1
|
Leon-Astudillo C, Trivedi PD, Sun RC, Gentry MS, Fuller DD, Byrne BJ, Corti M. Current avenues of gene therapy in Pompe disease. Curr Opin Neurol 2023; 36:464-473. [PMID: 37639402 PMCID: PMC10911405 DOI: 10.1097/wco.0000000000001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Pompe disease is a rare, inherited, devastating condition that causes progressive weakness, cardiomyopathy and neuromotor disease due to the accumulation of glycogen in striated and smooth muscle, as well as neurons. While enzyme replacement therapy has dramatically changed the outcome of patients with the disease, this strategy has several limitations. Gene therapy in Pompe disease constitutes an attractive approach due to the multisystem aspects of the disease and need to address the central nervous system manifestations. This review highlights the recent work in this field, including methods, progress, shortcomings, and future directions. RECENT FINDINGS Recombinant adeno-associated virus (rAAV) and lentiviral vectors (LV) are well studied platforms for gene therapy in Pompe disease. These products can be further adapted for safe and efficient administration with concomitant immunosuppression, with the modification of specific receptors or codon optimization. rAAV has been studied in multiple clinical trials demonstrating safety and tolerability. SUMMARY Gene therapy for the treatment of patients with Pompe disease is feasible and offers an opportunity to fully correct the principal pathology leading to cellular glycogen accumulation. Further work is needed to overcome the limitations related to vector production, immunologic reactions and redosing.
Collapse
Affiliation(s)
- Carmen Leon-Astudillo
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Prasad D Trivedi
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | - Matthew S Gentry
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | | | - Barry J Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Manuela Corti
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
2
|
Roger AL, Sethi R, Huston ML, Scarrow E, Bao-Dai J, Lai E, Biswas DD, Haddad LE, Strickland LM, Kishnani PS, ElMallah MK. What's new and what's next for gene therapy in Pompe disease? Expert Opin Biol Ther 2022; 22:1117-1135. [PMID: 35428407 PMCID: PMC10084869 DOI: 10.1080/14712598.2022.2067476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pompe disease is an autosomal recessive disorder caused by a deficiency of acid-α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. A lack of GAA leads to accumulation of glycogen in the lysosomes of cardiac, skeletal, and smooth muscle cells, as well as in the central and peripheral nervous system. Enzyme replacement therapy has been the standard of care for 15 years and slows disease progression, particularly in the heart, and improves survival. However, there are limitations of ERT success, which gene therapy can overcome. AREAS COVERED Gene therapy offers several advantages including prolonged and consistent GAA expression and correction of skeletal muscle as well as the critical CNS pathology. We provide a systematic review of the preclinical and clinical outcomes of adeno-associated viral mediated gene therapy and alternative gene therapy strategies, highlighting what has been successful. EXPERT OPINION Although the preclinical and clinical studies so far have been promising, barriers exist that need to be addressed in gene therapy for Pompe disease. New strategies including novel capsids for better targeting, optimized DNA vectors, and adjuctive therapies will allow for a lower dose, and ameliorate the immune response.
Collapse
Affiliation(s)
- Angela L. Roger
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Ronit Sethi
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Meredith L. Huston
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Evelyn Scarrow
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Joy Bao-Dai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Elias Lai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Debolina D. Biswas
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Léa El Haddad
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Laura M. Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina USA
| | - Mai K. ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| |
Collapse
|
3
|
Han S, Gheorghiu DB, Li S, Kang HR, Koeberl D. Minimum Effective Dose to Achieve Biochemical Correction With AAV Vector-Mediated Gene Therapy in Mice With Pompe Disease. Hum Gene Ther 2022; 33:492-498. [PMID: 35102744 DOI: 10.1089/hum.2021.252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pompe disease is an autosomal recessive lysosomal storage disorder caused by deficiency of acid α-glucosidase (GAA), resulting in skeletal muscle weakness and cardiomyopathy. Muscle weakness progresses despite currently available therapy, which has prompted the development of gene therapy with adeno-associated virus (AAV) type 2 vectors cross-packaged as AAV8 (2/8). Preclinical studies of gene therapy demonstrated that the minimum effective dose for biochemical correction with AAV2/8-LSPhGAA was approximately 2 x 1011 vector genomes (vg)/kg body weight. The current study examined the transduction of AAV2/8-LSPeGFP vector in adult GAA-KO mice with Pompe disease, and correlated that degree of transduction with the biochemical correction achieved by the same dose of AAV2/8-LSPhGAA. The minimum effective dose was found to be approximately 2 x 1011 vg/kg, with all hepatocytes variably transducing at this dose. At this dose, liver GAA significantly increased, while liver glycogen significantly decreased. The 2 x 1011 vg/kg dose was sufficient to significantly decrease diaphragm glycogen. However, the heart, diaphragm, and quadriceps all required a four-fold higher dose to achieve correction of GAA deficiency in association with significant clearance of stored glycogen, which correlated with increased serum GAA activity. These data indicate that AAV2/8-LSPeGFP transduced all hepatocytes when the 2 x 1011 vg/kg dose was administered, which correlated with partial biochemical correction from the equivalent dose of AAV2/8-LSPhGAA. Together these data support the conclusion that substantial transduction of the liver is required to achieve biochemical correction from AAV2/8-LSPhGAA.
Collapse
Affiliation(s)
- Sangoh Han
- Duke University Department of Pediatrics, 200759, Pediatrics, 905 LaSalle St., GSRBI RM 4048, Durham, North Carolina, United States, 27710;
| | - Dorothy Brooke Gheorghiu
- Duke University Medical Center, 22957, Pediatric Medical Genetics, 905 S Lasalle St, Durham, North Carolina, United States, 27710-4699;
| | - Songtao Li
- Duke University School of Medicine, 12277, Pediatrics, Durham, North Carolina, United States;
| | - Hye Ri Kang
- UT Southwestern, 12334, Pediatrics, Dallas, Texas, United States;
| | - Dwight Koeberl
- Duke University School of Medicine, 12277, Pediatrics, DUMC 103856, Durham, North Carolina, United States, 27710;
| |
Collapse
|
4
|
Whitehead M, Osborne A, Yu-Wai-Man P, Martin K. Humoral immune responses to AAV gene therapy in the ocular compartment. Biol Rev Camb Philos Soc 2021; 96:1616-1644. [PMID: 33837614 DOI: 10.1111/brv.12718] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Viral vectors can be utilised to deliver therapeutic genes to diseased cells. Adeno-associated virus (AAV) is a commonly used viral vector that is favoured for its ability to infect a wide range of tissues whilst displaying limited toxicity and immunogenicity. Most humans harbour anti-AAV neutralising antibodies (NAbs) due to subclinical infections by wild-type virus during infancy and these pre-existing NAbs can limit the efficiency of gene transfer depending on the target cell type, route of administration and choice of serotype. Vector administration can also result in de novo NAb synthesis that could limit the opportunity for repeated gene transfer to diseased sites. A number of strategies have been described in preclinical models that could circumvent NAb responses in humans, however, the successful translation of these innovations into the clinical arena has been limited. Here, we provide a comprehensive review of the humoral immune response to AAV gene therapy in the ocular compartment. We cover basic AAV biology and clinical application, the role of pre-existing and induced NAbs, and possible approaches to overcoming antibody responses. We conclude with a framework for a comprehensive strategy for circumventing humoral immune responses to AAV in the future.
Collapse
Affiliation(s)
- Michael Whitehead
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K
| | - Andrew Osborne
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K
| | - Patrick Yu-Wai-Man
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K.,MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, U.K.,NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, U.K
| | - Keith Martin
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K.,Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, U.K.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Salabarria SM, Nair J, Clement N, Smith BK, Raben N, Fuller DD, Byrne BJ, Corti M. Advancements in AAV-mediated Gene Therapy for Pompe Disease. J Neuromuscul Dis 2020; 7:15-31. [PMID: 31796685 PMCID: PMC7029369 DOI: 10.3233/jnd-190426] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pompe disease (glycogen storage disease type II) is caused by mutations in acid α-glucosidase (GAA) resulting in lysosomal pathology and impairment of the muscular and cardio-pulmonary systems. Enzyme replacement therapy (ERT), the only approved therapy for Pompe disease, improves muscle function by reducing glycogen accumulation but this approach entails several limitations including a short drug half-life and an antibody response that results in reduced efficacy. To address these limitations, new treatments such as gene therapy are under development to increase the intrinsic ability of the affected cells to produce GAA. Key components to gene therapy strategies include the choice of vector, promoter, and the route of administration. The efficacy of gene therapy depends on the ability of the vector to drive gene expression in the target tissue and also on the recipient's immune tolerance to the transgene protein. In this review, we discuss the preclinical and clinical studies that are paving the way for the development of a gene therapy strategy for patients with early and late onset Pompe disease as well as some of the challenges for advancing gene therapy.
Collapse
Affiliation(s)
- S M Salabarria
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - J Nair
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - N Clement
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - B K Smith
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - N Raben
- Laboratory of Protein Trafficking and Organelle Biology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - D D Fuller
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - B J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - M Corti
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| |
Collapse
|
6
|
Han SO, Li S, McCall A, Arnson B, Everitt JI, Zhang H, Young SP, ElMallah MK, Koeberl DD. Comparisons of Infant and Adult Mice Reveal Age Effects for Liver Depot Gene Therapy in Pompe Disease. Mol Ther Methods Clin Dev 2020; 17:133-142. [PMID: 31909086 PMCID: PMC6938806 DOI: 10.1016/j.omtm.2019.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/26/2019] [Indexed: 01/20/2023]
Abstract
Pompe disease is caused by the deficiency of lysosomal acid α-glucosidase (GAA). It is expected that gene therapy to replace GAA with adeno-associated virus (AAV) vectors will be less effective early in life because of the rapid loss of vector genomes. AAV2/8-LSPhGAA (3 × 1010 vector genomes [vg]/mouse) was administered to infant (2-week-old) or adult (2-month-old) GAA knockout mice. AAV vector transduction in adult mice significantly corrected GAA deficiency in the heart (p < 0.0001), diaphragm (p < 0.01), and quadriceps (p < 0.001) for >50 weeks. However, in infant mice, the same treatment only partially corrected GAA deficiency in the heart (p < 0.05), diaphragm (p < 0.05), and quadriceps (p < 0.05). The clearance of glycogen was much more efficient in adult mice compared with infant mice. Improved wire hang test latency was observed for treated adults (p < 0.05), but not for infant mice. Abnormal ventilation was corrected in both infant and adult mice. Vector-treated female mice demonstrated functional improvement, despite a lower degree of biochemical correction compared with male mice. The relative vector dose for infants was approximately 3-fold higher than adults, when normalized to body weight at the time of vector administration. Given these data, the dose requirement to achieve similar efficacy will be higher for the treatment of young patients.
Collapse
Affiliation(s)
- Sang-oh Han
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Songtao Li
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Angela McCall
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Benjamin Arnson
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey I. Everitt
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Haoyue Zhang
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarah P. Young
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Mai K. ElMallah
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dwight D. Koeberl
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Metabolism, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
7
|
Molecular Approaches for the Treatment of Pompe Disease. Mol Neurobiol 2019; 57:1259-1280. [PMID: 31713816 DOI: 10.1007/s12035-019-01820-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Glycogen storage disease type II (GSDII, Pompe disease) is a rare metabolic disorder caused by a deficiency of acid alpha-glucosidase (GAA), an enzyme localized within lysosomes that is solely responsible for glycogen degradation in this compartment. The manifestations of GSDII are heterogeneous but are classified as early or late onset. The natural course of early-onset Pompe disease (EOPD) is severe and rapidly fatal if left untreated. Currently, one therapeutic approach, namely, enzyme replacement therapy, is available, but advances in molecular medicine approaches hold promise for even more effective therapeutic strategies. These approaches, which we review here, comprise splicing modification by antisense oligonucleotides, chaperone therapy, stop codon readthrough therapy, and the use of viral vectors to introduce wild-type genes. Considering the high rate at which innovations are translated from bench to bedside, it is reasonable to expect substantial improvements in the treatment of this illness in the foreseeable future.
Collapse
|
8
|
Tulalamba W, Weinmann J, Pham QH, El Andari J, VandenDriessche T, Chuah MK, Grimm D. Distinct transduction of muscle tissue in mice after systemic delivery of AAVpo1 vectors. Gene Ther 2019; 27:170-179. [PMID: 31624368 DOI: 10.1038/s41434-019-0106-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/07/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
The human musculature is a promising and pivotal target for human gene therapy, owing to numerous diseases that affect this tissue and that are often monogenic, making them amenable to treatment and potentially cure on the genetic level. Particularly attractive would be the possibility to deliver clinically relevant DNA to muscle tissue from a minimally invasive, intravenous vector delivery. To date, this aim has been approximated by the use of Adeno-associated viruses (AAV) of different serotypes (rh.74, 8, 9) that are effective, but unfortunately not specific to the muscle and hence not ideal for use in patients. Here, we have thus studied the muscle tropism and activity of another AAV serotype, AAVpo1, that was previously isolated from pigs and found to efficiently transduce muscle following direct intramuscular injection in mice. The new data reported here substantiate the usefulness of AAVpo1 for muscle gene therapies by showing, for the first time, its ability to robustly transduce all major muscle tissues, including heart and diaphragm, from peripheral infusion. Importantly, in stark contrast to AAV9 that forms the basis for ongoing clinical gene therapy trials in the muscle, AAVpo1 is nearly completely detargeted from the liver, making it a very attractive and potentially safer option.
Collapse
Affiliation(s)
- Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1050, Brussels, Belgium.,Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Jonas Weinmann
- Department of Infectious Diseases/Virology, BioQuant Center, Heidelberg University Hospital, University of Heidelberg, 69120, Heidelberg, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Birkendorfer Straße 65, 88400, Biberach an der Riß, Germany
| | - Quang Hong Pham
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1050, Brussels, Belgium
| | - Jihad El Andari
- Department of Infectious Diseases/Virology, BioQuant Center, Heidelberg University Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1050, Brussels, Belgium. .,Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium.
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1050, Brussels, Belgium. .,Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium.
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, BioQuant Center, Heidelberg University Hospital, University of Heidelberg, 69120, Heidelberg, Germany. .,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
9
|
Pouzolles M, Machado A, Guilbaud M, Irla M, Gailhac S, Barennes P, Cesana D, Calabria A, Benedicenti F, Sergé A, Raman I, Li QZ, Montini E, Klatzmann D, Adjali O, Taylor N, Zimmermann VS. Intrathymic adeno-associated virus gene transfer rapidly restores thymic function and long-term persistence of gene-corrected T cells. J Allergy Clin Immunol 2019; 145:679-697.e5. [PMID: 31513879 DOI: 10.1016/j.jaci.2019.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Patients with T-cell immunodeficiencies are generally treated with allogeneic hematopoietic stem cell transplantation, but alternatives are needed for patients without matched donors. An innovative intrathymic gene therapy approach that directly targets the thymus might improve outcomes. OBJECTIVE We sought to determine the efficacy of intrathymic adeno-associated virus (AAV) serotypes to transduce thymocyte subsets and correct the T-cell immunodeficiency in a zeta-associated protein of 70 kDa (ZAP-70)-deficient murine model. METHODS AAV serotypes were injected intrathymically into wild-type mice, and gene transfer efficiency was monitored. ZAP-70-/- mice were intrathymically injected with an AAV8 vector harboring the ZAP70 gene. Thymus structure, immunophenotyping, T-cell receptor clonotypes, T-cell function, immune responses to transgenes and autoantibodies, vector copy number, and integration were evaluated. RESULTS AAV8, AAV9, and AAV10 serotypes all transduced thymocyte subsets after in situ gene transfer, with transduction of up to 5% of cells. Intrathymic injection of an AAV8-ZAP-70 vector into ZAP-70-/- mice resulted in a rapid thymocyte differentiation associated with the development of a thymic medulla. Strikingly, medullary thymic epithelial cells expressing the autoimmune regulator were detected within 10 days of gene transfer, correlating with the presence of functional effector and regulatory T-cell subsets with diverse T-cell receptor clonotypes in the periphery. Although thymocyte reconstitution was transient, gene-corrected peripheral T cells harboring approximately 1 AAV genome per cell persisted for more than 40 weeks, and AAV vector integration was detected. CONCLUSIONS Intrathymic AAV-transduced progenitors promote a rapid restoration of the thymic architecture, with a single wave of thymopoiesis generating long-term peripheral T-cell function.
Collapse
Affiliation(s)
- Marie Pouzolles
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Alice Machado
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Mickaël Guilbaud
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Magali Irla
- Center of Immunology Marseille-Luminy (CIML), INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, France
| | - Sarah Gailhac
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Pierre Barennes
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Arnauld Sergé
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Indu Raman
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Quan-Zhen Li
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Oumeya Adjali
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France.
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France; Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
10
|
Poletto E, Pasqualim G, Giugliani R, Matte U, Baldo G. Effects of gene therapy on cardiovascular symptoms of lysosomal storage diseases. Genet Mol Biol 2019; 42:261-285. [PMID: 31132295 PMCID: PMC6687348 DOI: 10.1590/1678-4685-gmb-2018-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are inherited conditions caused by impaired lysosomal function and consequent substrate storage, leading to a range of clinical manifestations, including cardiovascular disease. This may lead to significant symptoms and even cardiac failure, which is an important cause of death among patients. Currently available treatments do not completely correct cardiac involvement in the LSDs. Gene therapy has been tested as a therapeutic alternative with promising results for the heart disease. In this review, we present the results of different approaches of gene therapy for LSDs, mainly in animal models, and its effects in the heart, focusing on protocols with cardiac functional analysis.
Collapse
Affiliation(s)
- Edina Poletto
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Pasqualim
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Han SO, Li S, Everitt JI, Koeberl DD. Salmeterol with Liver Depot Gene Therapy Enhances the Skeletal Muscle Response in Murine Pompe Disease. Hum Gene Ther 2019; 30:855-864. [PMID: 30803275 DOI: 10.1089/hum.2018.197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene therapy for Pompe disease with adeno-associated virus (AAV) vectors has advanced into early phase clinical trials; however, the paucity of cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle, where it is needed to take up acid α-glucosidase (GAA), has impeded the efficacy of Pompe disease gene therapy. Long-acting selective β2 receptor agonists previously enhanced the CI-MPR expression in muscle. In this study we have evaluated the selective β2 agonist salmeterol in GAA knockout mice in combination with an AAV vector expressing human GAA specifically in the liver. Quadriceps glycogen content was significantly decreased by administration of the AAV vector with salmeterol, in comparison with the AAV vector alone (p < 0.01). Importantly, glycogen content of the quadriceps was reduced to its lowest level by the combination of AAV vector and salmeterol administration. Rotarod testing revealed significant improvement following treatment, in comparison with untreated mice, and salmeterol improved wirehang performance. Salmeterol treatment decreased abnormalities of autophagy in the quadriceps, as shown be lower LC3 and p62. Vector administration reduced the abnormal vacuolization and accumulation of nuclei in skeletal muscle. Thus, salmeterol could be further developed as adjunctive therapy to improve the efficacy of liver depot gene therapy for Pompe disease.
Collapse
Affiliation(s)
- Sang-Oh Han
- 1Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina
| | - Songtao Li
- 1Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina
| | - Jeffrey I Everitt
- 2Department of Pathology, Duke University Medical School, Durham, North Carolina
| | - Dwight D Koeberl
- 1Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina.,3Department of Molecular Genetics and Metabolism, Duke University Medical School, Durham, North Carolina
| |
Collapse
|
12
|
Solomon M, Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 2017; 118:109-134. [PMID: 28502768 PMCID: PMC5828774 DOI: 10.1016/j.addr.2017.05.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Lysosomes and lysosomal enzymes play a central role in numerous cellular processes, including cellular nutrition, recycling, signaling, defense, and cell death. Genetic deficiencies of lysosomal components, most commonly enzymes, are known as "lysosomal storage disorders" or "lysosomal diseases" (LDs) and lead to lysosomal dysfunction. LDs broadly affect peripheral organs and the central nervous system (CNS), debilitating patients and frequently causing fatality. Among other approaches, enzyme replacement therapy (ERT) has advanced to the clinic and represents a beneficial strategy for 8 out of the 50-60 known LDs. However, despite its value, current ERT suffers from several shortcomings, including various side effects, development of "resistance", and suboptimal delivery throughout the body, particularly to the CNS, lowering the therapeutic outcome and precluding the use of this strategy for a majority of LDs. This review offers an overview of the biomedical causes of LDs, their socio-medical relevance, treatment modalities and caveats, experimental alternatives, and future treatment perspectives.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University Maryland, College Park, MD 20742, USA.
| |
Collapse
|
13
|
Aronovich EL, Hyland KA, Hall BC, Bell JB, Olson ER, Rusten MU, Hunter DW, Ellinwood NM, McIvor RS, Hackett PB. Prolonged Expression of Secreted Enzymes in Dogs After Liver-Directed Delivery of Sleeping Beauty Transposons: Implications for Non-Viral Gene Therapy of Systemic Disease. Hum Gene Ther 2017; 28:551-564. [PMID: 28530135 DOI: 10.1089/hum.2017.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The non-viral, integrating Sleeping Beauty (SB) transposon system is efficient in treating systemic monogenic disease in mice, including hemophilia A and B caused by deficiency of blood clotting factors and mucopolysaccharidosis types I and VII caused by α-L-iduronidase (IDUA) and β-glucuronidase (GUSB) deficiency, respectively. Modified approaches of the hydrodynamics-based procedure to deliver transposons to the liver in dogs were recently reported. Using the transgenic canine reporter secreted alkaline phosphatase (cSEAP), transgenic protein in the plasma was demonstrated for up to 6 weeks post infusion. This study reports that immunosuppression of dogs with gadolinium chloride (GdCl3) prolonged the presence of cSEAP in the circulation up to 5.5 months after a single vector infusion. Transgene expression declined gradually but appeared to stabilize after about 2 months at approximately fourfold baseline level. Durability of transgenic protein expression in the plasma was inversely associated with transient increase of liver enzymes alanine transaminase and aspartate transaminase in response to the plasmid delivery procedure, which suggests a deleterious effect of hepatocellular toxicity on transgene expression. GdCl3 treatment was ineffective for repeat vector infusions. In parallel studies, dogs were infused with potentially therapeutic transposons. Activities of transgenic IDUA and GUSB in plasma peaked at 50-350% of wildtype, but in the absence of immunosuppression lasted only a few days. Transposition was detectable by excision assay only when the most efficient transposase, SB100X, was used. Dogs infused with transposons encoding canine clotting factor IX (cFIX) were treated with GdCl3 and showed expression profiles similar to those in cSEAP-infused dogs, with expression peaking at 40% wt (2 μg/mL). It is concluded that GdCl3 can support extended transgene expression after hydrodynamic introduction of SB transposons in dogs, but that alternative regimens will be required to achieve therapeutic levels of transgene products.
Collapse
Affiliation(s)
- Elena L Aronovich
- 1 Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota , Minneapolis, Minnesota
| | | | - Bryan C Hall
- 1 Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Jason B Bell
- 1 Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Erik R Olson
- 2 Discovery Genomics, Inc. , Minneapolis, Minnesota
| | - Myra Urness Rusten
- 3 Department of Radiology, University of Minnesota , Minneapolis, Minnesota
| | - David W Hunter
- 3 Department of Radiology, University of Minnesota , Minneapolis, Minnesota
| | | | - R Scott McIvor
- 1 Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota , Minneapolis, Minnesota.,2 Discovery Genomics, Inc. , Minneapolis, Minnesota
| | - Perry B Hackett
- 1 Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota , Minneapolis, Minnesota.,2 Discovery Genomics, Inc. , Minneapolis, Minnesota
| |
Collapse
|
14
|
Masat E, Laforêt P, De Antonio M, Corre G, Perniconi B, Taouagh N, Mariampillai K, Amelin D, Mauhin W, Hogrel JY, Caillaud C, Ronzitti G, Puzzo F, Kuranda K, Colella P, Mallone R, Benveniste O, Mingozzi F. Long-term exposure to Myozyme results in a decrease of anti-drug antibodies in late-onset Pompe disease patients. Sci Rep 2016; 6:36182. [PMID: 27812025 PMCID: PMC5096052 DOI: 10.1038/srep36182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022] Open
Abstract
Immunogenicity of recombinant human acid-alpha glucosidase (rhGAA) in enzyme replacement therapy (ERT) is a safety and efficacy concern in the management of late-onset Pompe disease (LOPD). However, long-term effects of ERT on humoral and cellular responses to rhGAA are still poorly understood. To better understand the impact of immunogenicity of rhGAA on the efficacy of ERT, clinical data and blood samples from LOPD patients undergoing ERT for >4 years (n = 28) or untreated (n = 10) were collected and analyzed. In treated LOPD patients, anti-rhGAA antibodies peaked within the first 1000 days of ERT, while long-term exposure to rhGAA resulted in clearance of antibodies with residual production of non-neutralizing IgG. Analysis of T cell responses to rhGAA showed detectable T cell reactivity only after in vitro restimulation. Upregulation of several cytokines and chemokines was detectable in both treated and untreated LOPD subjects, while IL2 secretion was detectable only in subjects who received ERT. These results indicate that long-term ERT in LOPD patients results in a decrease in antibody titers and residual production of non-inhibitory IgGs. Immune responses to GAA following long-term ERT do not seem to affect efficacy of ERT and are consistent with an immunomodulatory effect possibly mediated by regulatory T cells.
Collapse
Affiliation(s)
- Elisa Masat
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | - Pascal Laforêt
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France.,Paris-Est neuromuscular center, Institute of Myology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | | | | | - Barbara Perniconi
- Paris-Est neuromuscular center, Institute of Myology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Nadjib Taouagh
- Paris-Est neuromuscular center, Institute of Myology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Kuberaka Mariampillai
- Department of Internal Medicine and Clinical Immunology, DHUI2B, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Damien Amelin
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | - Wladimir Mauhin
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | - Jean-Yves Hogrel
- Neuromuscular Physiology and Evaluation Lab, Institute of Myology, Paris, France
| | | | | | | | - Klaudia Kuranda
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | | | - Roberto Mallone
- Institute Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,University Paris Descartes, Faculty of Medicine, Paris, France.,Department of diabetology, Cochin Hospital, AP-HP, Paris, France
| | - Olivier Benveniste
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France.,Department of Internal Medicine and Clinical Immunology, DHUI2B, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Federico Mingozzi
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France.,Genethon, INSERM, UMR951, Evry, France
| | | |
Collapse
|
15
|
Rastall DPW, Seregin SS, Aldhamen YA, Kaiser LM, Mullins C, Liou A, Ing F, Pereria-Hicks C, Godbehere-Roosa S, Palmer D, Ng P, Amalfitano A. Long-term, high-level hepatic secretion of acid α-glucosidase for Pompe disease achieved in non-human primates using helper-dependent adenovirus. Gene Ther 2016; 23:743-752. [PMID: 27367841 DOI: 10.1038/gt.2016.53] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/09/2016] [Accepted: 05/31/2016] [Indexed: 02/07/2023]
Abstract
Pompe disease (glycogen storage disease type II (GSD-II)) is a myopathy caused by a genetic deficiency of acid α-glucosidase (GAA) leading to lysosomal glycogen accumulation causing muscle weakness, respiratory insufficiency and death. We previously demonstrated in GSD-II mice that a single injection of a helper-dependent adenovirus (HD-Ad) expressing GAA resulted in at least 300 days of liver secretion of GAA, correction of the glycogen storage in cardiac and skeletal muscles and improved muscle strength. Recent reports suggest that gene therapy modeling for lysososomal storage diseases in mice fails to predict outcomes in larger animal models. We therefore evaluated an HD-Ad expressing GAA in non-human primates. The baboons not only tolerated the procedure well, but the results also confirmed that a single dose of the HD-Ad allowed the livers of the treated animals to express and secrete large amounts of GAA for at least 6 months, at levels similar to those achieved in mice. Moreover, we detected liver-derived GAA in the heart, diaphragm and skeletal muscles of the treated animals for the duration of the study at levels that corrected glycogen accumulation in mice. This work validates our proof-of-concept studies in mice, and justifies future efforts using Ad-based vectors in Pompe disease patients.
Collapse
Affiliation(s)
- D P W Rastall
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - S S Seregin
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Y A Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - L M Kaiser
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - C Mullins
- Baylor College of Medicine, Houston, TX, USA
| | - A Liou
- Baylor College of Medicine, Houston, TX, USA
| | - F Ing
- Keck School of Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - C Pereria-Hicks
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - S Godbehere-Roosa
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - D Palmer
- Baylor College of Medicine, Houston, TX, USA
| | - P Ng
- Baylor College of Medicine, Houston, TX, USA
| | - A Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA.,Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Sun B, Brooks ED, Koeberl DD. Preclinical Development of New Therapy for Glycogen Storage Diseases. Curr Gene Ther 2016; 15:338-47. [PMID: 26122079 DOI: 10.2174/1566523215666150630132253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/24/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023]
Abstract
Glycogen storage disease (GSD) consists of more than 10 discrete conditions for which the biochemical and genetic bases have been determined, and new therapies have been under development for several of these conditions. Gene therapy research has generated proof-of-concept for GSD types I (von Gierke disease) and II (Pompe disease). Key features of these gene therapy strategies include the choice of vector and regulatory cassette, and recently adeno-associated virus (AAV) vectors containing tissue-specific promoters have achieved a high degree of efficacy. Efficacy of gene therapy for Pompe disease depend upon the induction of immune tolerance to the therapeutic enzyme. Efficacy of von Gierke disease is transient, waning gradually over the months following vector administration. Small molecule therapies have been evaluated with the goal of improving standard of care therapy or ameliorating the cellular abnormalities associated with specific GSDs. The receptor-mediated uptake of the therapeutic enzyme in Pompe disease was enhanced by administration of β2 agonists. Rapamycin reduced the liver fibrosis observed in GSD III. Further development of gene therapy could provide curative therapy for patients with GSD, if efficacy from preclinical research is observed in future clinical trials and these treatments become clinically available.
Collapse
|
17
|
Han SO, Li S, Koeberl DD. Salmeterol enhances the cardiac response to gene therapy in Pompe disease. Mol Genet Metab 2016; 118:35-40. [PMID: 27017193 PMCID: PMC4833676 DOI: 10.1016/j.ymgme.2016.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 12/21/2022]
Abstract
Enzyme replacement therapy (ERT) with recombinant human (rh) acid α-glucosidase (GAA) has prolonged the survival of patients. However, the paucity of cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle, where it is needed to take up rhGAA, correlated with a poor response to ERT by muscle in Pompe disease. Clenbuterol, a selective β2 receptor agonist, enhanced the CI-MPR expression in striated muscle through Igf-1 mediated muscle hypertrophy, which correlated with increased CI-MPR (also the Igf-2 receptor) expression. In this study we have evaluated 4 new drugs in GAA knockout (KO) mice in combination with an adeno-associated virus (AAV) vector encoding human GAA, 3 alternative β2 agonists and dehydroepiandrosterone (DHEA). Mice were injected with AAV2/9-CBhGAA (1E+11 vector particles) at a dose that was not effective at clearing glycogen storage from the heart. Heart GAA activity was significantly increased by either salmeterol (p<0.01) or DHEA (p<0.05), in comparison with untreated mice. Furthermore, glycogen content was reduced in the heart by treatment with DHEA (p<0.001), salmeterol (p<0.05), formoterol (p<0.01), or clenbuterol (p<0.01) in combination with the AAV vector, in comparison with untreated GAA-KO mice. Wirehang testing revealed that salmeterol and the AAV vector significantly increased performance, in comparison with the AAV vector alone (p<0.001). Similarly, salmeterol with the vector increased performance significantly more than any of the other drugs. The most effective individual drugs had no significant effect in absence of vector, in comparison with untreated mice. Thus, salmeterol should be further developed as adjunctive therapy in combination with either ERT or gene therapy for Pompe disease.
Collapse
Affiliation(s)
- Sang-Oh Han
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Songtao Li
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
18
|
Doerfler PA, Nayak S, Corti M, Morel L, Herzog RW, Byrne BJ. Targeted approaches to induce immune tolerance for Pompe disease therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15053. [PMID: 26858964 PMCID: PMC4729315 DOI: 10.1038/mtm.2015.53] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/04/2015] [Accepted: 11/28/2015] [Indexed: 12/31/2022]
Abstract
Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease.
Collapse
Affiliation(s)
- Phillip A Doerfler
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Sushrusha Nayak
- Department of Medicine, Karolinska Institute , Stockholm, Sweden
| | - Manuela Corti
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, Florida, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Barry J Byrne
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| |
Collapse
|
19
|
Tse LV, Moller-Tank S, Asokan A. Strategies to circumvent humoral immunity to adeno-associated viral vectors. Expert Opin Biol Ther 2015; 15:845-55. [PMID: 25985812 DOI: 10.1517/14712598.2015.1035645] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Recent success in gene therapy of certain monogenic diseases in the clinic has infused enthusiasm into the continued development of recombinant adeno-associated viral (AAV) vectors as next-generation biologics. However, progress in clinical trials has also highlighted the challenges posed by the host humoral immune response to AAV vectors. Specifically, while pre-existing neutralizing antibodies (NAbs) limit the cohort of eligible patients, NAb generation following treatment prevents vector re-dosing. AREAS COVERED In this review, we discuss a spectrum of complementary strategies that can help circumvent the host humoral immune response to AAV. EXPERT OPINION Specifically, we present a dual perspective, that is, vector versus host, and highlight the clinical attributes, potential caveats and limitations as well as complementarity associated with the various approaches.
Collapse
Affiliation(s)
- Longping V Tse
- University of North Carolina, Gene Therapy Center , CB#7352, Thurston Building, Chapel Hill, NC 27599 , USA
| | | | | |
Collapse
|
20
|
Han SO, Li S, Bird A, Koeberl D. Synergistic Efficacy from Gene Therapy with Coreceptor Blockade and a β2-Agonist in Murine Pompe Disease. Hum Gene Ther 2015; 26:743-50. [PMID: 26417913 DOI: 10.1089/hum.2015.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pompe disease (glycogen storage disease type II; acid maltase deficiency) is a devastating myopathy resulting from acid α-glucosidase (GAA) deficiency in striated and smooth muscle. Despite the availability of enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA), the limitations of ERT have prompted the preclinical development of gene therapy. Gene therapy has the advantage of continuously producing GAA, in contrast to ERT, which requires frequent injections of rhGAA. An adeno-associated viral (AAV) vector containing a muscle-specific promoter, AAV-MHCK7hGAApA, achieved high GAA expression in heart and skeletal muscle in mice with Pompe disease. However, elevated GAA activity was not sufficient to completely clear accumulated glycogen in skeletal muscle. The process of glycogen clearance from lysosomes might require improved trafficking of GAA to the lysosomes in skeletal muscle, previously achieved with the β(2)-agonist clenbuterol that enhanced glycogen clearance in skeletal muscle without increasing GAA activity. Glycogen clearance was clearly enhanced by treatment with a nondepleting anti-CD4 monoclonal antibody (anti-CD4 mAb) along with muscle-specific GAA expression in cardiac muscle, but that treatment was not effective in skeletal muscle. Furthermore, anti-CD4 mAb treatment along with clenbuterol achieved synergistic therapeutic efficacy in both cardiac and skeletal muscle. This triple therapy increased both muscle strength and weight gain. Overall, triple therapy to enhance GAA trafficking and to suppress immune responses significantly improved the efficacy of muscle-targeted gene therapy in murine Pompe disease.
Collapse
Affiliation(s)
- Sang-oh Han
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina
| | - Songtao Li
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina
| | - Andrew Bird
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina
| | - Dwight Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
21
|
Swiderski K, Lynch GS. Therapeutic potential of orphan drugs for the rare skeletal muscle diseases. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1085858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
O'Connor DM, Boulis NM. Gene therapy for neurodegenerative diseases. Trends Mol Med 2015; 21:504-12. [PMID: 26122838 DOI: 10.1016/j.molmed.2015.06.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/18/2022]
Abstract
Gene therapy is, potentially, a powerful tool for treating neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy, Parkinson's disease (PD) and Alzheimer's disease (AD). To date, clinical trials have failed to show any improvement in outcome beyond the placebo effect. Efforts to improve outcomes are focusing on three main areas: vector design and the identification of new vector serotypes, mode of delivery of gene therapies, and identification of new therapeutic targets. These advances are being tested both individually and together to improve efficacy. These improvements may finally make gene therapy successful for these disorders.
Collapse
Affiliation(s)
- Deirdre M O'Connor
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Rastall DP, Amalfitano A. Recent advances in gene therapy for lysosomal storage disorders. APPLICATION OF CLINICAL GENETICS 2015; 8:157-69. [PMID: 26170711 PMCID: PMC4485851 DOI: 10.2147/tacg.s57682] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysosomal storage disorders (LSDs) are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme’s substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood–brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field.
Collapse
Affiliation(s)
- David Pw Rastall
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA ; Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
24
|
Abstract
INTRODUCTION An estimated 25 million Americans are living with rare diseases. Adeno-associated virus (AAV)-mediated gene therapy is an emerging therapeutic option for the more than 7,000 identified rare diseases. This paper highlights the benefits of AAV therapy compared to conventional small molecules, discusses current pre-clinical and clinical applications of AAV-mediated gene therapy, and offers insights into cutting edge research that will shape the future of AAV for broad therapeutic use. AREAS COVERED In this review the biology of AAV and our ability to generate disease-specific variants is summarized. Limitations of current therapy are reviewed, with an emphasis on immune detection of virus, viral tropism and tissue targeting, and limitations of gene expression. Information for this review was found using PubMed and clinicaltrials.gov. EXPERT OPINION Currently the scope of clinical trials of AAV gene therapy is concentrated in an array of phase I/II safety trials with less than two dozen rare diseases featured. Pre-clinical, translational studies are expanding in number as developments within the last decade have made generation of improved AAV vectors available to more researchers. Further, one bottleneck that is being overcome is the availability of disease models, which will allow for improved preclinical testing and advancement of AAV to more clinical applications.
Collapse
Affiliation(s)
- Eric Hastie
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States
| |
Collapse
|
25
|
Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15007. [PMID: 26029718 PMCID: PMC4445006 DOI: 10.1038/mtm.2015.7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 11/13/2022]
Abstract
Pompe disease is an autosomal recessive genetic disorder characterized by a deficiency of the enzyme responsible for degradation of lysosomal glycogen (acid α-glucosidase (GAA)). Cardiac dysfunction and respiratory muscle weakness are primary features of this disorder. To attenuate the progressive and rapid accumulation of glycogen resulting in cardiorespiratory dysfunction, adult Gaa–/– mice were administered a single systemic injection of rAAV2/9-DES-hGAA (AAV9-DES) or bimonthly injections of recombinant human GAA (enzyme replacement therapy (ERT)). Assessment of cardiac function and morphology was measured 1 and 3 months after initiation of treatment while whole-body plethysmography and diaphragmatic contractile function was evaluated at 3 months post-treatment in all groups. Gaa–/– animals receiving either AAV9-DES or ERT demonstrated a significant improvement in cardiac function and diaphragmatic contractile function as compared to control animals. AAV9-DES treatment resulted in a significant reduction in cardiac dimension (end diastolic left ventricular mass/gram wet weight; EDMc) at 3 months postinjection. Neither AAV nor ERT therapy altered minute ventilation during quiet breathing (eupnea). However, breathing frequency and expiratory time were significantly improved in AAV9-DES animals. These results indicate systemic delivery of either strategy improves cardiac function but AAV9-DES alone improves respiratory parameters at 3 months post-treatment in a murine model of Pompe disease.
Collapse
|
26
|
Boisgérault F, Mingozzi F. The Skeletal Muscle Environment and Its Role in Immunity and Tolerance to AAV Vector-Mediated Gene Transfer. Curr Gene Ther 2015; 15:381-94. [PMID: 26122097 PMCID: PMC4515578 DOI: 10.2174/1566523215666150630121750] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/08/2023]
Abstract
Since the early days of gene therapy, muscle has been one the most studied tissue targets for the correction of enzyme deficiencies and myopathies. Several preclinical and clinical studies have been conducted using adeno-associated virus (AAV) vectors. Exciting progress has been made in the gene delivery technologies, from the identification of novel AAV serotypes to the development of novel vector delivery techniques. In parallel, significant knowledge has been generated on the host immune system and its interaction with both the vector and the transgene at the muscle level. In particular, the role of underlying muscle inflammation, characteristic of several diseases affecting the muscle, has been defined in terms of its potential detrimental impact on gene transfer with AAV vectors. At the same time, feedback immunomodulatory mechanisms peculiar of skeletal muscle involving resident regulatory T cells have been identified, which seem to play an important role in maintaining, at least to some extent, muscle homeostasis during inflammation and regenerative processes. Devising strategies to tip this balance towards unresponsiveness may represent an avenue to improve the safety and efficacy of muscle gene transfer with AAV vectors.
Collapse
Affiliation(s)
| | - Federico Mingozzi
- Genethon, Evry, France
- University Pierre and Marie Curie, Paris, France
| |
Collapse
|