1
|
Xu X, Han N, Zhao F, Fan R, Guo Q, Han X, Liu Y, Luo G. Inefficacy of anti-VEGF therapy reflected in VEGF-mediated photoreceptor degeneration. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102176. [PMID: 38689803 PMCID: PMC11059333 DOI: 10.1016/j.omtn.2024.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Retinal neovascularization (RNV) is primarily driven by vascular endothelial growth factor (VEGF). However, current anti-VEGF therapies are limited by short half-lives and repeated injections, which reduce patient quality of life and increase medical risks. Additionally, not all patients benefit from anti-VEGF monotherapy, and some problems, such as unsatisfactory vision recovery, persist after long-term treatment. In this study, we constructed a recombinant adeno-associated virus (AAV), AAV2-SPLTH, which encodes an anti-VEGF antibody similar to bevacizumab, and assessed its effects in a doxycycline-induced Tet-opsin-VEGFA mouse model of RNV. AAV2-SPLTH effectively inhibited retinal leakage, RNV progression, and photoreceptor apoptosis in a Tet-opsin-VEGF mouse model. However, proteomic sequencing showed that AAV2-SPLTH failed to rescue the expression of phototransduction-related genes, which corresponded to reduced photoreceptor cell numbers. This study suggests that anti-VEGF monotherapy can significantly inhibit RNV to some extent but may not be enough to save visual function in the long term.
Collapse
Affiliation(s)
- Xin Xu
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Ni Han
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China
| | - Ruoyue Fan
- Bionce Biotechnology, Co., Ltd, Nanjing 210061, China
| | - Qingguo Guo
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Xuefei Han
- Bionce Biotechnology, Co., Ltd, Nanjing 210061, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Guangzuo Luo
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
- Bionce Biotechnology, Co., Ltd, Nanjing 210061, China
| |
Collapse
|
2
|
Wei-Zhang S, Cui B, Xing M, Liu J, Guo Y, He K, Bai T, Dong X, Lei Y, Zhou W, Zhou H, Liu S, Wang X, Zhou D, Yan H. Chimpanzee adenovirus-mediated multiple gene therapy for age-related macular degeneration. iScience 2023; 26:107939. [PMID: 37810255 PMCID: PMC10550724 DOI: 10.1016/j.isci.2023.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Neovascular age-related macular degeneration AMD (nAMD) is characterized by choroidal neovascularization (CNV) and could lead to irreversible blindness. However, anti-vascular endothelial growth factor (VEGF) therapy has limited efficacy. Therefore, we generated a chimpanzee adenoviral vector (AdC68-PFC) containing three genes, pigment endothelial-derived factor (PEDF), soluble fms-like tyrosine kinase-1 (sFlt-1), and soluble forms of CD59 (sCD59), to treat nAMD. The results showed that AdC68-PFC mediated a strong onset of PEDF, sFlt-1, and sCD59 expression both in vivo and in vitro. AdC68-PFC showed preventive and therapeutic effects following intravitreal (IVT) injection in the laser-induced CNV model and very low-density lipoprotein receptor-deficient (Vldlr-/-) mouse model. In vitro assessment indicated that AdC68-PFC had a strong inhibitory effect on endothelial cells. Importantly, the safety test showed no evidence of in vivo toxicity of adenovirus in murine eyes. Our findings suggest that AdC68-PFC may be a long-acting and safe gene therapy vector for future nAMD treatments.
Collapse
Affiliation(s)
- Selena Wei-Zhang
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bohao Cui
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yingying Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kai He
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
| | - Tinghui Bai
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
| | - Yi Lei
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
| | - Wei Zhou
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Hui Zhou
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Shengnan Liu
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Swirski S, May O, Ahlers M, Wissinger B, Greschner M, Jüschke C, Neidhardt J. In Vivo Efficacy and Safety Evaluations of Therapeutic Splicing Correction Using U1 snRNA in the Mouse Retina. Cells 2023; 12:cells12060955. [PMID: 36980294 PMCID: PMC10047704 DOI: 10.3390/cells12060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Efficacy and safety considerations constitute essential steps during development of in vivo gene therapies. Herein, we evaluated efficacy and safety of splice factor-based treatments to correct mutation-induced splice defects in an Opa1 mutant mouse line. We applied adeno-associated viruses to the retina. The viruses transduced retinal cells with an engineered U1 snRNA splice factor designed to correct the Opa1 splice defect. We found the treatment to be efficient in increasing wild-type Opa1 transcripts. Correspondingly, Opa1 protein levels increased significantly in treated eyes. Measurements of retinal morphology and function did not reveal therapy-related side-effects supporting the short-term safety of the treatment. Alterations of potential off-target genes were not detected. Our data suggest that treatments of splice defects applying engineered U1 snRNAs represent a promising in vivo therapeutic approach. The therapy increased wild-type Opa1 transcripts and protein levels without detectable morphological, functional or genetic side-effects in the mouse eye. The U1 snRNA-based therapy can be tailored to specific disease gene mutations, hence, raising the possibility of a wider applicability of this promising technology towards treatment of different inherited retinal diseases.
Collapse
Affiliation(s)
- Sebastian Swirski
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Oliver May
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Malte Ahlers
- Visual Neuroscience, Department of Neuroscience, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | - Martin Greschner
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
- Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Christoph Jüschke
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - John Neidhardt
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Drinking hydrogen water improves photoreceptor structure and function in retinal degeneration 6 mice. Sci Rep 2022; 12:13610. [PMID: 35948585 PMCID: PMC9365798 DOI: 10.1038/s41598-022-17903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
Retinitis pigmentosa (RP) is a genetically heterogeneous group of inherited retinal disorders involving the progressive dysfunction of photoreceptors and the retinal pigment epithelium, for which there is currently no treatment. The rd6 mouse is a natural model of autosomal recessive retinal degeneration. Given the known contributions of oxidative stress caused by reactive oxygen species (ROS) and selective inhibition of potent ROS peroxynitrite and OH·by H2 gas we have previously demonstrated, we hypothesized that ingestion of H2 water may delay the progression of photoreceptor death in rd6 mice. H2 mice showed significantly higher retinal thickness as compared to controls on optical coherence tomography. Histopathological and morphometric analyses revealed higher thickness of the outer nuclear layer for H2 mice than controls, as well as higher counts of opsin red/green-positive cells. RNA sequencing (RNA-seq) analysis of differentially expressed genes in the H2 group versus control group revealed 1996 genes with significantly different expressions. Gene and pathway ontology analysis showed substantial upregulation of genes responsible for phototransduction in H2 mice. Our results show that drinking water high in H2 (1.2-1.6 ppm) had neuroprotective effects and inhibited photoreceptor death in mice, and suggest the potential of H2 for the treatment of RP.
Collapse
|
5
|
Deng Y, Qiao L, Du M, Qu C, Wan L, Li J, Huang L. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis 2022; 9:62-79. [PMID: 35005108 PMCID: PMC8720701 DOI: 10.1016/j.gendis.2021.02.009] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/17/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex eye disorder and is the leading cause of incurable blindness worldwide in the elderly. Clinically, AMD initially affects the central area of retina known as the macula and it is classified as early stage to late stage (advanced AMD). The advanced AMD is classified into the nonexudative or atrophic form (dry AMD) and the exudative or neovascular form (wet AMD). More severe vision loss is typically associated with the wet form. Multiple genetic factors, lipid metabolism, oxidative stress and aging, play a role in the etiology of AMD. Dysregulation in genetic to AMD is established to 46%-71% of disease contribution, with CFH and ARMS2/HTRA1 to be the two most notable risk loci among the 103 identified AMD associated loci so far. Chronic cigarette smoking is the most proven consistently risk living habits for AMD. Deep learning algorithm has been developed based on image recognition to distinguish wet AMD and normal macula with high accuracy. Currently, anti-vascular endothelial growth factor (VEGF) therapy is highly effective at treating wet AMD. Several new generation AMD drugs and iPSC-derived RPE cell therapy are in the clinical trial stage and are promising to improve AMD treatment in the near future.
Collapse
Affiliation(s)
- Yanhui Deng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, PR China
| | - Lifeng Qiao
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Mingyan Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, PR China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Ling Wan
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Jie Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Lulin Huang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
- Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
6
|
Takahashi K, Igarashi T, Miyake K, Kobayashi M, Katakai Y, Hayashita-Kinoh H, Fujimoto C, Kameya S, Takahashi H, Okada T. Amount of Green Fluorescent Protein in the Anterior Chamber after Intravitreal Injection of Triple-Mutated Self-Complementary AAV2 Vectors is Not Affected by Previous Vitrectomy Surgery. J NIPPON MED SCH 2021; 88:103-108. [PMID: 33980756 DOI: 10.1272/jnms.jnms.2021_88-203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The adeno-associated virus (AAV) vector is a promising vector for ocular gene therapy. Surgical internal limiting membrane peeling before AAV vector administration is useful for efficient retinal transduction. However, no report has investigated localization of AAV vectors after administration into a post-vitrectomy eye. This study investigated the effects of vitrectomy surgery on intravitreal-injected AAV vector-mediated gene expression in the anterior segment and examined the presence of neutralizing antibodies (NAbs) in serum before and after AAV vector administration. METHODS Of six eyes from three female cynomolgus monkeys, four were vitrectomized (Group VIT) and two were non-vitrectomized (Group IV). All eyes were injected with 50 μL of triple-mutated self-complementary AAV2 vector (1.9 × 1013 v.g./mL) encoding green fluorescent protein (GFP). NAbs in the serum were examined before administration and at 2 and 6 weeks after administration. GFP expression was analyzed at 19 weeks after administration. RESULTS Immunohistological analysis showed no GFP expression in the trabecular meshwork in any eye. The GFP genome copy in two slices of the anterior segment was 2.417 (vector genome copies/diploid genome) in Group VIT and 4.316 (vector genome copies/diploid genome) in group IV. The NAb titer was 1:15.9 (geometric mean) before administration, 1:310.7 at 2 weeks after administration, and 1:669.4 at 6 weeks after administration. CONCLUSION Previous vitrectomy surgery did not affect gene expression in the anterior segment after intravitreal injection of AAV vectors.
Collapse
Affiliation(s)
- Kazuhisa Takahashi
- Department of Biochemistry and Molecular Biology, Nippon Medical School.,Department of Ophthalmology, Nippon Medical School
| | - Tsutomu Igarashi
- Department of Biochemistry and Molecular Biology, Nippon Medical School.,Department of Ophthalmology, Nippon Medical School.,Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital
| | - Koichi Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School
| | - Maika Kobayashi
- Department of Biochemistry and Molecular Biology, Nippon Medical School.,Department of Ophthalmology, Nippon Medical School
| | - Yuko Katakai
- The Corporation for Production and Research of Laboratory Primates
| | - Hiromi Hayashita-Kinoh
- Department of Biochemistry and Molecular Biology, Nippon Medical School.,Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo
| | | | - Shuhei Kameya
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital
| | | | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School.,Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo
| |
Collapse
|
7
|
Ludwig PE, Freeman SC, Janot AC. Novel stem cell and gene therapy in diabetic retinopathy, age related macular degeneration, and retinitis pigmentosa. Int J Retina Vitreous 2019; 5:7. [PMID: 30805203 PMCID: PMC6373096 DOI: 10.1186/s40942-019-0158-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Degenerative retinal disease leads to significant visual morbidity worldwide. Diabetic retinopathy and macular degeneration are leading causes of blindness in the developed world. While current therapies for these diseases slow disease progression, stem cell and gene therapy may also reverse the effects of these, and other, degenerative retinal conditions. Novel therapies being investigated include the use of various types of stem cells in the regeneration of atrophic or damaged retinal tissue, the prolonged administration of neurotrophic factors and/or drug delivery, immunomodulation, as well as the replacement of mutant genes, and immunomodulation through viral vector delivery. This review will update the reader on aspects of stem cell and gene therapy in diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa and other less common inherited retinal dystrophies. These therapies include the use of adeno-associated viral vector-based therapies for treatment of various types of retinitis pigmentosa and dry age-related macular degeneration. Other potential therapies reviewed include the use of mesenchymal stem cells in local immunomodulation, and the use of stem cells in generating structures like three-dimensional retinal sheets for transplantation into degenerative retinas. Finally, aspects of stem cell and gene therapy in diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, and other less common inherited retinal dystrophies will be reviewed.
Collapse
Affiliation(s)
- Parker E Ludwig
- 1Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| | - S Caleb Freeman
- 1Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| | - Adam C Janot
- Vitreoretinal Institute, 7698 Goodwood Blvd, Baton Rouge, LA 70806 USA.,3Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|
8
|
Lee SHS, Kim HJ, Shin OK, Choi JS, Kim J, Cho YH, Ha J, Park TK, Lee JY, Park K, Lee H. Intravitreal Injection of AAV Expressing Soluble VEGF Receptor-1 Variant Induces Anti-VEGF Activity and Suppresses Choroidal Neovascularization. ACTA ACUST UNITED AC 2018; 59:5398-5407. [DOI: 10.1167/iovs.18-24926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Steven Hyun Seung Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Jong Kim
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Oh Kyu Shin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Jun-Sub Choi
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Jin Kim
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Young-Hwa Cho
- Department of Biopharmacy, Chungbuk Health & Science University, Cheongju, Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon, Korea
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Joo Yong Lee
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul, Korea
- Asan Medical Center, Seoul, Korea
| | - Keerang Park
- Department of Biopharmacy, Chungbuk Health & Science University, Cheongju, Korea
| | - Heuiran Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Dasari BC, Cashman SM, Kumar-Singh R. Reducible PEG-POD/DNA Nanoparticles for Gene Transfer In Vitro and In Vivo: Application in a Mouse Model of Age-Related Macular Degeneration. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:77-89. [PMID: 28918058 PMCID: PMC5491761 DOI: 10.1016/j.omtn.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 02/03/2023]
Abstract
Non-viral gene delivery systems are being developed to address limitations of viral gene delivery. Many of these non-viral systems are modeled on the properties of viruses including cell surface binding, endocytosis, endosomal escape, and nuclear targeting. Most non-viral gene transfer systems exhibit little correlation between in vitro and in vivo efficiency, hampering a systematic approach to their development. Previously, we have described a 3.5 kDa peptide (peptide for ocular delivery [POD]) that targets cell surface sialic acid. When functionalized with polyethylene glycol (PEG) via a sulfhydryl group on the N-terminal cysteine of POD, PEG-POD could compact plasmid DNA, forming 120- to 180-nm homogeneous nanoparticles. PEG-POD enabled modest gene transfer and rescue of retinal degeneration in vivo. Systematic investigation of different stages of gene transfer by PEG-POD nanoparticles was hampered by their inability to deliver genes in vitro. Herein, we describe functionalization of POD with PEG using a reducible orthopyridyl disulfide bond. These reducible nanoparticles enabled gene transfer in vitro while retaining their in vivo gene transfer properties. These reducible PEG-POD nanoparticles were utilized to deliver human FLT1 to the retina in vivo, achieving a 50% reduction in choroidal neovascularization in a murine model of age-related macular degeneration.
Collapse
Affiliation(s)
- Bhanu Chandar Dasari
- Department of Developmental, Molecular, and Chemical Biology, Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Siobhan M Cashman
- Department of Developmental, Molecular, and Chemical Biology, Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Rajendra Kumar-Singh
- Department of Developmental, Molecular, and Chemical Biology, Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
10
|
Villegas VM, Aranguren LA, Kovach JL, Schwartz SG, Flynn HW. Current advances in the treatment of neovascular age-related macular degeneration. Expert Opin Drug Deliv 2016; 14:273-282. [PMID: 27434329 DOI: 10.1080/17425247.2016.1213240] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is the most common cause of permanent central visual acuity loss in persons over 65 years of age in industrialized nations. Today, intravitreal vascular endothelial growth factor (VEGF) inhibitors are the mainstay of treatment worldwide. Areas covered: The following review covers the current treatments and challenges of wet AMD management. It also covers emerging therapies including radiation, latest generation anti-VEGF agents, and combination therapies. Expert opinion: Current neovascular AMD therapy is aimed at decreasing the VEGF effect at the choroidal neovascularization (CNV) complex. The most important existing challenges in the treatment of neovascular AMD are improving visual outcomes, decreasing the treatment burden, and minimizing geographic atrophy. Clinicians are using many treatment strategies to minimize intravitreal injections without sacrificing visual outcomes. Combination of anti-VEGF therapy with other previously available treatments that target a different pathophysiological mechanism may be a reasonable clinical strategy to minimize intravitreal injections. Many exciting novel drugs that target newly discovered pathways associated with CNV development and progression hold clinical promise. The results of ongoing randomized clinical trials will answer the important concerns surrounding new drugs and delivery devices: safety and visual outcomes.
Collapse
Affiliation(s)
- Victor M Villegas
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Luis A Aranguren
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Jaclyn L Kovach
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Stephen G Schwartz
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Harry W Flynn
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| |
Collapse
|
11
|
Abstract
Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future.
Collapse
Affiliation(s)
- Lolita Petit
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Hemant Khanna
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Neurobiology, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Claudio Punzo
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Neurobiology, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
12
|
Abstract
The idea of treating disease in humans with genetic material was conceived over two decades ago and with that a promising journey involving development and efficacy studies in cells and animals of a large number of novel therapeutic reagents unfolded. In the footsteps of this process, successful gene therapy treatment of genetic conditions in humans has shown clear signs of efficacy. Notably, significant advancements using gene supplementation and silencing strategies have been made in the field of ocular gene therapy, thereby pinpointing ocular gene therapy as one of the compelling "actors" bringing gene therapy to the clinic. Most of all, this success has been facilitated because of (1) the fact that the eye is an effortlessly accessible, exceedingly compartmentalized, and immune-privileged organ offering a unique advantage as a gene therapy target, and (2) significant progress toward efficient, sustained transduction of cells within the retina having been achieved using nonintegrating vectors based on recombinant adeno-associated virus and nonintegrating lentivirus vectors. The results from in vivo experiments and trials suggest that treatment of inherited retinal dystrophies, ocular angiogenesis, and inflammation with gene therapy can be both safe and effective. Here, the progress of ocular gene therapy is examined with special emphasis on the potential use of RNAi- and protein-based antiangiogenic gene therapy to treat exudative age-related macular degeneration.
Collapse
Affiliation(s)
- Thomas J Corydon
- Department of Biomedicine, Aarhus University , Aarhus C, Denmark
| |
Collapse
|
13
|
Adenoviral vector encoding soluble Flt-1 engineered human endometrial mesenchymal stem cells effectively regress endometriotic lesions in NOD/SCID mice. Gene Ther 2016; 23:580-91. [DOI: 10.1038/gt.2016.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/24/2022]
|
14
|
Li ZN, Yuan ZF, Mu GY, Hu M, Cao LJ, Zhang YL, Ge MX. Augmented anti-angiogenesis activity of polysulfated heparin-endostatin and polyethylene glycol-endostatin in alkali burn-induced corneal ulcers in rabbits. Exp Ther Med 2015; 10:889-894. [PMID: 26622410 DOI: 10.3892/etm.2015.2602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 06/05/2015] [Indexed: 11/06/2022] Open
Abstract
Endostatin (ES) is an endogenous angiogenesis inhibitor that has the ability to inhibit tumor growth and metastasis. However, its clinical application is limited by a number of disadvantages, such as poor stability, short half-life and the requirement of high doses to maintain its efficacy. The chemical modification on ES may offer a solution to these disadvantages. The aim of the present study was to evaluate the effects of ES, polysulfated heparin-endostatin (PSH-ES) and polyethylene glycol-endostatin (PEG-ES) on the endothelial cell proliferation and angiogenesis associated with corneal neovascularization (CNV) and to determine their mechanisms of action. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) was used to study the effects of ES and its derivatives on endothelial cell proliferation in vitro, and rabbits were used to evaluate the effects of ES and its derivatives on CNV in vivo. In the evaluation of CNV, the expression of vascular endothelial growth factor in the cornea was measured via immunohistochemistry and microvessels were counted. ES and its derivatives significantly inhibited endothelial cell proliferation in vitro (P<0.05) and suppressed CNV in vivo. Among the compounds examined, ES most effectively inhibited endothelial cell proliferation in vitro (P<0.05); however, PSH-ES and PEG-ES most effectively inhibited CNV in vivo (P<0.05). These results indicate that PSH-ES and PEG-ES are candidate anti-angiogenesis drugs.
Collapse
Affiliation(s)
- Zhao-Na Li
- Department of Ophthalmology, Second People's Hospital of Jinan, Jinan, Shandong 250001, P.R. China
| | - Zhong-Fang Yuan
- Department of Ophthalmology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Guo-Ying Mu
- Department of Ophthalmology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ming Hu
- Department of Ophthalmology, Second People's Hospital of Jinan, Jinan, Shandong 250001, P.R. China
| | - Li-Jun Cao
- Department of Ophthalmology, Second People's Hospital of Jinan, Jinan, Shandong 250001, P.R. China
| | - Ya-Li Zhang
- Department of Ophthalmology, Second People's Hospital of Jinan, Jinan, Shandong 250001, P.R. China
| | - Ming-Xu Ge
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
15
|
Li ZN, Yuan ZF, Mu GY, Hu M, Cao LJ, Zhang YL, Liu L, Ge MX. Inhibitory effect of polysulfated heparin endostatin on alkali burn induced corneal neovascularization in rabbits. Int J Ophthalmol 2015; 8:234-8. [PMID: 25938033 DOI: 10.3980/j.issn.2222-3959.2015.02.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/06/2014] [Indexed: 12/11/2022] Open
Abstract
AIM To investigate anti-angiogenic effects of polysulfated heparin endostatin (PSH-ES) on alkali burn induced corneal neovascularization (NV) in rabbits. METHODS An alkali burn was made on rabbit corneas to induce corneal NV in the right eye of 24 rabbits. One day after burn creation, a 0.2 mL subconjunctival injection of 50 µg/mL PSH-ES, 50 µg/mL recombinant endostatin (ES), or normal saline was administered every other day for a total of 14d (7 injections). Histology and immunohistochemisty were used to examine corneas. Corneal NV growth was evaluated as microvessel quantity and corneal vascular endothelial growth factor (VEGF) expression was measured by immunohistochemical assay. RESULTS Subconjunctival injection of ES and PSH-ES resulted in significant corneal NV suppression, but PSH-ES had a more powerful anti-angiogenic effect than ES. Mean VEGF concentration in PSH-ES treated corneas was significantly lower than in ES treated and saline treated corneas. Histological examination showed that corneas treated with either PSH-ES or ES had significantly fewer microvessels than eyes treated with saline. Additionally corneas treated with PSH-ES had significantly fewer microvessels than corneas treated with ES. CONCLUSION Both PSH-ES and recombinant ES effectively inhibit corneal NV induced by alkali burn. However, PSH-ES is a more powerful anti-angiogenic agent than ES. This research has the potential to provide a new treatment option for preventing and treating corneal NV.
Collapse
Affiliation(s)
- Zhao-Na Li
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan 250001, Shandong Province, China
| | - Zhong-Fang Yuan
- Department of Ophthalmology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong Province, China
| | - Guo-Ying Mu
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| | - Ming Hu
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan 250001, Shandong Province, China
| | - Li-Jun Cao
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan 250001, Shandong Province, China
| | - Ya-Li Zhang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan 250001, Shandong Province, China
| | - Lei Liu
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan 250001, Shandong Province, China
| | - Ming-Xu Ge
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| |
Collapse
|
16
|
Zhang X, Das SK, Passi SF, Uehara H, Bohner A, Chen M, Tiem M, Archer B, Ambati BK. AAV2 delivery of Flt23k intraceptors inhibits murine choroidal neovascularization. Mol Ther 2014; 23:226-34. [PMID: 25306972 DOI: 10.1038/mt.2014.199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 10/02/2014] [Indexed: 01/09/2023] Open
Abstract
Long-term inhibition of extracellular vascular endothelial growth factor (VEGF) in the treatment of age-related macular degeneration (AMD) may induce retinal neuronal toxicity and risk other side effects. We developed a novel strategy which inhibits retinal pigment epithelium (RPE)-derived VEGF, sparing other highly sensitive retinal tissues. Flt23k, an intraceptor inhibitor of VEGF, was able to inhibit VEGF in vitro. Adeno-associated virus type 2 (AAV2)-mediated expression of Flt23k was maintained for up to 6 months postsubretinal injection in mice. Flt23k was able to effectively inhibit laser-induced murine choroidal neovascularization (CNV). VEGF levels in the RPE/choroid complex decreased significantly in AAV2.Flt23k treated eyes. Neither retinal structure detected by Heidelberg Spectralis nor function measured by electroretinography (ERG) was adversely affected by treatment with AAV2.Flt23k. Hence AAV2.Flt23k can effectively maintain long-term expression and inhibit laser-induced CNV in mice through downregulation of VEGF while maintaining a sound retinal safety profile. These findings suggest a promising novel approach for the treatment of CNV.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Subrata K Das
- Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Samuel F Passi
- Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Hironori Uehara
- Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Austin Bohner
- Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Marcus Chen
- Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Michelle Tiem
- Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Bonnie Archer
- Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
17
|
Tolentino MJ, Dennrick A, John E, Tolentino MS. Drugs in Phase II clinical trials for the treatment of age-related macular degeneration. Expert Opin Investig Drugs 2014; 24:183-99. [PMID: 25243494 DOI: 10.1517/13543784.2015.961601] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The clinical development of anti-VEGF therapies for the treatment of exudative age-related macular degeneration (wet AMD) has revolutionized ophthalmology. Indeed, it has provided clinicians and patients with treatments that lessen visual loss from in a disease that once was uniformly blinding. Although blindness is yet to be eradicated from AMD, repeated intraocular anti-VEGF injections are required to preserve a patient's vision. Therefore, further advances in this field are necessary. AREAS COVERED This review provides an overview of the agents that are in mid-stage phase trials for both exudative (wet AMD) and nonexudative macular degeneration (dry AMD). For wet AMD, new agents intend to enhance efficacy, develop alternative delivery such as eye drops, investigate alternate targets and construct sustained release strategies. For advanced dry AMD, the goal is to develop a strategy to slow or stop progressive loss of retinal tissue seen in geographic atrophy, the hallmark of advanced dry AMD. EXPERT OPINION It is important to develop better more sensitive biomarkers, validating different approvable clinical trial endpoints and stratifying patients on their genetic polymorphisms. These developments should help to progress the already rapidly developing field of macular degeneration therapy.
Collapse
Affiliation(s)
- Michael John Tolentino
- University of Central Florida, College of Medicine , 6850 Lake Nona Blvd. Orlando, FL 32827 , USA
| | | | | | | |
Collapse
|
18
|
Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 2014; 43:17-75. [PMID: 25038518 DOI: 10.1016/j.preteyeres.2014.07.001] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/17/2023]
Abstract
Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain; Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, Alicante, Spain.
| | - Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Pedro De la Villa
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Aragon Institute of Health Sciences, Zaragoza, Spain
| |
Collapse
|
19
|
Askou AL. Development of gene therapy for treatment of age-related macular degeneration. Acta Ophthalmol 2014; 92 Thesis3:1-38. [PMID: 24953666 DOI: 10.1111/aos.12452] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intraocular neovascular diseases are the leading cause of blindness in the Western world in individuals over the age of 50. Age-related macular degeneration (AMD) is one of these diseases. Exudative AMD, the late-stage form, is characterized by abnormal neovessel development, sprouting from the choroid into the avascular subretinal space, where it can suddenly cause irreversible damage to the vulnerable photoreceptor (PR) cells essential for our high-resolution, central vision. The molecular basis of AMD is not well understood, but several growth factors have been implicated including vascular endothelial growth factor (VEGF), and the advent of anti-VEGF therapy has markedly changed the outcome of treatment. However, common to all current therapies for exudative AMD are the complications of repeated monthly intravitreal injections, which must be continued throughout one's lifetime to maintain visual benefits. Additionally, some patients do not benefit from established treatments. Strategies providing long-term suppression of inappropriate ocular angiogenesis are therefore needed, and gene therapy offers a potential powerful technique. This study aimed to develop a strategy based on RNA interference (RNAi) for the sustained attenuation of VEGF. We designed a panel of anti-VEGF short hairpin RNAs (shRNA), and based on the most potent shRNAs, microRNA (miRNA)-mimicked hairpins were developed. We demonstrated an additive VEGF silencing effect when we combined the miRNAs in a tricistronic miRNA cluster. To meet the requirements for development of medical treatments for AMD with long-term effects, the shRNA/miRNA is expressed from vectors based on adeno-associated virus (AAV) or lentivirus (LV). Both vector systems have been found superior in terms of transduction efficiency and persistence in gene expression in retinal cells. The capacity of AAV-encoded RNAi effector molecules to silence endogenous VEGF gene expression was evaluated in mouse models, including the model of laser-induced choroidal neovascularization (CNV), and we found that subretinal administration of self-complementary (sc)-AAV2/8 encoding anti-VEGF shRNAs can impair vessel formation. In parallel, a significant reduction of endogenous VEGF was demonstrated following injection of scAAV2/8 vectors expressing multiple anti-VEGF miRNAs into murine hind limb muscles. Furthermore, in an ongoing project we have designed versatile, multigenic LV vectors with combined expression of multiple miRNAs and proteins, including pigment epithelium-derived factor (PEDF), a multifunctional, secreted protein that has anti-angiogenic and neurotrophic functions. Co-expression of miRNAs and proteins from a single viral vector increases safety by minimizing the viral load necessary to obtain a therapeutic effect and thereby reduces the risk of insertional mutagenesis as well as the immune response against viral proteins. Our results show co-expression of functional anti-VEGF-miRNAs and PEDF in cell studies, and in vivo studies reveal an efficient retinal pigment epithelium (RPE)-specific gene expression following the incorporation of the vitelliform macular dystrophy 2 (VMD2) promoter, demonstrating the potential applicability of our multigenic LV vectors in ocular anti-VEGF gene therapy, including combination therapy for treatment of exudative AMD. In conclusion, these highly promising data clearly demonstrate that viral-encoded RNAi effector molecules can be used for the inhibition of neovascularization and will, in combination with the growing interest of applying DNA- or RNA-based technologies in the clinic, undoubtedly contribute to the development of efficacious long-term gene therapy treatment of intraocular neovascular diseases.
Collapse
|
20
|
Igarashi T. Gene Therapy Using Neuroprotective Factors in Glaucoma. J NIPPON MED SCH 2014. [DOI: 10.1272/jnms.81.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Tsutomu Igarashi
- Department of Ophthalmology, Department of Biochemistry and Molecular Biology, Division of Gene Therapy, Research Center for Advanced Medical Technology, Nippon Medical School
| |
Collapse
|
21
|
Long-term efficacy of ciliary muscle gene transfer of three sFlt-1 variants in a rat model of laser-induced choroidal neovascularization. Gene Ther 2013; 20:1093-103. [PMID: 23804076 DOI: 10.1038/gt.2013.36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/05/2013] [Accepted: 05/29/2013] [Indexed: 01/06/2023]
Abstract
Inhibition of vascular endothelial growth factor (VEGF) has become the standard of care for patients presenting with wet age-related macular degeneration. However, monthly intravitreal injections are required for optimal efficacy. We have previously shown that electroporation enabled ciliary muscle gene transfer results in sustained protein secretion into the vitreous for up to 9 months. Here, we evaluated the long-term efficacy of ciliary muscle gene transfer of three soluble VEGF receptor-1 (sFlt-1) variants in a rat model of laser-induced choroidal neovascularization (CNV). All three sFlt-1 variants significantly diminished vascular leakage and neovascularization as measured by fluorescein angiography (FA) and flatmount choroid at 3 weeks. FA and infracyanine angiography demonstrated that inhibition of CNV was maintained for up to 6 months after gene transfer of the two shortest sFlt-1 variants. Throughout, clinical efficacy was correlated with sustained VEGF neutralization in the ocular media. Interestingly, treatment with sFlt-1 induced a 50% downregulation of VEGF messenger RNA levels in the retinal pigment epithelium and the choroid. We demonstrate for the first time that non-viral gene transfer can achieve a long-term reduction of VEGF levels and efficacy in the treatment of CNV.
Collapse
|
22
|
Igarashi T, Miyake K, Asakawa N, Miyake N, Shimada T, Takahashi H. Direct comparison of administration routes for AAV8-mediated ocular gene therapy. Curr Eye Res 2013; 38:569-77. [PMID: 23489150 DOI: 10.3109/02713683.2013.779720] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE We recently demonstrated that direct subretinal (SR) injection of adeno-associated virus (AAV) type 8 (AAV8) into photoreceptor cells and retinal pigment epithelium (RPE) is a highly efficient model of gene delivery. The current study compared transduction efficiency and expression patterns associated with various routes of vector administration. METHOD The efficacy of intravitreal (VT), SR and subconjunctival (SC) injections for delivery of AAV8-derived vectors, i.e. those expressing luciferase (Luc) and enhanced green fluorescent protein (GFP) - AAV8/Luc and AAV8/GFP, respectively - were compared in an animal (mouse) model (n = 8 mice/group). Transduction efficiency and expression patterns were examined at post-injection weeks 1 and 2, and months 1, 3, 6 and 12 via in vivo imaging. RESULTS One year after AAV injection, AAV8/Luc-treated mice exhibited stable and sustained high expression of vector in the VT and SR groups, but not in the SC group (VT:SR:SC = 3,218:2,923:115; 1 × 10(5 )photons/s). Histological analysis showed that GFP expression was observed in the inner retina of VT group mice, and in photoreceptor cells and RPE of SR group mice, whereas no GFP expression was noted in the SC group. Electroretinography (ERG) revealed adverse effects following SR delivery. CONCLUSIONS Results suggest that both SR and VT injections of AAV8 vectors are useful routes for administering ocular gene therapy, and stress the importance of selecting an appropriate administration route, i.e. one that targets specific cells, for treating ocular disorders.
Collapse
Affiliation(s)
- Tsutomu Igarashi
- Department of Ophthalmology, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Boye SE, Boye SL, Lewin AS, Hauswirth WW. A comprehensive review of retinal gene therapy. Mol Ther 2013; 21:509-19. [PMID: 23358189 DOI: 10.1038/mt.2012.280] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Blindness, although not life threatening, is a debilitating disorder for which few, if any treatments exist. Ocular gene therapies have the potential to profoundly improve the quality of life in patients with inherited retinal disease. As such, tremendous focus has been given to develop such therapies. Several factors make the eye an ideal organ for gene-replacement therapy including its accessibility, immune privilege, small size, compartmentalization, and the existence of a contralateral control. This review will provide a comprehensive summary of (i) existing gene therapy clinical trials for several genetic forms of blindness and (ii) preclinical efficacy and safety studies in a variety of animal models of retinal disease which demonstrate strong potential for clinical application. To be as comprehensive as possible, we include additional proof of concept studies using gene replacement, neurotrophic/neuroprotective, optogenetic, antiangiogenic, or antioxidative stress strategies as well as a description of the current challenges and future directions in the ocular gene therapy field to this review as a supplement.
Collapse
Affiliation(s)
- Shannon E Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA.
| | | | | | | |
Collapse
|
24
|
Lipinski DM, Thake M, MacLaren RE. Clinical applications of retinal gene therapy. Prog Retin Eye Res 2013; 32:22-47. [DOI: 10.1016/j.preteyeres.2012.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 02/08/2023]
|
25
|
He G, Lei W, Wang S, Xiao R, Guo K, Xia Y, Zhou X, Zhang K, Liu X, Wang Y. Overexpression of tumor suppressor TSLC1 by a survivin-regulated oncolytic adenovirus significantly inhibits hepatocellular carcinoma growth. J Cancer Res Clin Oncol 2012; 138:657-70. [PMID: 22237452 DOI: 10.1007/s00432-011-1138-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/20/2011] [Indexed: 12/16/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Oncolytic viruses represent a promising therapeutic agent or vehicle to human cancers due to their ability of selectively lysing cancer cells but not in normal cells. TSLC1, a novel tumor suppressor gene, was loss in many human cancers including HCC, not in normal cells. The current study is focused on the antitumor effect of TSLC1-armed survivin-regulated oncolytic adenovirus for HCC and to explore their molecular mechanism. METHODS The expression of tumor suppressor TSLC1 and survivin was detected by quantitative PCR. The recombinant virus Ad.SP-E1A-E1B((Δ55))-TSLC1 (brief name as SD55-TSLC1) was constructed by inserting TSLC1 gene into the dual-regulated oncolytic adenovirus vector Ad.SP-E1A-E1B((Δ55)). Then, we performed the antitumor experiments of SD55-TSLC1 in vitro and in nude mice xenografted with Huh7 liver cancer. RESULTS The expression of TSLC1 was lower in HCC cells than in normal cells, which implied TSLC1 is a tumor suppressor of liver cancer. Survivin expression is higher in detected HCC cells than in normal cells. The SD55-TSLC1 exhibited an excellent antitumor effect on HCC cell growth in vitro but does no or little damage to normal liver cells. Animal experiment further confirmed that SD55-TSLC1 achieved significant inhibition of Huh7 liver cancer xenografted growth. Furthermore, the mechanism of antitumor efficacy by SD55-TSLC1 was elucidated to be due to the activation of caspase apoptotic pathway including the inducement of caspase-3, caspase-8, and poly (ADP-ribose) polymerase cleavage. This is the first report of TSLC1 by oncolytic adenovirus with an excellent antitumor effect to liver cancer growth. CONCLUSION These data suggest that an oncolytic adenovirus expressing TSLC1 is effective and support that SD55-TSLC1 may be a potent antitumoral agent for future clinical trials of liver cancer.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/physiology
- Adenovirus E1A Proteins/genetics
- Animals
- Apoptosis/genetics
- Blotting, Western
- Caspases/metabolism
- Cell Adhesion Molecule-1
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Vectors/genetics
- HEK293 Cells
- Host-Pathogen Interactions/genetics
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/metabolism
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/metabolism
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/therapy
- Liver Neoplasms, Experimental/virology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Electron, Transmission
- Oncolytic Virotherapy/methods
- Oncolytic Viruses/genetics
- Oncolytic Viruses/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Survivin
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Viral Proteins/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Guoqing He
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou 310018, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tuo J, Pang JJ, Cao X, Shen D, Zhang J, Scaria A, Wadsworth SC, Pechan P, Boye SL, Hauswirth WW, Chan CC. AAV5-mediated sFLT01 gene therapy arrests retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) mice. Neurobiol Aging 2012; 33:433.e1-10. [PMID: 21397984 PMCID: PMC3136657 DOI: 10.1016/j.neurobiolaging.2011.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 01/08/2011] [Accepted: 01/26/2011] [Indexed: 12/18/2022]
Abstract
To test the effects of adeno-associated virus encoding sFLT01 (AAV5.sFLT01) on the retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) mice, a model for age-related macular degeneration (AMD), AAV5.sFLT01 was injected into the subretinal space of the right eyes and the left eyes served as controls. Histology found no retinal toxicity due to the treatment after 3 months. The treated eyes showed lesion arrest compared with lesion progression in the left eyes by fundus monitoring monthly and histological evaluation 3 months after treatment. Retinal ultrastructure showed fewer lipofuscin and better preserved photoreceptors after the treatment. A2E, a major component of lipofuscin, was lower in the treated eyes than in the control eyes. Molecular analysis showed that AAV5.sFLT01 lowered retinal extracellular signal-regulated kinase (ERK) phosphorylation and inducible nitric oxide synthetase expression, which suggested the involvement of reactive nitrogen species in the retinal lesions of Ccl2(-/-)/Cx3cr1(-/-). We concluded that local delivery of AAV5.sFLT01 can stabilize retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) mice. The findings provide further support for the potential beneficial effects of sFLT01 gene therapy for age-related macular degeneration.
Collapse
Affiliation(s)
- Jingsheng Tuo
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| | | | - Xiaoguang Cao
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
- Department of Ophthalmology, People’s Hospital, Beijing University, Beijing, China
| | - Defen Shen
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| | - Jun Zhang
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| | - Abraham Scaria
- Department of Molecular Biology, Genzyme Corporation, Framingham, MA
| | | | - Peter Pechan
- Department of Molecular Biology, Genzyme Corporation, Framingham, MA
| | - Sanford L. Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL
| | | | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| |
Collapse
|
27
|
Preclinical safety evaluation of subretinal AAV2.sFlt-1 in non-human primates. Gene Ther 2011; 19:999-1009. [DOI: 10.1038/gt.2011.169] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Schiffelers RM, van der Vaart TK, Storm G. Neovascular age-related macular degeneration: opportunities for development of first-in-class biopharmaceuticals. BioDrugs 2011; 25:171-89. [PMID: 21627341 DOI: 10.2165/11589330-000000000-00000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Age-related macular degeneration (AMD) is a condition that may cause blindness. The prevalence of the disease in the Western world is estimated at 1-2% of the population. Over the past decade, treatment of neovascular AMD has been shifting from destruction of newly formed blood vessels towards inhibitors that silence the vascular endothelial growth factor (VEGF) pathway. Such agents are often first-in-class biopharmaceuticals that benefit from the fact that they can be locally administered in an immune-privileged environment with slow clearance. These new VEGF pathway inhibitors have improved therapeutic effects over conventional treatment and have promoted the identification of novel targets for inhibition of AMD angiogenesis. This review describes the rationale behind the shift from conventional to current treatment options and discusses investigational, most notably biopharmaceutical, drugs that are in clinical trials. It also provides possible points for improvement of these treatments, specifically regarding their delivery.
Collapse
Affiliation(s)
- Raymond M Schiffelers
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands.
| | | | | |
Collapse
|
29
|
Horizons in therapy for corneal angiogenesis. Ophthalmology 2011; 118:591-9. [PMID: 21376242 DOI: 10.1016/j.ophtha.2011.01.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 01/07/2011] [Accepted: 01/12/2011] [Indexed: 11/21/2022] Open
Abstract
Corneal neovascularization can lead to a devastating disease process that involves the breakdown of the limbal barrier and the formation of blood vessels in the cornea, leading to severe visual impairment. This review discusses the delicate balance between antiangiogenic and angiogenic factors that govern the antiangiogenic privilege of the cornea. Current treatment methods, clinical trials, and future prospects in the management of corneal neovascularization also are discussed.
Collapse
|
30
|
Takizawa T, Gemma A, Ui-Tei K, Aizawa Y, Sadovsky Y, Robinson JM, Seike M, Miyake K. Basic and Clinical Studies on Functional RNA Molecules for Advanced Medical Technologies. J NIPPON MED SCH 2010; 77:71-9. [DOI: 10.1272/jnms.77.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Toshihiro Takizawa
- Division of Molecular Medicine and Anatomy, Graduate School of Medicine, Nippon Medical School
| | - Akihiko Gemma
- Division of Pulmonary Medicine, Infection Diseases and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Kumiko Ui-Tei
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo
| | - Yasunori Aizawa
- Center for Biological Resources and Informatics, Tokyo Institute of Technology
| | - Yoel Sadovsky
- Magee-Womens Research Institute, University of Pittsburgh
| | - John M. Robinson
- Department of Physiology and Cell Biology, Ohio State University
| | - Masahiro Seike
- Division of Pulmonary Medicine, Infection Diseases and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Koichi Miyake
- Division of Biochemistry and Molecular Biology, Graduate School of Medicine, and Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School
| |
Collapse
|