1
|
Yi Z, Xu X, Meng X, Liu C, Zhou Q, Gong D, Zha Z. Emerging markers for antimicrobial resistance monitoring. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
2
|
Liu X, Bu S, Wei H, Wang Z, Yu S, Li Z, Hao Z, He X, Wan J. Visual assay of Escherichia coli O157:H7 based on an isothermal strand displacement and hybrid chain reaction amplification strategy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3379-3385. [PMID: 34235517 DOI: 10.1039/d1ay00644d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we describe a simple, sensitive, and enzyme-free method for visual point-of-care detection of 16S rRNA of Escherichia coli O157:H7 based on an isothermal strand displacement-hybrid chain reaction (ISD-HCR) and lateral flow strip (LFS). In this study, the secondary structure of 16S rRNA of E. coli O157:H7 was unwound by two helper oligonucleotides to expose the single-strand-specific nucleic acid sequence. The free specific sequence promoted the toehold-mediated strand displacement reaction to output a large number of FITC-labeled single-stranded DNA probes (capture probe [CP]). The 3'-end sequence of the reporter probe propagated a chain reaction of hybridization events between the two hairpin probes modified with biotin to form long nicked DNA polymers with multiple biotins (RP-HCR complexes); the free CP and RP-HCR complexes then form CP/RP-HCR complexes. The biotin-labeled double-stranded DNA CP/RP-HCR polymers then introduced numerous streptavidin (SA)-labeled gold nanoparticles (AuNPs) on the LFS. The accumulation of AuNPs produced a characteristic red band, which enabled visual detection of changes in the signal of 16S rRNA of E. coli O157:H7. The current approach could detect E. coli O157:H7 at concentrations as low as 102 CFU mL-1 without instrumentation. This approach thus provides a simple, sensitive, and low-cost tool for point-of-care detection of pathogenic bacteria, especially in resource-limited countries.
Collapse
Affiliation(s)
- Xiu Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Xia Z, Geng H, Cai Y, Wang Y, Sun D, Zhang J, Pan Z, Jiao X, Geng S. A McAb-Based Direct Competitive ELISA to Detect O:9 Salmonella Infection in Chicken. Front Vet Sci 2020; 7:324. [PMID: 32719811 PMCID: PMC7350390 DOI: 10.3389/fvets.2020.00324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022] Open
Abstract
Salmonella enteritidis and Salmonella pullorum belonging to Group O9Salmonella are major causative agents of infectious diseases in chicken. O9 antigen as a part of lipopolysaccharide (LPS) is a predominant detected target for Salmonella infection. To identify the infection, an anti-O9 monoclonal antibody (McAb)-based direct competitive enzyme-linked assay (O9 Dc-ELISA) was developed after constraints were optimized; the establishment and application of O9 Dc-ELISA, compared to two commercial kits and plate agglutination test (PAT), showed that O9 Dc-ELISA could screen out more positive samples than the PAT method could and produce the same agreement rates with commercial kits in terms of sensitivity in addition to strong specificity to clinical serum samples.
Collapse
Affiliation(s)
- Zemiao Xia
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Haopeng Geng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yuan Cai
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yaonan Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Daquan Sun
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Jian Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xin'an Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Shizhong Geng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Yang Y, Zhang J, Zhu C, Meng X, Sun S, Zhu G. A promising detection candidate for flagellated Salmonella spp. AMB Express 2019; 9:128. [PMID: 31414324 PMCID: PMC6694378 DOI: 10.1186/s13568-019-0851-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/02/2019] [Indexed: 12/23/2022] Open
Abstract
Salmonella is a common and important pathogen for both human and animals. All Salmonella except Salmonella pullorum and Salmonella gallinarum have flagellum. Flagellin (FliC) is the main subunit protein forming the bacterial filament, which is present in large amounts on the surface of all flagellated Salmonella. After bioinformatics analysis, the most highly conserved region (locates position from 1 to 102 amino acid residue of FliC, we named it as FliC') was selected, and corresponding recombinant FliC' (rFliC') protein was tailored as an immunogen to generate monoclonal antibodies (MAbs) against Salmonella flagellin. BALB/c mice were immunized with the purified recombinant protein rFliC', which were prepared by prokaryotic expression system pET22b (+) expressing FliC'. After fusion of spleen cells from the immunized mice and SP2/0 cells, three hybridoma cells (1D6, 2G6 and 3E2) producing MAbs against targeted flagellate Salmonella FliC' were generated and screened. The ability of MAb 3E2 to recognize and bind to Salmonella flagella was demonstrated by immunogold electron microscopy (IEM) method. Western blot (WB) analysis demonstrated that MAb 3E2 could specifically recognize flagellated Salmonella strains. Moreover, MAb 3E2 has a direct agglutination activity against Salmonella strains with visible agglutination reaction. To further verify this agglutination activity, a total of 52 flagellated Salmonella strains (23 serovars), 8 non-flagellate Salmonella strains (2 serovars) and 16 other non-Salmonella bacteria strains were used to evaluate the specificity of the MAb by direct Slide Agglutination Test (SAT). Results showed that MAb 3E2 reacted with all Salmonella strains possessing flagellum and had no cross-reaction with non-flagellate Salmonella strains or other non-Salmonella bacteria strains. Sequentially, the ability to detect the presence of Salmonella in raw samples of the MAb 3E2-based SAT method was evaluated. The conventional culture-based detection method was performed as the standard reference method for detection of Salmonella. Altogether, 369 samples collected from laying hens were tested, and the results indicated that the MAb 3E2-based SAT method could specifically detect Salmonella. Furthermore, the SAT results were obtained more quickly, as compared with the standard method. As a whole, the MAbs against the tailored conserved region of Salmonella flagellin were prepared in this study, and MAb 3E2-based SAT is a promising candidate for the flagellated Salmonella spp. rapid detection.
Collapse
Affiliation(s)
- Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiangying Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chunhong Zhu
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shuhong Sun
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
5
|
Development of a Capture ELISA for Rapid Detection of Salmonella enterica in Food Samples. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1363-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Galvan DD, Yu Q. Surface-Enhanced Raman Scattering for Rapid Detection and Characterization of Antibiotic-Resistant Bacteria. Adv Healthc Mater 2018; 7:e1701335. [PMID: 29504273 DOI: 10.1002/adhm.201701335] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/30/2017] [Indexed: 12/19/2022]
Abstract
As the prevalence of antibiotic-resistant bacteria continues to rise, biosensing technologies are needed to enable rapid diagnosis of bacterial infections. Furthermore, understanding the unique biochemistry of resistance mechanisms can facilitate the development of next generation therapeutics. Surface-enhanced Raman scattering (SERS) offers a potential solution to real-time diagnostic technologies, as well as a route to fundamental, mechanistic studies. In the current review, SERS-based approaches to the detection and characterization of antibiotic-resistant bacteria are covered. The commonly used nanomaterials (nanoparticles and nanostructured surfaces) and surface modifications (antibodies, aptamers, reporters, etc.) for SERS bacterial detection and differentiation are discussed first, and followed by a review of SERS-based detection of antibiotic-resistant bacteria from environmental/food processing and clinical sources. Antibiotic susceptibility testing and minimum inhibitory concentration testing with SERS are then summarized. Finally, recent developments of SERS-based chemical imaging/mapping of bacteria are reviewed.
Collapse
Affiliation(s)
- Daniel D. Galvan
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Qiuming Yu
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
7
|
Rengaraj D, Truong AD, Lillehoj HS, Han JY, Hong YH. Expression and regulation of avian beta-defensin 8 protein in immune tissues and cell lines of chickens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018. [PMID: 29531188 PMCID: PMC6127573 DOI: 10.5713/ajas.17.0836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective Defensins are a large family of antimicrobial peptides and components of the innate immune system that invoke an immediate immune response against harmful pathogens. Defensins are classified into alpha-, beta-, and theta-defensins. Avian species only possess beta-defensins (AvBDs), and approximately 14 AvBDs (AvBD1–AvBD14) have been identified in chickens to date. Although substantial information is available on the conservation and phylogenetics, limited information is available on the expression and regulation of AvBD8 in chicken immune tissues and cells. Methods We examined AvBD8 protein expression in immune tissues of White Leghorn chickens (WL) by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-qPCR). In addition, we examined AvBD8 expression in chicken T-, B-, macrophage-, and fibroblast-cell lines and its regulation in these cells after lipopolysaccharide (LPS) treatment by immunocytochemistry and RT-qPCR. Results Our results showed that chicken AvBD8 protein was strongly expressed in the WL intestine and in macrophages. AvBD8 gene expression was highly upregulated in macrophages treated with different LPS concentrations compared with that in T- and B-cell lines in a time-independent manner. Moreover, chicken AvBD8 strongly interacted with other AvBDs and with other antimicrobial peptides as determined by bioinformatics. Conclusion Our study provides the expression and regulation of chicken AvBD8 protein in immune tissues and cells, which play crucial role in the innate immunity.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.,Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.,Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
8
|
Yang M, Simon R, MacKerell AD. Conformational Preference of Serogroup B Salmonella O Polysaccharide in Presence and Absence of the Monoclonal Antibody Se155-4. J Phys Chem B 2016; 121:3412-3423. [PMID: 28423910 DOI: 10.1021/acs.jpcb.6b08955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Salmonella infection is a major public health problem worldwide. Antibodies directed toward the O polysaccharide (OPS) of S. Typhimurium, a serogroup B nontyphoidal Salmonella serovar, have protected against fatal infection in animal models. The OPS is known to undergo O-acetylation, though the impact of these modifications on antibody binding is poorly understood. Using molecular simulations, we assessed the conformational properties and antigen-antibody interactions of deacetylated and O-acetylated S. Typhimurium OPS when bound by monoclonal anti-OPS IgG Se155-4. Our findings indicate that (i) the α-d-abequose (8) monosaccharide makes important interactions with Se155-4, (ii) the deacetylated form binds to the antibody in two conformations, (iii) the acetyl group at α-l-rhamnose (5) traps the acetylated O-antigenic saccharide in one of those two conformations when bound to the antibody; (iv) the dominant conformation sampled by both unbound saccharides only occurs in the deacetylated-antibody complex; and (v) both unbound saccharides sample the second bound conformation to a small extent (2-4%). These observations provide insights into the conformational preference of an antigenic saccharide when bound to a well-characterized specific monoclonal antibody, and suggest possible important properties of vaccine induced antibodies following immunization with live attenuated and OPS-based subunit vaccines.
Collapse
Affiliation(s)
- Mingjun Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Raphael Simon
- Center for Vaccine Development, Institute for Global Health, School of Medicine, University of Maryland , Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| |
Collapse
|
9
|
Identification of Surface Protein Biomarkers of Listeria monocytogenes via Bioinformatics and Antibody-Based Protein Detection Tools. Appl Environ Microbiol 2016; 82:5465-76. [PMID: 27342549 DOI: 10.1128/aem.00774-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/01/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Gram-positive bacterium Listeria monocytogenes causes a significant percentage of the fatalities among foodborne illnesses in humans. Surface proteins specifically expressed in a wide range of L. monocytogenes serotypes under selective enrichment culture conditions could serve as potential biomarkers for detection and isolation of this pathogen via antibody-based methods. Our study aimed to identify such biomarkers. Interrogation of the L. monocytogenes serotype 4b strain F2365 genome identified 130 putative or known surface proteins. The homologues of four surface proteins, LMOf2365_0578, LMOf2365_0581, LMOf2365_0639, and LMOf2365_2117, were assessed as biomarkers due to the presence of conserved regions among strains of L. monocytogenes which are variable among other Listeria species. Rabbit polyclonal antibodies against the four recombinant proteins revealed the expression of only LMOf2365_0639 on the surface of serotype 4b strain LI0521 cells despite PCR detection of mRNA transcripts for all four proteins in the organism. Three of 35 monoclonal antibodies (MAbs) to LMOf2365_0639, MAbs M3643, M3644, and M3651, specifically recognized 42 (91.3%) of 46 L. monocytogenes lineage I and II isolates grown in nonselective brain heart infusion medium. While M3644 and M3651 reacted with 14 to 15 (82.4 to 88.2%) of 17 L. monocytogenes lineage I and II isolates, M3643 reacted with 22 (91.7%) of 24 lineage I, II, and III isolates grown in selective enrichment media (UVM1, modified Fraser, Palcam, and UVM2 media). The three MAbs exhibited only weak reactivities (the optical densities at 414 nm were close to the cutoff value) to some other Listeria species grown in selective enrichment media. Collectively, the data indicate the potential of LMOf2365_0639 as a surface biomarker of L. monocytogenes, with the aid of specific MAbs, for pathogen detection, identification, and isolation in clinical, environmental, and food samples. IMPORTANCE L. monocytogenes is traditionally divided into at least 12 serotypes. Currently, there are no monoclonal antibodies (MAbs) available that are capable of binding to the surface of L. monocytogenes strains representing all 12 serotypes. Such antibodies would be useful and are needed for the development of methods to detect and isolate L. monocytogenes from food samples. In our study, we aimed to identify surface proteins that possess regions of well-conserved amino acid sequences among various serotypes and then to employ them as antigen targets (biomarkers) for the development of MAbs. Through bioinformatics and protein expression analysis, we identified one of the four putative surface protein candidates, LMOf2365_0639, encoded by the genome of the L. monocytogenes serotype 4b strain F2365, as a useful surface biomarker. Extensive assessment of 35 MAbs raised against LMOf2365_0639 in our study revealed three MAbs (M3643, M3644, and M3651) that recognized a wide range of L. monocytogenes isolates.
Collapse
|
10
|
Aribam SD, Ogawa Y, Matsui H, Hirota J, Okamura M, Akiba M, Shimoji Y, Eguchi M. Monoclonal antibody-based competitive enzyme-linked immunosorbent assay to detect antibodies to O:4 Salmonella in the sera of livestock and poultry. J Microbiol Methods 2014; 108:1-3. [PMID: 25447889 DOI: 10.1016/j.mimet.2014.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Serotyping is an important element for surveillance of Salmonella. In this study, an anti-O:4 Salmonella monoclonal antibody-based competitive enzyme-linked immunosorbent assay that could identify Salmonella infection in cow, pig, horse, and chicken was developed. This detection system can therefore be useful for a wide range of animals and for humans.
Collapse
Affiliation(s)
- Swarmistha Devi Aribam
- Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, NARO, Tsukuba, Ibaraki 305-0856, Japan
| | - Yohsuke Ogawa
- Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, NARO, Tsukuba, Ibaraki 305-0856, Japan
| | - Hidenori Matsui
- Kitasato Institute for Life Sciences and Graduate School of Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Jiro Hirota
- Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, NARO, Tsukuba, Ibaraki 305-0856, Japan
| | - Masashi Okamura
- Laboratory of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori 034-8628, Japan
| | - Masato Akiba
- Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, NARO, Tsukuba, Ibaraki 305-0856, Japan
| | - Yoshihiro Shimoji
- Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, NARO, Tsukuba, Ibaraki 305-0856, Japan
| | - Masahiro Eguchi
- Bacterial and Parasitic Disease Research Division, National Institute of Animal Health, NARO, Tsukuba, Ibaraki 305-0856, Japan.
| |
Collapse
|
11
|
Liu CC, Yeung CY, Chen PH, Yeh MK, Hou SY. Salmonella detection using 16S ribosomal DNA/RNA probe-gold nanoparticles and lateral flow immunoassay. Food Chem 2013; 141:2526-2532. [PMID: 23870991 DOI: 10.1016/j.foodchem.2013.05.089] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/05/2013] [Accepted: 05/16/2013] [Indexed: 11/29/2022]
Abstract
An ultrasensitive, simple, and fast lateral flow immunoassay for Salmonella detection using gold nanoparticles conjugated with a DNA probe, which is complementary to the 16S ribosomal RNA and DNA of Salmonella, has been developed. The detection limit is 5 fmol for the synthetic single-stranded DNA. For the Salmonella cultured samples, the nucleic acids from 10(7) bacteria were rapidly detected in 30 min. After silver enhancement, the detection limit was as low as 10(4) cells which is lower than 10(5) bacteria cells, the human infective dose of food-borne Salmonella. Furthermore, the probes used in this study are specific to Salmonella compared to several other Enterobacteriaceae. This approach would be a useful tool for microbial detection regarding food safety or clinical diagnosis. It is also suitable for large-scale screening in developing countries because it is low-cost, sensitive, specific and convenient.
Collapse
Affiliation(s)
- Cheng-Che Liu
- Graduate Institute of Engineering Technology Doctoral, National Taipei University of Technology, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Dai X, Fan Z, Lu Y, Ray PC. Multifunctional nanoplatforms for targeted multidrug-resistant-bacteria theranostic applications. ACS APPLIED MATERIALS & INTERFACES 2013; 5:11348-54. [PMID: 24138085 DOI: 10.1021/am403567k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The emergence of multidrug-resistant-bacteria (MDRB) infection poses a major burden to modern healthcare. Early detection in the bloodstream and a new strategy development for MDRB infection treatment without antibiotics are clinically significant to save millions of lives every year. To tackle the MDRB challenge, the current manuscript reports the design of "multifunctional nanoplatforms" consisting of a magnetic core-plasmonic shell nanoparticle, a methylene blue-bound aptamer, and an MDRB Salmonella DT104 specific antibody. The reported "multifunctional nanoplatform" is capable of targeted separation from a blood sample and sensing and multimodal therapeutic killing of MDRB. Experimental data using an MDRB-infected whole-blood sample show that nanoplatforms can be used for selective magnetic separation and fluorescence imaging. In vitro light-triggered photodestruction of MDRB, using combined photodynamic and photothermal treatment, shows that the multimodal treatment regime can enhance MDRB killing significantly. We discussed the possible mechanisms on combined synergistic therapy for killing MDRB. The "multifunctional nanoplatform" reported in this manuscript has great potential for the imaging and combined therapy of MDRB in clinical settings.
Collapse
Affiliation(s)
- Xuemei Dai
- Department of Chemistry, Jackson State University , Jackson, Mississippi 39217, United States
| | | | | | | |
Collapse
|
13
|
Gold Nanotechnology for Targeted Detection and Killing of Multiple Drug Resistant Bacteria from Food Samples. ACTA ACUST UNITED AC 2013. [DOI: 10.1021/bk-2013-1143.ch001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
14
|
Fan Z, Senapati D, Khan SA, Singh AK, Hamme A, Yust B, Sardar D, Ray PC. Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria. Chemistry 2013; 19:2839-47. [PMID: 23296491 DOI: 10.1002/chem.201202948] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Indexed: 12/21/2022]
Abstract
Over the last few years, one of the most important and complex problems facing our society is treating infectious diseases caused by multidrug-resistant bacteria (MDRB), by using current market-existing antibiotics. Driven by this need, we report for the first time the development of the multifunctional popcorn-shaped iron magnetic core-gold plasmonic shell nanotechnology-driven approach for targeted magnetic separation and enrichment, label-free surface-enhanced Raman spectroscopy (SERS) detection, and the selective photothermal destruction of MDR Salmonella DT104. Due to the presence of the "lightning-rod effect", the core-shell popcorn-shaped gold-nanoparticle tips provided a huge field of SERS enhancement. The experimental data show that the M3038 antibody-conjugated nanoparticles can be used for targeted separation and SERS imaging of MDR Salmonella DT104. A targeted photothermal-lysis experiment, by using 670 nm light at 1.5 W cm(-2) for 10 min, results in selective and irreparable cellular-damage to MDR Salmonella. We discuss the possible mechanism and operating principle for the targeted separation, label-free SERS imaging, and photothermal destruction of MDRB by using the popcorn-shaped magnetic/plasmonic nanotechnology.
Collapse
Affiliation(s)
- Zhen Fan
- Department of Chemistry, Jackson State University, Jackson, MS, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Simon R, Levine MM. Glycoconjugate vaccine strategies for protection against invasive Salmonella infections. Hum Vaccin Immunother 2012; 8:494-8. [PMID: 22370510 DOI: 10.4161/hv.19158] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovars Typhi and Paratyphi A and B and certain non-typhoidal Salmonella enterica (NTS) serovars are important causes of invasive Salmonella disease worldwide. NTS serovars Typhimurium and Enteritidis typically cause gastroenteritis in healthy children and adults in industrialized countries but in certain hosts (e.g., young infants, the elderly, immunocompromised individuals) they also cause invasive infections. These two serovars also cause invasive disease in infants and young children in sub-Saharan Africa. Whereas Salmonella surface polysaccharides are poor immunogens in animal models and do not generate immunologic memory, conjugation with carrier proteins overcomes these limitations. S. Typhi expresses a Vi polysaccharide capsule; Vi either alone or as a glycoconjugate protects humans from typhoid fever. In contrast, S. Paratyphi A and B and NTS (with rare exceptions) do not express capsular polysaccharides. Rather, their surface polysaccharides are the O polysaccharide (OPS) of lipopolysaccharide. In animal studies, immunization with Salmonella COPS (core polysaccharide-OPS) conjugated with carrier proteins generates functional immunity and protects against fatal Salmonella challenge. Conjugating to Salmonella proteins (flagellin, porins) may extend immune responses to another relevant target for antibody generation and enhance the glyconjugate's efficacy.
Collapse
Affiliation(s)
- Raphael Simon
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
16
|
Khan SA, Singh AK, Senapati D, Fan Z, Ray PC. Bio-conjugated popcorn shaped gold nanoparticles for targeted photothermal killing of multiple drug resistant Salmonella DT104. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm13320a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Khan SA, Singh AK, Senapati D, Fan Z, Ray PC. Targeted highly sensitive detection of multi-drug resistant salmonella DT104 using gold nanoparticles. Chem Commun (Camb) 2011; 47:9444-6. [DOI: 10.1039/c1cc13199k] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|