1
|
Park SH, Shah IR, Jhumur NC, Mo Y, Tendolkar S, Lallow EO, Shan JW, Zahn JD, Maslow JN, Pelegri AA, Lin H, Shreiber DI, Singer JP. Microneedle arrays coated with Middle East respiratory syndrome coronavirus DNA vaccine via electrospray deposition. SOFT MATTER 2025. [PMID: 40151993 DOI: 10.1039/d4sm01322k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Microneedle arrays have been shown to be a minimally invasive method of transdermal drug delivery. However, methods to coat these arrays often require a reservoir of the active ingredient, leading to unused and wasted material. Electrospray deposition is a targeted coating method that offers a competitive alternative for coating microneedles. By architecting the charge landscape of the setup, this technology can achieve coating deposition efficiencies nearing 100%, with little to no material wasted during the coating process. A Middle East respiratory syndrome coronavirus DNA vaccine was used as the model material to assess deposition efficiency as well as the efficacy of fragile biological materials subjected to electrospray deposition. Trehalose and polystyrene-block-polyacrylic acid were used as excipients to encourage coating dispersion. These coatings were inserted into Sprague Dawley rats where the antigen was subsequently detected and located using immunohistochemistry. Both coatings, with and without excipients, showed that protein expression is achieved after the vaccine is subjected to electrospray, however, the presence of excipients qualitatively leads to a more disperse diffusion profile. Further, this work demonstrates the capability of electrospray deposition as a highly efficient method to coat microneedles for transdermal drug delivery.
Collapse
Affiliation(s)
- Sarah H Park
- Department of Materials Science and Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA.
| | - Isha R Shah
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Nandita C Jhumur
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Yaxin Mo
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Shalaka Tendolkar
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | | | - Jerry W Shan
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | | | - Assimina A Pelegri
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Hao Lin
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Jonathan P Singer
- Department of Materials Science and Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA.
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Zhang W, Jiao Y, Zhang Z, Zhang Y, Yu J, Gu Z. Transdermal gene delivery. J Control Release 2024; 371:516-529. [PMID: 38849095 DOI: 10.1016/j.jconrel.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Gene delivery has revolutionized conventional medical approaches to vaccination, cancer, and autoimmune diseases. However, current gene delivery methods are limited to either intravenous administration or direct local injections, failing to achieve well biosafety, tissue targeting, drug retention, and transfection efficiency for desired therapeutic outcomes. Transdermal drug delivery based on various delivery strategies can offer improved therapeutic potential and superior patient experiences. Recently, there has been increased foundational and clinical research focusing on the role of the transdermal route in gene delivery and exploring its impact on the efficiency of gene delivery. This review introduces the recent advances in transdermal gene delivery approaches facilitated by drug formulations and medical devices, as well as discusses their prospects.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Jiao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziru Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
3
|
Yu X, Zhao J, Fan D. The Progress in the Application of Dissolving Microneedles in Biomedicine. Polymers (Basel) 2023; 15:4059. [PMID: 37896303 PMCID: PMC10609950 DOI: 10.3390/polym15204059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, microneedle technology has been widely used for the transdermal delivery of substances, showing improvements in drug delivery effects with the advantages of minimally invasive, painless, and convenient operation. With the development of nano- and electrochemical technology, different types of microneedles are increasingly being used in other biomedical fields. Recent research progress shows that dissolving microneedles have achieved remarkable results in the fields of dermatological treatment, disease diagnosis and monitoring, and vaccine delivery, and they have a wide range of application prospects in various biomedical fields, showing their great potential as a form of clinical treatment. This review mainly focuses on dissolving microneedles, summarizing the latest research progress in various biomedical fields, providing inspiration for the subsequent intelligent and commercial development of dissolving microneedles, and providing better solutions for clinical treatment.
Collapse
Affiliation(s)
- Xueqing Yu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Jing Zhao
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| |
Collapse
|
4
|
Wang H, Xu J, Xiang L. Microneedle-Mediated Transcutaneous Immunization: Potential in Nucleic Acid Vaccination. Adv Healthc Mater 2023; 12:e2300339. [PMID: 37115817 DOI: 10.1002/adhm.202300339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Efforts aimed at exploring economical and efficient vaccination have taken center stage to combat frequent epidemics worldwide. Various vaccines have been developed for infectious diseases, among which nucleic acid vaccines have attracted much attention from researchers due to their design flexibility and wide application. However, the lack of an efficient delivery system considerably limits the clinical translation of nucleic acid vaccines. As mass vaccinations via syringes are limited by low patient compliance and high costs, microneedles (MNs), which can achieve painless, cost-effective, and efficient drug delivery, can provide an ideal vaccination strategy. The MNs can break through the stratum corneum barrier in the skin and deliver vaccines to the immune cell-rich epidermis and dermis. In addition, the feasibility of MN-mediated vaccination is demonstrated in both preclinical and clinical studies and has tremendous potential for the delivery of nucleic acid vaccines. In this work, the current status of research on MN vaccines is reviewed. Moreover, the improvements of MN-mediated nucleic acid vaccination are summarized and the challenges of its clinical translation in the future are discussed.
Collapse
Affiliation(s)
- Haochen Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junhua Xu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Zhu T, Zhang W, Jiang P, Zhou S, Wang C, Qiu L, Shi H, Cui P, Wang J. Progress in Intradermal and Transdermal Gene Therapy with Microneedles. Pharm Res 2022; 39:2475-2486. [PMID: 36008737 DOI: 10.1007/s11095-022-03376-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/17/2022] [Indexed: 01/18/2023]
Abstract
Gene therapy is one of the most widely studied treatments and has the potential to treat a variety of intractable diseases. The skin's limited permeability, as the body's initial protective barrier, drastically inhibits the delivery effect of gene medicine. Given the potential adverse effects and physicochemical features of the medications, improving generic drug penetration into the skin barrier and achieving an effective level of target tissues remains a challenge. Microneedles have made tremendous improvements in aided gene transfer and medication delivery as a unique method. Microneedles offer the advantage of being minimally invasive and painless, as well as the ability to distribute gene medicines straight through the stratum corneum. Microneedles have been used to penetrate skin tissue with various nucleic acids and medicines in recent years, allowing for a wide range of applications in the treatment of skin ailments. This review focuses on skin-related disorders and immunity, and it primarily discusses the progress of microneedle transdermal gene therapy in recent years. It also complements the current major vectors and related microneedle gene therapy applications.
Collapse
Affiliation(s)
- Ting Zhu
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Wenya Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Honglei Shi
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, People's Republic of China.
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, People's Republic of China.
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China.
| |
Collapse
|
6
|
Microneedle systems for delivering nucleic acid drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022; 52:273-292. [PMID: 35003824 PMCID: PMC8726529 DOI: 10.1007/s40005-021-00558-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022]
Abstract
Background Nucleic acid-based gene therapy is a promising technology that has been used in various applications such as novel vaccination platforms for infectious/cancer diseases and cellular reprogramming because of its fast, specific, and effective properties. Despite its potential, the parenteral nucleic acid drug formulation exhibits instability and low efficacy due to various barriers, such as stability concerns related to its liquid state formulation, skin barriers, and endogenous nuclease degradation. As promising alternatives, many attempts have been made to perform nucleic acid delivery using a microneedle system. With its minimal invasiveness, microneedle can deliver nucleic acid drugs with enhanced efficacy and improved stability. Area covered This review describes nucleic acid medicines' current state and features and their delivery systems utilizing non-viral vectors and physical delivery systems. In addition, different types of microneedle delivery systems and their properties are briefly reviewed. Furthermore, recent advances of microneedle-based nucleic acid drugs, including featured vaccination applications, are described. Expert opinion Nucleic acid drugs have shown significant potential beyond the limitation of conventional small molecules, and the current COVID-19 pandemic highlights the importance of nucleic acid therapies as a novel vaccination platform. Microneedle-mediated nucleic acid drug delivery is a potential platform for less invasive nucleic acid drug delivery. Microneedle system can show enhanced efficacy, stability, and improved patient convenience through self-administration with less pain.
Collapse
|
7
|
Microneedle-Mediated Vaccination: Innovation and Translation. Adv Drug Deliv Rev 2021; 179:113919. [PMID: 34375682 DOI: 10.1016/j.addr.2021.113919] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Vaccine administration by subcutaneous or intramuscular injection is the most commonly prescribed route for inoculation, however, it is often associated with some deficiencies such as low compliance, high professionalism, and risk of infection. Therefore, the application of microneedles for vaccine delivery has gained widespread interests in the past few years due to its high compliance, minimal invasiveness, and convenience. This review focuses on recent advances in the development and application of microneedles for vaccination based on different delivery strategies, and introduces the current status of microneedle-mediated vaccination in clinical translation. The prospects for its application including opportunities and challenges are further discussed.
Collapse
|
8
|
GhavamiNejad A, Lu B, Samarikhalaj M, Liu JF, Mirzaie S, Pereira S, Zhou L, Giacca A, Wu XY. Transdermal delivery of a somatostatin receptor type 2 antagonist using microneedle patch technology for hypoglycemia prevention. Drug Deliv Transl Res 2021; 12:792-804. [PMID: 33683625 DOI: 10.1007/s13346-021-00944-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
Hypoglycemia is a serious and potentially fatal complication experienced by people with insulin-dependent diabetes. The complication is usually caused by insulin overdose, skipping meals, and/or excessive physical activities. In type 1 diabetes (T1D), on top of impaired pancreatic α-cells, excessive levels of somatostatin from δ-cells further inhibit glucagon secretion to counteract overdosed insulin. Herein, we aimed to develop a microneedle (MN) patch for transdermal delivery of a peptide (PRL-2903) that antagonizes somatostatin receptor type 2 (SSTR2) in α-cells. First, we investigated the efficacy of subcutaneously administered PRL-2903 and identified the optimal dose (i.e., the minimum effective dose) and treatment scheduling (i.e., the best administration time for hypoglycemia prevention) in a T1D rat model. We then designed an MN patch using a hyaluronic acid (HA)-based polymer. The possible effect of the polymer on stabilizing the native structure of PRL-2903 was studied by molecular dynamics (MD) simulations. The results showed that the HA-based polymer could stabilize the PRL-2903 structure by restricting water molecules, promoting intra-molecular H-bonding, and constraining torsional angles of important bonds. In vivo studies with an overdose insulin challenge revealed that the PRL-2903-loaded MN patch effectively increased the plasma glucagon level, restored the counter-regulation of blood glucose concentration, and prevented hypoglycemia. The proposed MN patch is the first demonstration of a transdermal microneedle patch designed to deliver an SSTR2 antagonist for the prevention of hypoglycemia. This counter-regulatory peptide delivery system may be applied alongside with insulin delivery systems to provide a more effective and safer treatment for people with insulin-dependent diabetes.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Melisa Samarikhalaj
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Sako Mirzaie
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Sandra Pereira
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Liwei Zhou
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
9
|
Ghimirey KB, Ita K. Microneedle-Assisted Percutaneous Transport of Magnesium Sulfate. Curr Drug Deliv 2020; 17:140-147. [PMID: 31845631 DOI: 10.2174/1567201817666191217093936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/30/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE In vitro diffusion experiments were performed to assess the permeation of magnesium sulfate across pig skin. METHODS The mean thickness of the dermatomed porcine skin was 648 ± 12 µm. Magnesium concentration was measured using inductively coupled plasma-optical emission spectroscopy. Transdermal flux of magnesium sulfate across MN-treated and untreated porcine skin was obtained from the slope of the steady-state linear portion of cumulative amount versus time curve. RESULTS Statistical analysis of the results was done with Student's t-test. The transdermal flux of magnesium sulfate across microneedle-treated porcine skin was 134.19 ± 2.4 µg/cm2/h and transdermal flux across untreated porcine skin was 4.64 ± 0.05 µg/cm2/h. Confocal microscopy was used to visualize the microchannels created by a solid microneedle roller (500 µm). CONCLUSION From our confocal microscopy studies, it was evident that the 500 μm long microneedles disrupted the stratum corneum and created microchannels measuring 191 ± 37 µm. The increase in transdermal flux across the microneedle-treated skin was statistically significant compared to that of controls, i.e., without the application of microneedles. With the application of microneedles, the transdermal flux of magnesium permeated over 12 h was approximately 33-fold higher in comparison to passive diffusion across an intact stratum corneum.
Collapse
Affiliation(s)
- Karna B Ghimirey
- College of Pharmacy Touro University, Mare Island-Vallejo California, CA 94592, United States
| | - Kevin Ita
- College of Pharmacy Touro University, Mare Island-Vallejo California, CA 94592, United States
| |
Collapse
|
10
|
He X, Sun J, Zhuang J, Xu H, Liu Y, Wu D. Microneedle System for Transdermal Drug and Vaccine Delivery: Devices, Safety, and Prospects. Dose Response 2019; 17:1559325819878585. [PMID: 31662709 PMCID: PMC6794664 DOI: 10.1177/1559325819878585] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
Microneedle (MN) delivery system has been greatly developed to deliver drugs into the skin painlessly, noninvasively, and safety. In the past several decades, various types of MNs have been developed by the newer producing techniques. Briefly, as for the morphologically, MNs can be classified into solid, coated, dissolved, and hollow MN, based on the transdermal drug delivery methods of "poke and patch," "coat and poke," "poke and release," and "poke and flow," respectively. Microneedles also have other characteristics based on the materials and structures. In addition, various manufacturing techniques have been well-developed based on the materials. In this review, the materials, structures, morphologies, and fabricating methods of MNs are summarized. A separate part of the review is used to illustrate the application of MNs to deliver vaccine, insulin, lidocaine, aspirin, and other drugs. Finally, the review ends up with a perspective on the challenges in research and development of MNs, envisioning the future development of MNs as the next generation of drug delivery system.
Collapse
Affiliation(s)
- Xiaoxiang He
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Jian Zhuang
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Hong Xu
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Ying Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing
University of Chemical Technology, Beijing, China
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing
University of Chemical Technology, Beijing, China
| |
Collapse
|
11
|
Dardano P, Battisti M, Rea I, Serpico L, Terracciano M, Cammarano A, Nicolais L, Stefano L. Polymeric Microneedle Arrays: Versatile Tools for an Innovative Approach to Drug Administration. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Principia Dardano
- Institute for Microelectronics and Microsystems Via P. Castellino 111 80131 Napoli Italy
| | | | - Ilaria Rea
- Institute for Microelectronics and Microsystems Via P. Castellino 111 80131 Napoli Italy
| | - Luigia Serpico
- University of Naples “Federico II”Department of Chemistry Via Cinthia 80126 Napoli Italy
| | | | | | | | - Luca Stefano
- Institute for Microelectronics and Microsystems Via P. Castellino 111 80131 Napoli Italy
| |
Collapse
|
12
|
Cui Y, Mo Y, Zhang Q, Tian W, Xue Y, Bai J, Du S. Microneedle-Assisted Percutaneous Delivery of Paeoniflorin-Loaded Ethosomes. Molecules 2018; 23:molecules23123371. [PMID: 30572626 PMCID: PMC6321034 DOI: 10.3390/molecules23123371] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Paeoniflorin, the main component of total glucosides of paeony (TGP), shows good therapeutic effects in arthritis, but has low bioavailability when administered orally. Avoiding such a deficiency for topical administration would expand its clinical application. This study aimed to avoid these limitations by using nanotechnology (ethosomes) and a physical approach (microneedles). Paeoniflorin-loaded ethosomal formulation (TGP-E) was optimized and evaluated in terms of entrapment efficiency (EE), particle size (PS), zeta potential (ZP), polydispersity index (PDI) and morphology. TGP-E was prepared by the hot injection method and optimized by single-factor tests and an orthogonal experimental design. The optimized paeoniflorin-loaded ethosomes had EE of 27.82 ± 1.56%, PS of 137.9 ± 7.57 nm with PDI of 0.120 ± 0.005, ZP of −0.74 ± 0.43 mV. Ethosomes showed a nearly spherical shape under the transmission electron microscope (TEM). The optimal microneedle-assisted (MN-assisted) conditions were obtained at a microneedle length of 500 μm, a pressure of 3 N and an action time of 3 min. The cumulative penetration amounts (Qn) of TGP solution transdermal (ST) and MN-assisted TGP solution transdermal (MST) were 24.42 ± 8.35 μg/cm2 and 548.11 ± 10.49 μg/cm2, respectively. Qn of TGP-E transdermal (PT) and MN-assisted TGP-E transdermal (MPT) were 54.97 ± 4.72 μg/cm2 and 307.17 ± 26.36 μg/cm2, respectively. These findings indicate that use of ethosomes and microneedles can both enhance the penetration ofpaeoniflorin, but for the water-soluble drug, there is no obvious synergism between nanotechnology and microneedles for enhancing penetration in a transdermal drug delivery system.
Collapse
Affiliation(s)
- Yahua Cui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| | - Yujia Mo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| | - Qi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| | - Wanwan Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| | - Yutao Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| | - Jie Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| |
Collapse
|