapy, or the infusion of lymphocytes, is a promising approach for the treatment of cancer and certain chronic viral infections. The application of the principles of synthetic biology to enhance T cell function has resulted in substantial increases in clinical efficacy. The primary challenge to the field is to identify tumor-specific targets to avoid off-tumor, on-target toxicity. Given recent advances in efficacy in numerous pilot trials, the next steps in clinical development will require multicenter trials to establish adoptive immunotherapy as a mainstream technology.
Collapse
Affiliation(s)
- Marcela V Maus
- Translational Research Program, Abramson Cancer Center and
| | | | | | | | | | | |
Collapse
|
21
|
Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 2013; 39:49-60. [PMID: 23890063 DOI: 10.1016/j.immuni.2013.07.002] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 01/12/2023]
Abstract
Adoptive T cell transfer for cancer and chronic infection is an emerging field that shows promise in recent trials. Synthetic-biology-based engineering of T lymphocytes to express high-affinity antigen receptors can overcome immune tolerance, which has been a major limitation of immunotherapy-based strategies. Advances in cell engineering and culture approaches to enable efficient gene transfer and ex vivo cell expansion have facilitated broader evaluation of this technology, moving adoptive transfer from a "boutique" application to the cusp of a mainstream technology. The major challenge currently facing the field is to increase the specificity of engineered T cells for tumors, because targeting shared antigens has the potential to lead to on-target off-tumor toxicities, as observed in recent trials. As the field of adoptive transfer technology matures, the major engineering challenge is the development of automated cell culture systems, so that the approach can extend beyond specialized academic centers and become widely available.
Collapse
Affiliation(s)
- Michael Kalos
- Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA.
| | | |
Collapse
|
22
|
Abstract
mRNA has become an important alternative to DNA as a tool for cell reprogramming. To be expressed, exogenous DNA must be transmitted through the cell cytoplasm and placed into the nucleus. In contrast, exogenous mRNA simply has to be delivered into the cytoplasm. This can result in a highly uniform transfection of the whole population of cells, an advantage that has not been observed with DNA transfer. The use of mRNA, instead of DNA, in medical applications increases protocol safety by abolishing the risk of transgene insertion into host genomes. In this chapter, we review the aspects of mRNA structure and function that are important for its "transgenic" behavior, such as the composition of mRNA molecules and complexes with RNA binding proteins, localization of mRNA in cytoplasmic compartments, translation, and the duration of mRNA expression. In immunotherapy, mRNA is employed in reprogramming of antigen presenting cells (vaccination) and cytolytic lymphocytes. Other applications include generation of induced pluripotent stem (iPS) cells, and genome engineering with modularly assembled nucleases. The most investigated applications of mRNA technology are also reviewed here.
Collapse
|
23
|
Gill S, Kalos M. T cell-based gene therapy of cancer. Transl Res 2013; 161:365-79. [PMID: 23246626 DOI: 10.1016/j.trsl.2012.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 01/20/2023]
Abstract
Adoptive immunotherapy using gene engineered T cells is a promising and rapidly evolving field, and the ability to engineer T cells to manifest desired phenotypes and functions has become a practical reality. In this review, we describe and summarize current thought about gene engineering of T cells. We focus on the identified requirements for the successful application of T cell based immunotherapy and discuss gene-therapy based strategies that address these requirements and have the potential to enhance the successful implementation of this promising approach to treat cancer.
Collapse
Affiliation(s)
- Saar Gill
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa., USA
| | | |
Collapse
|
24
|
Chicaybam L, Sodre AL, Curzio BA, Bonamino MH. An efficient low cost method for gene transfer to T lymphocytes. PLoS One 2013; 8:e60298. [PMID: 23555950 PMCID: PMC3608570 DOI: 10.1371/journal.pone.0060298] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/25/2013] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Gene transfer to T lymphocytes has historically relied on retro and lentivirus, but recently transposon-based gene transfer is rising as a simpler and straight forward approach to achieve stable transgene expression. Transfer of expression cassettes to T lymphocytes remains challenging, being based mainly on commercial kits. AIMS We herein report a convenient and affordable method based on in house made buffers, generic cuvettes and utilization of the widely available Lonza nucleofector II device to promote efficient gene transfer to T lymphocytes. RESULTS This approach renders high transgene expression levels in primary human T lymphocytes (mean 45%, 41-59%), the hard to transfect murine T cells (mean 38%, 36-42% for C57/BL6 strain) and human Jurkat T cell line. Cell viability levels after electroporation allowed further manipulations such as in vitro expansion and Chimeric Antigen Receptor (CAR) mediated gain of function for target cell lysis. CONCLUSIONS We describe here an efficient general protocol for electroporation based modification of T lymphocytes. By opening access to this protocol, we expect that efficient gene transfer to T lymphocytes, for transient or stable expression, may be achieved by an increased number of laboratories at lower and affordable costs.
Collapse
Affiliation(s)
- Leonardo Chicaybam
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa (CPQ), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
- Instituto de Pesquisa Clínica Evandro Chagas (IPEC), Fundação Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Andressa Laino Sodre
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa (CPQ), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Bianca Azevedo Curzio
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa (CPQ), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Martin Hernan Bonamino
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa (CPQ), Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Malecek K, Zhong S, McGary K, Yu C, Huang K, Johnson LA, Rosenberg SA, Krogsgaard M. Engineering improved T cell receptors using an alanine-scan guided T cell display selection system. J Immunol Methods 2013; 392:1-11. [PMID: 23500145 DOI: 10.1016/j.jim.2013.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 11/18/2022]
Abstract
T cell receptors (TCRs) on T cells recognize peptide-major histocompatibility complex (pMHC) molecules on the surface of antigen presenting cells and this interaction determines the T cell immune response. Due to negative selection, naturally occurring TCRs bind self (tumor) peptides with low affinity and have a much higher affinity for foreign antigens. This complicates isolation of naturally occurring, high affinity TCRs that mediate more effective tumor rejection for therapeutic purposes. An attractive approach to resolve this issue is to engineer high affinity TCRs in vitro using phage, yeast or mammalian TCR display systems. A caveat of these systems is that they rely on a large library by random mutagenesis due to the lack of knowledge regarding the specific interactions between the TCR and pMHC. We have focused on the mammalian retroviral display system because it uniquely allows for direct comparison of TCR-pMHC-binding properties with T-cell activation outcomes. Through an alanine-scanning approach, we are able to quickly map the key amino acid residues directly involved in TCR-pMHC interactions thereby significantly reducing the library size. Using this method, we demonstrate that for a self-antigen-specific human TCR (R6C12) the key residues for pMHC binding are located in the CDR3β region. This information was used as a basis for designing an efficacious TCR CDR3α library that allowed for selection of TCRs with higher avidity than the wild-type as evaluated through binding and activation experiments. This is a direct approach to target specific TCR residues in TCR library design to efficiently engineer high avidity TCRs that may potentially be used to enhance adoptive immunotherapy treatments.
Collapse
Affiliation(s)
- Karolina Malecek
- NYU Cancer institute, New York University School of Medicine, NewYork, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhao X, Su H, Yin G, Liu X, Liu Z, Suo X. High transfection efficiency of porcine peripheral blood T cells via nucleofection. Vet Immunol Immunopathol 2011; 144:179-86. [PMID: 22055481 DOI: 10.1016/j.vetimm.2011.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/04/2011] [Accepted: 10/10/2011] [Indexed: 12/27/2022]
|
27
|
Almåsbak H, Rian E, Hoel HJ, Pulè M, Wälchli S, Kvalheim G, Gaudernack G, Rasmussen AM. Transiently redirected T cells for adoptive transfer. Cytotherapy 2011; 13:629-40. [PMID: 21174490 DOI: 10.3109/14653249.2010.542461] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS T cells can be redirected to reject cancer by retroviral transduction with a chimeric antigen receptor (CAR) or by administration of a bispecific T cell engager (BiTE). We demonstrate that transfection of T cells with messenger (m) RNA coding for CAR is an alternative strategy. METHODS We describe the pre-clinical evaluation of a method based on transient modification of expanded T cells with a CD19 CAR directed against B-cell malignancies. CAR mRNA was generated under cell-free conditions in a scalable process using recombinant RNA polymerase. Efficient and non-toxic square-wave electroporation was used to load the mRNA into the cytoplasm of T cells with no risk of insertional mutagenesis. RESULTS After transfection >80% of T cells were viable, with 94% CAR expression. Transfected T cells were cytolytic to CD19(+) targets and produced interferon (IFN)-γ in response. Killing of CD19(+) target cells was demonstrated even at day 8 with undetectable CAR expression. Increasing the concentration of mRNA resulted in higher surface CAR expression, better killing and more IFN-γ release but at the expense of increased activation-induced cell death. Finally, we demonstrated that a second transgene could be introduced by co-electroporation of CXCR4 or CCR7 with CAR to also modify chemotactic responses. CONCLUSIONS We advocate the transient redirection approach as well suited to meet safety aspects for early phase studies, prior to trials using stably transduced cells once CAR has been proven safe. The simplicity of this methodology also facilitates rapid screening of candidate targets and novel receptors in pre-clinical studies.
Collapse
Affiliation(s)
- Hilde Almåsbak
- Section for Immunology, Radiumhospitalet, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
A high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells. Biomed Microdevices 2011; 12:855-63. [PMID: 20574820 DOI: 10.1007/s10544-010-9440-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 x 10(8) primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19+ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy.
Collapse
|
29
|
Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, Chew A, Carroll RG, Scholler J, Levine BL, Albelda SM, June CH. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 2010; 70:9053-61. [PMID: 20926399 PMCID: PMC2982929 DOI: 10.1158/0008-5472.can-10-2880] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor-reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CAR). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high-level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week after electroporation. Multiple injections of RNA CAR-electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(-/-) mice. Dramatic tumor reduction also occurred when the preexisting intraperitoneal human-derived tumors, which had been growing in vivo for >50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes showing that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA-engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/metabolism
- Cells, Cultured
- Cytotoxicity, Immunologic/immunology
- Electroporation
- Flow Cytometry
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Humans
- Immunotherapy, Adoptive/methods
- Injections
- K562 Cells
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mesothelin
- Mesothelioma/immunology
- Mesothelioma/pathology
- Mesothelioma/therapy
- Mice
- Mice, Inbred NOD
- Mice, SCID
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Tumor Burden/immunology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yangbing Zhao
- Abramson Family Cancer Research Institute and Department of Pathology and Laboratory Medicine and Thoracic Oncology Research Laboratory and Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dotti G, Savoldo B, Brenner M. Fifteen years of gene therapy based on chimeric antigen receptors: "are we nearly there yet?". Hum Gene Ther 2010; 20:1229-39. [PMID: 19702437 DOI: 10.1089/hum.2009.142] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
"T-body" or chimeric antigen receptor (CAR) technology, which combines the specificity of an antibody with the homing, tissue penetration, and target cell destruction of T cells, was first described in 1993. After many years of unmet promise, significant improvements in gene transfer, including the development of efficient retroviral vectors for transduction of human T cells, and better understanding of immunological pathways and immune cell interactions, are allowing this technology to reach a critical phase of evaluation, in which we will learn whether the approach can truly meet expectations. In this review we summarize the concept of CAR-based immunotherapy, describe the steps accomplished, and outline the future progress we need to make if this approach is truly to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Methodist Hospital, Houston, TX 77030, USA
| | | | | |
Collapse
|
31
|
Abstract
Adoptive transfer of T cells with restricted tumor specificity provides a promising approach to immunotherapy of cancers. However, the isolation of autologous cytotoxic T cells that recognize tumor-associated antigens is time consuming and fails in many instances. Alternatively, gene modification with tumor antigen-specific T-cell receptors (TCR) or chimeric antigen receptors (CARs) can be used to redirect the specificity of large numbers of immune cells toward the malignant cells. Chimeric antigen receptors are composed of the single-chain variable fragment (scFv) of a tumor-recognizing antibody cloned in frame with human T-cell signaling domains (e.g., CD3zeta, CD28, OX40, 4-1BB), thus combining the specificity of antibodies with the effector functions of cytotoxic T cells. Upon antigen binding, the intracellular signaling domains of the CAR initiate cellular activation mechanisms including cytokine secretion and cytolysis of the antigen-positive target cell.In this chapter, we provide detailed protocols for large-scale ex vivo expansion of T cells and manufacturing of medium-scale batches of CAR-expressing T cells for translational research by mRNA electroporation. An anti-CD19 chimeric receptor for the targeting of leukemias and lymphomas was used as a model system. We are currently scaling up the protocols to adapt them to cGMP production of a large number of redirected T cells for clinical applications.
Collapse
Affiliation(s)
- Hilde Almåsbak
- Department of Immunology, Radiumhospitalet-Rikshospitalet, University Hospital, Oslo, Norway
| | | | | |
Collapse
|
32
|
June CH, Blazar BR, Riley JL. Engineering lymphocyte subsets: tools, trials and tribulations. Nat Rev Immunol 2009; 9:704-16. [PMID: 19859065 DOI: 10.1038/nri2635] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-based therapies with various lymphocyte subsets hold promise for the treatment of several diseases, including cancer and disease resulting from inflammation and infection. The ability to genetically engineer lymphocyte subsets has the potential to improve the natural immune response and correct impaired immunity. In this Review we focus on the lymphocyte subsets that have been modified genetically or by other means for therapeutic benefit, on the technologies used to engineer lymphocytes and on the latest progress and hurdles in translating these technologies to the clinic.
Collapse
Affiliation(s)
- Carl H June
- Department of Pathology and Laboratory Medicine and Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|