1
|
Yadav A, Liang R, Press K, Schmidt A, Shabani Z, Leng K, Wang C, Sekhar A, Shi J, Devlin GW, Gonzalez TJ, Asokan A, Su H. Evaluation of AAV Capsids and Delivery Approaches for Hereditary Hemorrhagic Telangiectasia Gene Therapy. Transl Stroke Res 2024:10.1007/s12975-024-01275-4. [PMID: 38977637 PMCID: PMC11968179 DOI: 10.1007/s12975-024-01275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
Nosebleeds and intracranial hemorrhage from brain arteriovenous malformations (bAVMs) are among the most devastating symptoms of patients with hereditary hemorrhagic telangiectasis (HHT). All available managements have limitations. We showed that intravenous (i.v.) delivery of soluble Feline McDonough Sarcoma (FMS)-related tyrosine kinase 1 using an adeno-associated viral vector (AAV9-sFLT1) reduced bAVM severity of endoglin deficient mice. However, minor liver inflammation and growth arrest in young mice were observed. To identify AAV variants and delivery methods that can best transduce brain and nasal tissue with an optimal transduction profile, we compared 3 engineered AAV capsids (AAV.cc47, AAV.cc84, and AAV1RX) with AAV9. A single-stranded CBA promoter driven tdTomato transgene was packaged in these capsids and delivered i.v. or intranasally (i.n.) to wild-type mice. A CMV promoter driven Alk1 transgene was packaged into AAV.cc84 and delivered to PdgfbiCre;Alk1f/f mice through i.v. followed by bAVM induction. Transduced cells in organs, vessel density, abnormal vessels in the bAVMs, and liver inflammation were analyzed histologically. Liver and kidney function were measured enzymatically. Compared to other viral vectors, AAV.cc84, after i.v. delivery, transduced a high percentage of brain endothelial cells (ECs) and few hepatocytes; whereas after i.n. delivery, AAV.cc84 transduced ECs and perivascular cells in the brain, and ECs, epithelial cells, and muscles in the nose with minimum hepatocyte transduction. No changes to liver or kidney function were detected. The delivery of AAV.cc84-Alk1 through i.v. to PdgfbiCre;Alk1f/f mice reduced bAVM severity. In summary, we propose that AAV.cc84-Alk1 is a promising candidate for developing gene therapy in HHT patients.
Collapse
Affiliation(s)
- Alka Yadav
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Rich Liang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Kelly Press
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Annika Schmidt
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Zahra Shabani
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Kun Leng
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - Calvin Wang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Abinav Sekhar
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Joshua Shi
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA
| | - Garth W Devlin
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Trevor J Gonzalez
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA.
| |
Collapse
|
2
|
Yadav A, Liang R, Press K, Schmidt A, Shabani Z, Leng K, Wang C, Sekhar A, Shi J, Devlin GW, Gonzalez TJ, Asokan A, Su H. Evaluation of Aav Capsids and Delivery Approaches for Hereditary Hemorrhagic Telangiectasia Gene Therapy. RESEARCH SQUARE 2024:rs.3.rs-4469011. [PMID: 38947073 PMCID: PMC11213183 DOI: 10.21203/rs.3.rs-4469011/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Nosebleeds and intracranial hemorrhage from brain arteriovenous malformations (bAVMs) are among the most devastating symptoms of patients with hereditary hemorrhagic telangiectasis (HHT). All available managements have limitations. We showed that intravenous delivery of soluble FMS-related tyrosine kinase 1 using an adeno-associated viral vector (AAV9-sFLT1) reduced bAVM severity of endoglin deficient mice. However, minor liver inflammation and growth arrest in young mice were observed. To identify AAV variants and delivery methods that can best transduce brain and nasal tissue with an optimal transduction profile, we compared 3 engineered AAV capsids (AAV.cc47, AAV.cc84 and AAV1RX) with AAV9. A single-stranded CBA promoter driven tdTomato transgene was packaged in these capsids and delivered intravenously (i.v.) or intranasally (i.n.) to wild-type mice. A CMV promoter driven Alk1 transgene was packaged into AAV.cc84 and delivered to PdgfbiCre;Alk1 f/f mice through i.v. injection followed by brain AVM induction. Transduced cells in different organs, vessel density and abnormal vessels in the bAVMs, and liver inflammation were analyzed histologically. Liver and kidney function were measured enzymatically. Compared to other viral vectors, AAV.cc84, after i.v. delivery, transduced a high percentage of brain ECs and few hepatocytes; whereas after i.n. delivery, AAV.cc84 transduced ECs and perivascular cells in the brain, and ECs, epithelial cells, and skeletal muscles in the nose with minimum hepatocyte transduction. No changes to liver or kidney function were detected. Delivery of AAV.cc84-Alk1 through i.v. to PdgfbiCre;Alk1 f/f mice reduced bAVM severity. In summary, we propose that AAV.cc84-Alk1 is a promising candidate for developing gene therapy in HHT patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun Leng
- University of California, San Francisco
| | | | | | | | | | | | | | - Hua Su
- University of California, San Francisco
| |
Collapse
|
3
|
Pauzuolyte V, Patel A, Wawrzynski JR, Ingham NJ, Leong YC, Karda R, Bitner‐Glindzicz M, Berger W, Waddington SN, Steel KP, Sowden JC. Systemic gene therapy rescues retinal dysfunction and hearing loss in a model of Norrie disease. EMBO Mol Med 2023; 15:e17393. [PMID: 37642150 PMCID: PMC10565640 DOI: 10.15252/emmm.202317393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
Deafness affects 5% of the world's population, yet there is a lack of treatments to prevent hearing loss due to genetic causes. Norrie disease is a recessive X-linked disorder, caused by NDP gene mutation. It manifests as blindness at birth and progressive sensorineural hearing loss, leading to debilitating dual sensory deprivation. To develop a gene therapy, we used a Norrie disease mouse model (Ndptm1Wbrg ), which recapitulates abnormal retinal vascularisation and progressive hearing loss. We delivered human NDP cDNA by intravenous injection of adeno-associated viral vector (AAV)9 at neonatal, juvenile and young adult pathological stages and investigated its therapeutic effects on the retina and cochlea. Neonatal treatment prevented the death of the sensory cochlear hair cells and rescued cochlear disease biomarkers as demonstrated by RNAseq and physiological measurements of auditory function. Retinal vascularisation and electroretinograms were restored to normal by neonatal treatment. Delivery of NDP gene therapy after the onset of the degenerative inner ear disease also ameliorated the cochlear pathology, supporting the feasibility of a clinical treatment for progressive hearing loss in people with Norrie disease.
Collapse
Affiliation(s)
- Valda Pauzuolyte
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Aara Patel
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - James R Wawrzynski
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Neil J Ingham
- Wolfson Centre for Age‐Related Diseases, King's College LondonLondonUK
| | - Yeh Chwan Leong
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Rajvinder Karda
- EGA Institute for Woman's Health, University College LondonLondonUK
| | - Maria Bitner‐Glindzicz
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of ZürichZürichSwitzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of ZürichZürichSwitzerland
- Neuroscience Center Zurich, University and ETH Zurich, University of ZürichZürichSwitzerland
| | - Simon N Waddington
- EGA Institute for Woman's Health, University College LondonLondonUK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health SciencesUniversity of the WitswatersrandJohannesburgSouth Africa
| | - Karen P Steel
- Wolfson Centre for Age‐Related Diseases, King's College LondonLondonUK
| | - Jane C Sowden
- UCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| |
Collapse
|
4
|
AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat Neurosci 2022; 25:106-115. [PMID: 34887588 DOI: 10.1038/s41593-021-00969-4] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
Genetic intervention is increasingly being explored as a therapeutic option for debilitating disorders of the central nervous system. The safety and efficacy of gene therapies rely upon expressing a transgene in affected cells while minimizing off-target expression. Here we show organ-specific targeting of adeno-associated virus (AAV) capsids after intravenous delivery, which we achieved by employing a Cre-transgenic-based screening platform and sequential engineering of AAV-PHP.eB between the surface-exposed AA452 and AA460 of VP3. From this selection, we identified capsid variants that were enriched in the brain and targeted away from the liver in C57BL/6J mice. This tropism extends to marmoset (Callithrix jacchus), enabling robust, non-invasive gene delivery to the marmoset brain after intravenous administration. Notably, the capsids identified result in distinct transgene expression profiles within the brain, with one exhibiting high specificity to neurons. The ability to cross the blood-brain barrier with neuronal specificity in rodents and non-human primates enables new avenues for basic research and therapeutic possibilities unattainable with naturally occurring serotypes.
Collapse
|
5
|
Hu H, Mosca R, Gomero E, van de Vlekkert D, Campos Y, Fremuth LE, Brown SA, Weesner JA, Annunziata I, d’Azzo A. AAV-mediated gene therapy for galactosialidosis: A long-term safety and efficacy study. Mol Ther Methods Clin Dev 2021; 23:644-658. [PMID: 34901309 PMCID: PMC8640647 DOI: 10.1016/j.omtm.2021.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 10/26/2021] [Indexed: 11/05/2022]
Abstract
AAV-mediated gene therapy holds promise for the treatment of lysosomal storage diseases (LSDs), some of which are already in clinical trials. Yet, ultra-rare subtypes of LSDs, such as some glycoproteinoses, have lagged. Here, we report on a long-term safety and efficacy preclinical study conducted in the murine model of galactosialidosis, a glycoproteinosis caused by a deficiency of protective protein/cathepsin A (PPCA). One-month-old Ctsa -/- mice were injected intravenously with a high dose of a self-complementary AAV2/8 vector expressing human CTSA in the liver. Treated mice, examined up to 12 months post injection, appeared grossly indistinguishable from their wild-type littermates. Sustained expression of scAAV2/8-CTSA in the liver resulted in the release of the therapeutic precursor protein in circulation and its widespread uptake by cells in visceral organs and the brain. Increased cathepsin A activity resolved lysosomal vacuolation throughout the affected organs and sialyl-oligosacchariduria. No signs of hyperplasia or inflammation were detected in the liver up to a year of age. Clinical chemistry panels, blood cell counts, and T cell immune responses were normal in all treated animals. These results warrant a close consideration of this gene therapy approach for the treatment of galactosialidosis, an orphan disease with no cure in sight.
Collapse
Affiliation(s)
- Huimin Hu
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rosario Mosca
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elida Gomero
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Yvan Campos
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Leigh E. Fremuth
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Scott A. Brown
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason A. Weesner
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ida Annunziata
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
6
|
Xie YX, Lv WQ, Chen YK, Hong S, Yao XP, Chen WJ, Zhao M. Advances in gene therapy for neurogenetic diseases: a brief review. J Mol Med (Berl) 2021; 100:385-394. [PMID: 34837498 DOI: 10.1007/s00109-021-02167-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
Neurogenetic diseases are neurological conditions with a genetic cause (s). There are thousands of neurogenetic diseases, and most of them are incurable. The development of bioinformatics and elucidation of the mechanism of pathogenesis have allowed the development of gene therapy approaches, which show great potential in treating neurogenetic diseases. Viral vectors delivery, antisense oligonucleotides, gene editing, RNA interference, and burgeoning viroid delivery technique are promising gene therapy strategies, and commendable therapeutic effects in the treatment of neurogenetic diseases have been achieved (Fig. 1). This review highlights a sampling of advances in gene therapies for neurogenetic disorders. Fig. 1 Examples of gene therapy strategies used in the treatment of neurogenetic diseases. The schematic diagram shows different gene therapy approaches used for treating a sampling of neurogenetic disorders, such as ASO therapy, gene editing, gene augmentation, and RNA interference.
Collapse
Affiliation(s)
- Ying-Xuan Xie
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Wen-Qi Lv
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Yi-Kun Chen
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Shunyan Hong
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Xiang-Ping Yao
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Miao Zhao
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
7
|
Johnston S, Parylak SL, Kim S, Mac N, Lim C, Gallina I, Bloyd C, Newberry A, Saavedra CD, Novak O, Gonçalves JT, Gage FH, Shtrahman M. AAV ablates neurogenesis in the adult murine hippocampus. eLife 2021; 10:e59291. [PMID: 34259630 PMCID: PMC8331179 DOI: 10.7554/elife.59291] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) has been widely used as a viral vector across mammalian biology and has been shown to be safe and effective in human gene therapy. We demonstrate that neural progenitor cells (NPCs) and immature dentate granule cells (DGCs) within the adult murine hippocampus are particularly sensitive to rAAV-induced cell death. Cell loss is dose dependent and nearly complete at experimentally relevant viral titers. rAAV-induced cell death is rapid and persistent, with loss of BrdU-labeled cells within 18 hr post-injection and no evidence of recovery of adult neurogenesis at 3 months post-injection. The remaining mature DGCs appear hyperactive 4 weeks post-injection based on immediate early gene expression, consistent with previous studies investigating the effects of attenuating adult neurogenesis. In vitro application of AAV or electroporation of AAV2 inverted terminal repeats (ITRs) is sufficient to induce cell death. Efficient transduction of the dentategyrus (DG)- without ablating adult neurogenesis- can be achieved by injection of rAAV2-retro serotyped virus into CA3. rAAV2-retro results in efficient retrograde labeling of mature DGCs and permits in vivo two-photon calcium imaging of dentate activity while leaving adult neurogenesis intact. These findings expand on recent reports implicating rAAV-linked toxicity in stem cells and other cell types and suggest that future work using rAAV as an experimental tool in the DG and as a gene therapy for diseases of the central nervous system should be carefully evaluated.
Collapse
Affiliation(s)
- Stephen Johnston
- Neurosciences Graduate Program, University of California, San DiegoLa JollaUnited States
- Laboratory of Genetics, Salk Institute for Biological StudiesLa JollaUnited States
| | - Sarah L Parylak
- Laboratory of Genetics, Salk Institute for Biological StudiesLa JollaUnited States
| | - Stacy Kim
- Laboratory of Genetics, Salk Institute for Biological StudiesLa JollaUnited States
- Department of Neurosciences, University of California, San DiegoLa JollaUnited States
| | - Nolan Mac
- Department of Biology, University of California, San DiegoLa JollaUnited States
| | - Christina Lim
- Laboratory of Genetics, Salk Institute for Biological StudiesLa JollaUnited States
| | - Iryna Gallina
- Laboratory of Genetics, Salk Institute for Biological StudiesLa JollaUnited States
| | - Cooper Bloyd
- Laboratory of Genetics, Salk Institute for Biological StudiesLa JollaUnited States
| | - Alexander Newberry
- Department of Physics, University of California, San DiegoLa JollaUnited States
| | - Christian D Saavedra
- Laboratory of Genetics, Salk Institute for Biological StudiesLa JollaUnited States
| | - Ondrej Novak
- Laboratory of Experimental Epileptology, Department of Physiology, Second Faculty of Medicine, Charles UniversityPragueUnited Kingdom
| | - J Tiago Gonçalves
- Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of MedicineBronxUnited States
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological StudiesLa JollaUnited States
| | - Matthew Shtrahman
- Department of Neurosciences, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
8
|
Prakoso D, Tate M, Blasio M, Ritchie R. Adeno-associated viral (AAV) vector-mediated therapeutics for diabetic cardiomyopathy - current and future perspectives. Clin Sci (Lond) 2021; 135:1369-1387. [PMID: 34076247 PMCID: PMC8187922 DOI: 10.1042/cs20210052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Diabetes increases the prevalence of heart failure by 6-8-fold, independent of other comorbidities such as hypertension and coronary artery disease, a phenomenon termed diabetic cardiomyopathy. Several key signalling pathways have been identified that drive the pathological changes associated with diabetes-induced heart failure. This has led to the development of multiple pharmacological agents that are currently available for clinical use. While fairly effective at delaying disease progression, these treatments do not reverse the cardiac damage associated with diabetes. One potential alternative avenue for targeting diabetes-induced heart failure is the use of adeno-associated viral vector (AAV) gene therapy, which has shown great versatility in a multitude of disease settings. AAV gene therapy has the potential to target specific cells or tissues, has a low host immune response and has the possibility to represent a lifelong cure, not possible with current conventional pharmacotherapies. In this review, we will assess the therapeutic potential of AAV gene therapy as a treatment for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Darnel Prakoso
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
| | - Mitchel Tate
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Diabetes, Monash University, Clayton, Victoria 3800, Australia
| | - Miles J. De Blasio
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca H. Ritchie
- Departments of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Australia
- Diabetes, Monash University, Clayton, Victoria 3800, Australia
- Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Choi E, Koo T. CRISPR technologies for the treatment of Duchenne muscular dystrophy. Mol Ther 2021; 29:3179-3191. [PMID: 33823301 DOI: 10.1016/j.ymthe.2021.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The emerging clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing technologies have progressed remarkably in recent years, opening up the potential of precise genome editing as a therapeutic approach to treat various diseases. The CRISPR-CRISPR-associated (Cas) system is an attractive platform for the treatment of Duchenne muscular dystrophy (DMD), which is a neuromuscular disease caused by mutations in the DMD gene. CRISPR-Cas can be used to permanently repair the mutated DMD gene, leading to the expression of the encoded protein, dystrophin, in systems ranging from cells derived from DMD patients to animal models of DMD. However, the development of more efficient therapeutic approaches and delivery methods remains a great challenge for DMD. Here, we review various therapeutic strategies that use CRISPR-Cas to correct or bypass DMD mutations and discuss their therapeutic potential, as well as obstacles that lie ahead.
Collapse
Affiliation(s)
- Eunyoung Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Taeyoung Koo
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea; Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
10
|
Weber-Adrian D, Kofoed RH, Silburt J, Noroozian Z, Shah K, Burgess A, Rideout S, Kügler S, Hynynen K, Aubert I. Systemic AAV6-synapsin-GFP administration results in lower liver biodistribution, compared to AAV1&2 and AAV9, with neuronal expression following ultrasound-mediated brain delivery. Sci Rep 2021; 11:1934. [PMID: 33479314 PMCID: PMC7820310 DOI: 10.1038/s41598-021-81046-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
Non-surgical gene delivery to the brain can be achieved following intravenous injection of viral vectors coupled with transcranial MRI-guided focused ultrasound (MRIgFUS) to temporarily and locally permeabilize the blood-brain barrier. Vector and promoter selection can provide neuronal expression in the brain, while limiting biodistribution and expression in peripheral organs. To date, the biodistribution of adeno-associated viruses (AAVs) within peripheral organs had not been quantified following intravenous injection and MRIgFUS delivery to the brain. We evaluated the quantity of viral DNA from the serotypes AAV9, AAV6, and a mosaic AAV1&2, expressing green fluorescent protein (GFP) under the neuron-specific synapsin promoter (syn). AAVs were administered intravenously during MRIgFUS targeting to the striatum and hippocampus in mice. The syn promoter led to undetectable levels of GFP expression in peripheral organs. In the liver, the biodistribution of AAV9 and AAV1&2 was 12.9- and 4.4-fold higher, respectively, compared to AAV6. The percentage of GFP-positive neurons in the FUS-targeted areas of the brain was comparable for AAV6-syn-GFP and AAV1&2-syn-GFP. In summary, MRIgFUS-mediated gene delivery with AAV6-syn-GFP had lower off-target biodistribution in the liver compared to AAV9 and AAV1&2, while providing neuronal GFP expression in the striatum and hippocampus.
Collapse
Affiliation(s)
- Danielle Weber-Adrian
- grid.410356.50000 0004 1936 8331Present Address: Faculty of Health Sciences, School of Medicine, Queen′s University, Kingston, ON Canada ,grid.17063.330000 0001 2157 2938Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Rikke Hahn Kofoed
- grid.17063.330000 0001 2157 2938Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Joseph Silburt
- grid.17063.330000 0001 2157 2938Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Zeinab Noroozian
- grid.17063.330000 0001 2157 2938Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Kairavi Shah
- grid.17063.330000 0001 2157 2938Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Alison Burgess
- grid.17063.330000 0001 2157 2938Physical Sciences, Sunnybrook Research Institute, Toronto, ON Canada
| | - Shawna Rideout
- grid.17063.330000 0001 2157 2938Physical Sciences, Sunnybrook Research Institute, Toronto, ON Canada
| | - Sebastian Kügler
- grid.411984.10000 0001 0482 5331Department of Neurology, Center Nanoscale Microscopy and Physiology of the Brain (CNMPB) at University Medical Center Göttingen, Göttingen, Germany
| | - Kullervo Hynynen
- grid.17063.330000 0001 2157 2938Physical Sciences, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Isabelle Aubert
- grid.17063.330000 0001 2157 2938Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
11
|
Pierce GF. Uncertainty in an era of transformative therapy for haemophilia: Addressing the unknowns. Haemophilia 2020; 27 Suppl 3:103-113. [PMID: 32484283 DOI: 10.1111/hae.14023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Haemophilia is at the dawn of a new era in therapeutic management, one that can generate greater protection from bleeding and a functional cure in some individuals. Prior advances in protein engineering and monoclonal antibody technology have facilitated therapeutic options to maintain decreased risk of bleeding and less burdensome treatment. The use of gene transfer, first proposed in 1971 for monogenic diseases, is emerging as an effective long-term treatment for a variety of diseases. Transfer of functional factor VIII (FVIII) and factor IX (FIX) genes has witnessed a series of advances and setbacks since the first non-clinical experiments in animals were initiated nearly 30 years ago. More recently, multiyear therapeutic levels of FVIII and FIX activity have been achieved in human clinical trials, translated into meaningful clinical benefit and a functional cure. While clinical progress has been definitive, many questions remain unanswered as prelicensure phase 3 clinical trials are underway. These unanswered questions translate into a state of uncertainty about the known unknowns and unknown unknowns intrinsic to any new therapeutic platform. Accepting this modality as a means to functionally cure haemophilia also means accepting the uncertainty regarding the biology of viral vector-mediated gene transfer, which remains inadequately understood. Gene therapy is a far more complex biological 'drug' than small molecule and protein drugs, where manufacturing processes and the drugs themselves are now well characterized. Extent of community acceptance of uncertainty and acknowledgement of the need for an uncompromising drive for answers to the unknowns will characterize the introduction of this first generation of gene therapy for haemophilia to the wider patient population in both resource-rich and resource-poor countries.
Collapse
|
12
|
Lavin TK, Jin L, Lea NE, Wickersham IR. Monosynaptic Tracing Success Depends Critically on Helper Virus Concentrations. Front Synaptic Neurosci 2020; 12:6. [PMID: 32116642 PMCID: PMC7033752 DOI: 10.3389/fnsyn.2020.00006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/23/2020] [Indexed: 11/13/2022] Open
Abstract
Monosynaptically-restricted transsynaptic tracing using deletion-mutant rabies virus (RV) has become a widely used technique in neuroscience, allowing identification, imaging, and manipulation of neurons directly presynaptic to a starting neuronal population. Its most common implementation is to use Cre mouse lines in combination with Cre-dependent "helper" adeno-associated viral vectors (AAVs) to supply the required genes to the targeted population before subsequent injection of a first-generation (ΔG) rabies viral vector. Here we show that the efficiency of transsynaptic spread and the degree of nonspecific labeling in wild-type control animals depend strongly on the concentrations of these helper AAVs. Our results suggest practical guidelines for achieving good results.
Collapse
Affiliation(s)
| | | | | | - Ian R. Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
13
|
Hoshino Y, Nishide K, Nagoshi N, Shibata S, Moritoki N, Kojima K, Tsuji O, Matsumoto M, Kohyama J, Nakamura M, Okano H. The adeno-associated virus rh10 vector is an effective gene transfer system for chronic spinal cord injury. Sci Rep 2019; 9:9844. [PMID: 31285460 PMCID: PMC6614469 DOI: 10.1038/s41598-019-46069-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/20/2019] [Indexed: 11/09/2022] Open
Abstract
Treatment options for chronic spinal cord injury (SCI) remain limited due to unfavourable changes in the microenvironment. Gene therapy can overcome these barriers through continuous delivery of therapeutic gene products to the target tissue. In particular, adeno-associated virus (AAV) vectors are potential candidates for use in chronic SCI, considering their safety and stable gene expression in vivo. Given that different AAV serotypes display different cellular tropisms, it is extremely important to select an optimal serotype for establishing a gene transfer system during the chronic phase of SCI. Therefore, we generated multiple AAV serotypes expressing ffLuc-cp156, a fusion protein of firefly luciferase and Venus, a variant of yellow fluorescent protein with fast and efficient maturation, as a reporter, and we performed intraparenchymal injection in a chronic SCI mouse model. Among the various serotypes tested, AAVrh10 displayed the highest photon count on bioluminescence imaging. Immunohistological analysis revealed that AAVrh10 showed favourable tropism for neurons, astrocytes, and oligodendrocytes. Additionally, with AAVrh10, the area expressing Venus was larger in the injury epicentre and extended to the surrounding tissue. Furthermore, the fluorescence intensity was significantly higher with AAVrh10 than with the other vectors. These results indicate that AAVrh10 may be an appropriate serotype for gene delivery to the chronically injured spinal cord. This promising tool may be applied for research and development related to the treatment of chronic SCI.
Collapse
Affiliation(s)
- Yutaka Hoshino
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kenji Nishide
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Electron microscope laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Nobuko Moritoki
- Electron microscope laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kota Kojima
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Osahiko Tsuji
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Electron microscope laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
14
|
Abstract
Adeno-associated virus (AAV) vectors are the leading platform for gene delivery for the treatment of a variety of human diseases. Recent advances in developing clinically desirable AAV capsids, optimizing genome designs and harnessing revolutionary biotechnologies have contributed substantially to the growth of the gene therapy field. Preclinical and clinical successes in AAV-mediated gene replacement, gene silencing and gene editing have helped AAV gain popularity as the ideal therapeutic vector, with two AAV-based therapeutics gaining regulatory approval in Europe or the United States. Continued study of AAV biology and increased understanding of the associated therapeutic challenges and limitations will build the foundation for future clinical success.
Collapse
Affiliation(s)
- Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
15
|
Ginocchio VM, Brunetti-Pierri N. Recent progress in gene therapies for mucopolysaccharidoses. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1529564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Virginia Maria Ginocchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Translational Medicine, “Federico II” University Hospital, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Translational Medicine, “Federico II” University Hospital, Naples, Italy
| |
Collapse
|
16
|
Simpson EM, Korecki AJ, Fornes O, McGill TJ, Cueva-Vargas JL, Agostinone J, Farkas RA, Hickmott JW, Lam SL, Mathelier A, Renner LM, Stoddard J, Zhou M, Di Polo A, Neuringer M, Wasserman WW. New MiniPromoter Ple345 (NEFL) Drives Strong and Specific Expression in Retinal Ganglion Cells of Mouse and Primate Retina. Hum Gene Ther 2018; 30:257-272. [PMID: 30062914 PMCID: PMC6437624 DOI: 10.1089/hum.2018.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Retinal gene therapy is leading the neurological gene therapy field, with 32 ongoing clinical trials of recombinant adeno-associated virus (rAAV)–based therapies. Importantly, over 50% of those trials are using restricted promoters from human genes. Promoters that restrict expression have demonstrated increased efficacy and can limit the therapeutic to the target cells thereby reducing unwanted off-target effects. Retinal ganglion cells are a critical target in ocular gene therapy; they are involved in common diseases such as glaucoma, rare diseases such as Leber's hereditary optic neuropathy, and in revolutionary optogenetic treatments. Here, we used computational biology and mined the human genome for the best genes from which to develop a novel minimal promoter element(s) designed for expression in restricted cell types (MiniPromoter) to improve the safety and efficacy of retinal ganglion cell gene therapy. Gene selection included the use of the first available droplet-based single-cell RNA sequencing (Drop-seq) dataset, and promoter design was bioinformatically driven and informed by a wide range of genomics datasets. We tested seven promoter designs from four genes in rAAV for specificity and quantified expression strength in retinal ganglion cells in mouse, and then the single best in nonhuman primate retina. Thus, we developed a new human-DNA MiniPromoter, Ple345 (NEFL), which in combination with intravitreal delivery in rAAV9 showed specific and robust expression in the retinal ganglion cells of the nonhuman-primate rhesus macaque retina. In mouse, we also developed MiniPromoters expressing in retinal ganglion cells, the hippocampus of the brain, a pan neuronal pattern in the brain, and peripheral nerves. As single-cell transcriptomics such as Drop-seq become available for other cell types, many new opportunities for additional novel restricted MiniPromoters will present.
Collapse
Affiliation(s)
- Elizabeth M Simpson
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,3 Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,4 Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea J Korecki
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oriol Fornes
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Trevor J McGill
- 5 Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon.,6 Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Jorge Luis Cueva-Vargas
- 7 Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Jessica Agostinone
- 7 Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Rachelle A Farkas
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jack W Hickmott
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siu Ling Lam
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony Mathelier
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren M Renner
- 5 Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon
| | - Jonathan Stoddard
- 5 Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon
| | - Michelle Zhou
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adriana Di Polo
- 7 Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Martha Neuringer
- 5 Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon.,6 Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Wyeth W Wasserman
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
van Haasteren J, Hyde SC, Gill DR. Lessons learned from lung and liver in-vivo gene therapy: implications for the future. Expert Opin Biol Ther 2018; 18:959-972. [PMID: 30067117 PMCID: PMC6134476 DOI: 10.1080/14712598.2018.1506761] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Ex-vivo gene therapy has had significant clinical impact over the last couple of years and in-vivo gene therapy products are being approved for clinical use. Gene therapy and gene editing approaches have huge potential to treat genetic disease and chronic illness. AREAS COVERED This article provides a review of in-vivo approaches for gene therapy in the lung and liver, exploiting non-viral and viral vectors with varying serotypes and pseudotypes to target-specific cells. Antibody responses inhibiting viral vectors continue to constrain effective repeat administration. Lessons learned from ex-vivo gene therapy and genome editing are also discussed. EXPERT OPINION The fields of lung and liver in-vivo gene therapy are thriving and a comparison highlights obstacles and opportunities for both. Overcoming immunological issues associated with repeated administration of viral vectors remains a key challenge. The addition of targeted small molecules in combination with viral vectors may offer one solution. A substantial bottleneck to the widespread adoption of in-vivo gene therapy is how to ensure sufficient capacity for clinical-grade vector production. In the future, the exploitation of gene editing approaches for in-vivo disease treatment may facilitate the resurgence of non-viral gene transfer approaches, which tend to be eclipsed by more efficient viral vectors.
Collapse
Affiliation(s)
- Joost van Haasteren
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen C. Hyde
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Deborah R. Gill
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Aguti S, Malerba A, Zhou H. The progress of AAV-mediated gene therapy in neuromuscular disorders. Expert Opin Biol Ther 2018; 18:681-693. [DOI: 10.1080/14712598.2018.1479739] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Aguti
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Haiyan Zhou
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
19
|
Kaemmerer WF. How will the field of gene therapy survive its success? Bioeng Transl Med 2018; 3:166-177. [PMID: 30065971 PMCID: PMC6063870 DOI: 10.1002/btm2.10090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 02/01/2023] Open
Abstract
In August 2017, for the first time, a gene therapy was approved for market release in the United States. That approval was followed by two others before the end of the year. This article cites primary literature, review articles concerning particular biotechnologies, and press releases by the FDA and others in order to provide an overview of the current status of the field of gene therapy with respect to its translation into practice. Technical hurdles that have been overcome in the past decades are summarized, as are hurdles that need to be the subject of continued research. Then, some social and practical challenges are identified that must be overcome if the field of gene therapy, having survived past failures, is to achieve not only technical and clinical but also market success. One of these, the need for an expanded capacity for the manufacturing of viral vectors to be able to meet the needs of additional gene therapies that will be coming soon, is a challenge that the talents of current and future bioengineers may help address.
Collapse
|
20
|
Pierce GF, Iorio A. Past, present and future of haemophilia gene therapy: From vectors and transgenes to known and unknown outcomes. Haemophilia 2018; 24 Suppl 6:60-67. [DOI: 10.1111/hae.13489] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2018] [Indexed: 01/19/2023]
Affiliation(s)
- G. F. Pierce
- World Federation of Hemophilia; Montreal QC Canada
- World Federation of Hemophilia; Third Rock Ventures; San Francisco CA USA
| | - A. Iorio
- McMaster University; Hamilton ON Canada
| |
Collapse
|
21
|
Philippidis A. Gene Therapy Briefs. HUM GENE THER CL DEV 2018; 29:1-6. [PMID: 29641280 DOI: 10.1089/humc.2018.29033.bfs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Safety First: Perspective on Patient-Centered Development of AAV Gene Therapy Products. Mol Ther 2018; 26:669-671. [PMID: 29503193 DOI: 10.1016/j.ymthe.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|