1
|
Roshani A, Mohammadi M, Bahadori T, Ahmadi Zare H, Judaki MA, Mobini M, Golsaz-Shirazi F, Jeddi-Tehrani M, Amiri MM, Shokri F. Comparison of different transient gene expression systems for the production of a new humanized anti-HER2 monoclonal antibody (Hersintuzumab). Daru 2023; 31:221-231. [PMID: 37695454 PMCID: PMC10624790 DOI: 10.1007/s40199-023-00477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/05/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Producing therapeutic proteins can be done quickly and on a large scale through Transient Gene Expression (TGE). Chinese hamster ovary (CHO) cell lines are commonly used to achieve this. Although there are few comparative studies, TGE has been observed in suspension-adapted CHO cells. OBJECTIVES We tested TGE's effectiveness in DG-44, CHO-S, and ExpiCHO-S cell lines with four transfection reagents. METHODS A design of experiments (DoE) was followed to optimize transfection using a recombinant monoclonal antibody (mAb) construct. To evaluate the efficacy, flow cytometry and ELISA were used. Feeding strategies and temperature shifts were implemented to enhance transfection effectiveness. The quality of the mAb was assessed through ELISA, SDS-PAGE, and proliferation inhibition assays. RESULTS We adapted all cell lines to grow in suspension using a serum-free medium. Our findings from flow cytometry and ELISA tests indicate that PEI and Pmax reagents had a higher rate of transfection and mAb production than the ExpiCHO commercial transfection reagent. While DG-44 cells had better transfection efficiency than CHO-S and ExpiCHO-S, there was no significant difference between CHO-S and ExpiCHO-S. Our TGE system was more productive at 32 °C than at 37 °C. In the optimized TGE of Pmax-based transfection in DG-44 at 37 and 32 °C, the production level of mAb was more than half of the amount of the commercial ExpiCHO-S expression system. Still, the number of transfected cells was three times higher, making it more efficient. The purified mAb from all transfected cell lines had similar structural and functional properties under different conditions. CONCLUSION Our research shows that using Pmax and DG-44 cells in the TGE system is a cost-effective and efficient way to produce humanized monoclonal antibodies. We discovered that this method outperforms the ExpiCHO-S kit.
Collapse
Affiliation(s)
- Ali Roshani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Bahadori
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Ahmadi Zare
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Ali Judaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ramezani-Aliakbari K, Khaki-Bakhtiarvand V, Mahmoudian J, Asgarian-Omran H, Shokri F, Hojjat-Farsangi M, Jeddi-Tehrani M, Shabani M. Evaluation of the anti-tumor effects of an anti-Human Epidermal growth factor receptor 2 (HER2) monoclonal antibody in combination with CD11b +/Gr-1 + myeloid cells depletion using a recombinant peptibody in 4 T1-HER2 tumor model. Int Immunopharmacol 2023; 121:110463. [PMID: 37327513 DOI: 10.1016/j.intimp.2023.110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Clinical efficacy of Human Epidermal growth factor Receptor 2 (HER2) targeted strategies is limited due to impaired anti-tumor responses negatively regulated by immunosuppressive cells. We thus, investigated the inhibitory effects of an anti-HER2 monoclonal antibody (1 T0 mAb) in combination with CD11b+/Gr-1+ myeloid cells depletion in 4 T1-HER2 tumor model. METHODS BALB/c mice were challenged with human HER2-expressing 4 T1 murine breast cancer cell line. A week post tumor challenge, each mouse received 50 µg of a myeloid cells specific peptibody every other day, or 10 mg/kg of 1 T0 mAb two times a week, and their combination for two weeks. The treatments effect on tumor growth was measured by calculating tumor size. Also, the frequencies of CD11b+/Gr-1+ cells and T lymphocytes were measured by flow cytometry. RESULTS Peptibody treated mice indicated tumor regression and 40 % of the mice eradicated their primary tumors. The peptibody was capable to deplete notably splenic CD11b+/Gr-1+ cells as well as intratumoral CD11b+/Gr-1+ cells (P < 0.0001) and led to an increased number of tumor infiltrating CD8+ T cells (3.3 folds) and also that of resident tumor draining lymph nodes (TDLNs) (3 folds). Combination of peptibody and 1 T0 mAb resulted in enhanced expansion of tumor infiltrating CD4 + and CD8+ T cells which was associated with tumor eradication in 60 % of the mice. CONCLUSIONS Peptibody is able to deplete CD11b+/Gr-1+ cells and increase anti-tumoral effects of the 1 T0 mAb in tumor eradication. Thus, this myeloid population have critical roles in development of tumors and their depletion is associated with induction of anti-tumoral responses.
Collapse
Affiliation(s)
| | - Vahid Khaki-Bakhtiarvand
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institute, 17164 Stockholm, Sweden
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Khaki Bakhtiarvand V, Ramezani-Ali Akbari K, Amir Jalali S, Hojjat-Farsangi M, Jeddi-Tehrani M, Shokri F, Shabani M. Myeloid-derived suppressor cells (MDSCs) depletion by cabozantinib improves the efficacy of anti-HER2 antibody-based immunotherapy in a 4T1-HER2 murine breast cancer model. Int Immunopharmacol 2022; 113:109470. [DOI: 10.1016/j.intimp.2022.109470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
|
4
|
Hassani D, Jeddi-Tehrani M, Yousefi P, Mansouri-Fard S, Mobini M, Ahmadi-Zare H, Golsaz-Shirazi F, Amiri MM, Shokri F. Differential tumor inhibitory effects induced by HER3 extracellular subdomain-specific mouse monoclonal antibodies. Cancer Chemother Pharmacol 2022; 89:347-361. [PMID: 35079876 DOI: 10.1007/s00280-021-04390-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE The therapeutic potential of targeting the human epidermal growth factor receptor-3 (ErbB3/HER3) has long been ignored due to impaired tyrosine kinase function and low expression level in tumor cells compared with EGFR and HER2. Although recent investigations have explored the potential benefit of HER3 targeting and several anti-HER3 agents have been developed, there is still a critical need to design and produce more efficient therapeutics. This study was designed to develop tumor inhibitory monoclonal antibodies (MAbs) against different extracellular subdomains of HER3. METHODS Distinct extracellular subdomains of HER3 (DI+II and DIII+IV) were utilized to produce MAbs by hybridoma technology. Biochemical and functional characteristics of these MAbs were then investigated by various methodologies, including immunoblotting, flow cytometry, cell proliferation, cell signaling, and enzyme-linked immunosorbent assays. RESULTS Four anti-DI+II and six anti-DIII+IV MAbs were obtained, selected based on their ability to bind recombinant full HER3 extracellular domain (ECD). Our data showed that only one anti-DI+II and four anti-DIII+IV MAbs recognized the native form of HER3 by immunoblotting. Four MAbs recognized the membranous HER3 by flow cytometry leading to induction of different levels of receptor internalization and subsequent degradation. Results of cell proliferation assays using these MAbs indicated that they differentially inhibited proliferation of HER3-expressing cancer cells and showed considerable synergistic effects in combination with trastuzumab. Selected MAb with the highest inhibitory effect significantly inhibited the phosphorylation of AKT and ERK1/2 molecules. CONCLUSION Some of the anti-HER3 MAbs produced in this study displayed tumor inhibitory function and may be considered promising candidates for future HER3-targeted cancer therapy.
Collapse
Affiliation(s)
- Danesh Hassani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Parisa Yousefi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samaneh Mansouri-Fard
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Ahmadi-Zare
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Bussing D, Li Z, Li Y, Chang HP, Chang HY, Guo L, Verma A, Shah DK. Pharmacokinetics of Monoclonal Antibody and Antibody Fragments in the Mouse Eye Following Systemic Administration. AAPS JOURNAL 2021; 23:116. [PMID: 34750690 PMCID: PMC8575492 DOI: 10.1208/s12248-021-00647-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
The ocular pharmacokinetics (PK) of antibody-based therapies are infrequently studied in mice due to the technical difficulties in working with the small murine eye. This study is the first of its kind to quantitatively measure the PK of variously sized proteins in the plasma, cornea/ICB, vitreous humor, retina, and posterior cup (including choroid) of the mouse and to evaluate the relationship between molecular weight (MW) and antibody biodistribution coefficient (BC) to the eye. Proteins analyzed include trastuzumab (150 kDa), trastuzumab-vc-MMAE (T-vc-MMAE, 155 kDa), F(ab)2 (100 kDa), Fab (50 kDa), and scFv (27 kDa). As expected, ocular PK mirrored the systemic PK as plasma was the driving force for ocular exposure. For trastuzumab, T-vc-MMAE, F(ab)2, Fab, and scFv, respectively, the BCs in the cornea/ICB were 0.610%, 0.475%, 1.74%, 3.39%, and 13.7%; the BCs in the vitreous humor were 0.0198%, 0.0427%, 0.0934%, 0.234%, and 5.56%; the BCs for the retina were 0.539%, 0.230%, 0.704%, 2.44%, and 20.4%; the BCs for the posterior cup were 0.557%, 0.650%, 1.47%, 4.06%, and 13.9%. The relationship between BC and MW was best characterized by a log–log regression in which BC decreased as MW increased, with every doubling in MW leading to a decrease in BC by a factor of 3.44 × , 6.76 × , 4.74 × , and 3.43 × in cornea/ICB, vitreous humor, retina, and posterior cup, respectively. In analyzing the disposition of protein therapeutics to the eye, these findings enhance our understanding of the potential for ocular toxicity of systemically administered protein therapeutics and may aid in the discovery of systemically administered protein therapeutics for ocular disorders.
Collapse
Affiliation(s)
- David Bussing
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Yingyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Hsueh-Yuan Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Leiming Guo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Ashwni Verma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
| |
Collapse
|
6
|
Soltantoyeh T, Bahadori T, Hosseini-Ghatar R, Khoshnoodi J, Roohi A, Mobini M, Golsaz-Shirazi F, Jeddi-Tehrani M, Amiri MM, Shokri F. Differential Effects of Inhibitory and Stimulatory Anti-HER2 Monoclonal Antibodies on AKT/ERK Signaling Pathways. Asian Pac J Cancer Prev 2018; 19:2255-2262. [PMID: 30139234 PMCID: PMC6171393 DOI: 10.22034/apjcp.2018.19.8.2255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Objective: Homo- and heterodimerization of the receptor tyrosine kinase HER2 hyperactivate several downstream signaling pathways, leading to uncontrolled growth and proliferation of tumor cells. Anti-HER2 monoclonal antibodies (mAbs) may induce different effects on HER2 dimerization and signaling. Methods: The effect of two inhibitory (2A8, 1T0) and one stimulatory (1H9) anti-HER2 mAbs either alone or in combination with trastuzumab was investigated on AKT and ERK signaling pathways and HER2 degradation in a human breast cancer cell line (BT-474) by Western blotting. Result: While 1H9 mAb had no significant effect on AKT and ERK signaling pathways, 1T0 and 2A8 mAbs inhibited phosphorylation of both pathways. Combination of 1T0 mAb with trastuzumab resulted in significant synergistic inhibition of both pathways and HER2 degradation, much more potently than the combination of trastuzumab and pertuzumab. Conclusion: Our data indicate that anti-HER2 mAbs may induce different signaling pathways depending on their effect on tumor cell growth and proliferation. The significant inhibition of ERK and AKT phosphorylation by 1T0 alone or particularly in combination with trastuzumab suggests its potential therapeutic application for targeted immunotherapy of HER2 overexpressing malignancies.
Collapse
Affiliation(s)
- Tahereh Soltantoyeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rahimi-Zarchi M, Shojaosadati SA, Amiri MM, Jeddi-Tehrani M, Shokri F. All-trans retinoic acid in combination with sodium butyrate enhances specific monoclonal antibody productivity in recombinant CHO cell line. Bioprocess Biosyst Eng 2018; 41:961-971. [PMID: 29619548 DOI: 10.1007/s00449-018-1927-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
Abstract
The effects of all-trans retinoic acid (RA) and sodium butyrate (NaBu) on growth, viability and antibody production of two types of transfected Chinese hamster ovary cell lines (CHO-K1 and CHO-S) were investigated using a batch mode cell culture. By adding 0.5 mM NaBu in the CHO-K1 cell culture, the cell specific productivity (Qp) and antibody concentration increased by five- and threefold, respectively. The optimal concentration of RA was 100 nM which resulted in twofold increase in antibody production. In a combination model, RA applied at early growth phase of CHO-K1 cells followed by addition of NaBu with lowering culture temperature at the end of stationary phase resulted in two- and threefold increase in Qp and final antibody concentration, respectively. The latter strategy was also applied on suspended CHO-S cells with enhanced Qp and antibody concentration, but to a lesser extent than the CHO-K1 cells. In conclusion, our results demonstrate that the addition of RA and NaBu along with lowering the culture temperature can increase cell culture period as well as Qp and the final concentration of recombinant monoclonal antibody in both CHO-K1 and CHO-S cells without any significant change in binding affinity of the mAb.
Collapse
Affiliation(s)
- Mahmood Rahimi-Zarchi
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Ahmadi M, Sadri-Ardalani F, Amiri MM, Jeddi-Tehrani M, Shabani M, Shokri F. Immunization with HER2 extracellular subdomain proteins induces cellular response and tumor growth inhibition in mice. Immunotherapy 2018; 10:511-524. [PMID: 29562854 DOI: 10.2217/imt-2017-0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM We investigated cellular and protective immune responses in mice vaccinated with recombinant HER2 extracellular subdomains. MATERIALS & METHODS Balb/C mice were immunized with recombinant full HER2 extracellular domain and subdomain proteins. Humoral and cellular immune response and antitumor effect was evaluated using a syngeneic mice tumor model. RESULTS All recombinant proteins induced secretion of IL-4 and particularly IFN-γ and IL-17 cytokines. Challenging of immunized mice with stable 4T1-HER2 transfected cells resulted in partial but significant tumor growth inhibition in all groups of mice particularly those immunized with fHER2-ECD together with CPG. CONCLUSION Our results suggest that the recombinant HER2-ECD subdomains induce mainly Th1 and Th17 responses, which seem to contribute to tumor growth inhibition in syngeneic mice.
Collapse
Affiliation(s)
- Moslem Ahmadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fateme Sadri-Ardalani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad M Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Hosseini Ghatar R, Soltantoyeh T, Bahadori T, Golara M, Hassannia H, Khosravi Eghbal R, Khoshnoodi J, Judaki MA, Golsaz-Shirazi F, Jeddi-Tehrani M, Amiri MM, Shokri F. Epitope Mapping of Human HER2 Specific Mouse Monoclonal Antibodies Using Recombinant Extracellular Subdomains. Asian Pac J Cancer Prev 2017; 18:3103-3110. [PMID: 29172286 PMCID: PMC5773798 DOI: 10.22034/apjcp.2017.18.11.3103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Human epidermal growth factor receptor 2 (HER2) is overexpressed in several human malignancies
and numerous studies have indicated that it plays important roles in the development and maintenance of the malignant
phenotype. Targeting of HER2 molecules with monoclonal antibodies (mAbs) is a promising therapeutic approach.
However, anti-HER2 mAbs affect cancer cells differently, depending on the distinct epitopes which are the targets.
Methods: Reactivity of a panel of 8 mouse anti-HER2 mAbs was investigated by ELISA and Western blotting using
different subdomains of the extracellular domain (ECD) of HER2. All subdomains, including I, II, III, IV, I+II,
III+IV and full HER2-ECD were constructed and expressed in CHO cells. Cross-reactivity of the mAbs with other
members of the human HER family and Cynomolgus HER2 was also studied by ELISA. The mAbs were also tested
by immunohistochemistry (IHC) using HER2 positive breast cancer tissues. Results: Our results demonstrated that 3
out of 8 mAbs detected conformational epitopes (1T0, 2A8 and 1B5), while 5 mAbs identified linear epitopes (1F2,
1H9, 4C7, 1H6 and 2A9). Three of the mAbs recognized subdomain I, one reacted with subdomain I+II, 2 recognized
either subdomain III or IV and 2 recognized subdomain III+IV. However, none of our mAbs recognized the subdomain
II alone. The mAbs displayed either inhibitory or stimulatory effects on HER2-overexpressing tumor cells and did not
react with other members of the human HER family. The pattern of IHC results implied better reactivity of the mAbs
recognizing linear epitopes. Conclusions: Our findings suggest that paired subdomains of HER2 are essential for
mapping of mAbs recognizing conformational epitopes. Moreover, there seems to be no association between subdomain
specificity and antitumor activity of our anti-HER2 mAbs.
Collapse
Affiliation(s)
- Reza Hosseini Ghatar
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. ,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Amiri MM, Golsaz-Shirazi F, Soltantoyeh T, Hosseini-Ghatar R, Bahadori T, Khoshnoodi J, Navabi SS, Farid S, Karimi-Jafari MH, Jeddi-Tehrani M, Shokri F. Hersintuzumab: A novel humanized anti-HER2 monoclonal antibody induces potent tumor growth inhibition. Invest New Drugs 2017; 36:171-186. [PMID: 28983766 DOI: 10.1007/s10637-017-0518-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 09/22/2017] [Indexed: 01/30/2023]
Abstract
Humanized monoclonal antibodies (mAbs) against HER2 including trastuzumab and pertuzumab are widely used to treat HER2 overexpressing metastatic breast cancers. These two mAbs recognize distinct epitopes on HER2 and their combination induces a more potent blockade of HER2 signaling than trastuzumab alone. Recently, we have reported characterization of a new chimeric mAb (c-1T0) which binds to an epitope different from that recognized by trastuzumab and significantly inhibits proliferation of HER2 overexpressing tumor cells. Here, we describe humanization of this mAb by grafting all six complementarity determining regions (CDRs) onto human variable germline genes. Humanized VH and VL sequences were synthesized and ligated to human γ1 and κ constant region genes using splice overlap extension (SOE) PCR. Subsequently, the humanized antibody designated hersintuzumab was expressed and characterized by ELISA, Western blot and flow cytometry. The purified humanized mAb binds to recombinant HER2 and HER2-overexpressing tumor cells with an affinity comparable with the chimeric and parental mouse mAbs. It recognizes an epitope distinct from those recognized by trastuzumab and pertuzumab. Binding of hersintuzumab to HER2 overexpressing tumor cells induces G1 cell cycle arrest, inhibition of ERK and AKT signaling pathways and growth inhibition. Moreover, hersintuzumab could induce antibody-dependent cell cytotoxicity (ADCC) on BT-474 cells. This new humanized mAb is a potentially valuable tool for single or combination breast cancer therapy.
Collapse
Affiliation(s)
- Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Soltantoyeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Hosseini-Ghatar
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Bahadori
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Jalal Khoshnoodi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Sadat Navabi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Farid
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. .,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
Sarcinelli MA, Albernaz MDS, Szwed M, Iscaife A, Leite KRM, Junqueira MDS, Bernardes ES, da Silva EO, Tavares MIB, Santos-Oliveira R. Nanoradiopharmaceuticals for breast cancer imaging: development, characterization, and imaging in inducted animals. Onco Targets Ther 2016; 9:5847-5854. [PMID: 27713638 PMCID: PMC5045224 DOI: 10.2147/ott.s110787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Monoclonal antibodies as polymeric nanoparticles are quite interesting and endow this new drug category with many advantages, especially by reducing the number of adverse reactions and, in the case of radiopharmaceuticals, also reducing the amount of radiation (dose) administered to the patient. In this study, a nanoradiopharmaceutical was developed using polylactic acid (PLA)/polyvinyl alcohol (PVA)/montmorillonite (MMT)/trastuzumab nanoparticles labeled with technetium-99m (99mTc) for breast cancer imaging. In order to confirm the nanoparticle formation, atomic force microscopy and dynamic light scattering were performed. Cytotoxicity of the nanoparticle and biodistribution with 99mTc in healthy and inducted animals were also measured. The results from atomic force microscopy showed that the nanoparticles were spherical, with a size range of ~200-500 nm. The dynamic light scattering analysis demonstrated that over 90% of the nanoparticles produced had a size of 287 nm with a zeta potential of -14,6 mV. The cytotoxicity results demonstrated that the nanoparticles were capable of reaching breast cancer cells. The biodistribution data demonstrated that the PLA/PVA/MMT/trastuzumab nanoparticles labeled with 99mTc have great renal clearance and also a high uptake by the lesion, as ~45% of the PLA/PVA/MMT/trastuzumab nanoparticles injected were taken up by the lesion. The data support PLA/PVA/MMT/trastuzumab labeled with 99mTc nanoparticles as nanoradiopharmaceuticals for breast cancer imaging.
Collapse
Affiliation(s)
- Michelle Alvares Sarcinelli
- Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Medical Investigation, Faculty of Medicine, São Paulo University, São Paulo, Brazil
| | | | - Marzena Szwed
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Alexandre Iscaife
- Laboratory of Medical Investigation, Faculty of Medicine, São Paulo University, São Paulo, Brazil
| | | | - Mara de Souza Junqueira
- Laboratory of Experimental Oncology, Faculty of Medicine, São Paulo University, São Paulo, Brazil
| | | | - Emerson Oliveira da Silva
- Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Ines Bruno Tavares
- Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Zarei S, Bayat AA, Hadavi R, Mahmoudi AR, Tavangar B, Vojgani Y, Jeddi-Tehrani M, Amirghofran Z. Production and characterization of a peptide-based monoclonal antibody against CD44 variant 6. Monoclon Antib Immunodiagn Immunother 2015; 34:36-43. [PMID: 25723282 DOI: 10.1089/mab.2014.0077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The gene that codes for the CD44 family members consists of 20 exons, nine of which encode the standard form of the molecule. The other exons can be inserted in various combinations into the membrane proximal region of the extracellular domain of the protein, giving rise to variant isoforms (CD44v). CD44 variants, especially the CD44v6, have been reported to regulate tumor invasion, progression, and metastasis of carcinomas. Producing a high affinity monoclonal antibody against human CD44v6 provides a powerful tool to monitor and trace CD44v6 function in different biological fluids. In this study, a synthetic peptide from CD44v6 was conjugated to keyhole limpet hemocyanin (KLH) and injected into BALB/c mice. Splenocytes from the immunized mice were fused with murine SP2/0 myeloma cells followed by selection of antibody producing hybridoma cells. After screening of hybridoma colonies by ELISA, high affinity antibodies were selected and purified by affinity chromatography. Western blot, immunocytochemistry, and flow cytometry experiments were used to characterize the antibodies. Six stable hybridoma cell lines, designated as 1H1, 1H2, 2A12, 2G11, 3H3, and 3H7, were obtained. Flow cytometry and immunocytochemistry results showed that the new monoclonal antibodies recognized CD44v6 on the cell surface. This novel panel of anti-CD44v6 antibodies has the potential for investigating the role of CD44v6 in cancer pathogenesis.
Collapse
Affiliation(s)
- Saeed Zarei
- 1 Department of Immunology, Shiraz University of Medical Sciences , Shiraz, Iran
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Salehi-Lalemarzi H, Shanehbandi D, Shafaghat F, Abbasi-Kenarsari H, Baradaran B, Movassaghpour AA, Kazemi T. Cloning and Stable Expression of cDNA Coding For Platelet Endothelial Cell Adhesion Molecule -1 (PECAM-1, CD31) in NIH-3T3 Cell Line. Adv Pharm Bull 2015; 5:247-53. [PMID: 26236664 DOI: 10.15171/apb.2015.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 11/09/2022] Open
Abstract
PURPOSE PECAM-1 (CD31) is a glycoprotein expressed on endothelial and bone marrow precursor cells. It plays important roles in angiogenesis, maintenance and integration of the cytoskeleton and direction of leukocytes to the site of inflammation. We aimed to clone the cDNA coding for human CD31 from KG1a for further subcloning and expression in NIH-3T3 mouse cell line. METHODS CD31 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. RESULTS 2235 bp specific band was aligned completely to human CD31 reference sequence in NCBI database. Transient and stable expression of human CD31 on transfected NIH-3T3 mouse fibroblast cells was achieved (23% and 96%, respectively) as shown by flow cytometry. CONCLUSION Due to murine origin of NIH-3T3 cell line, CD31-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD31, with no need for purification of recombinant proteins.
Collapse
Affiliation(s)
- Hamed Salehi-Lalemarzi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Department of Immunology, International Branch of Aras, Tabriz University of Medical Sciences, Tabriz, Iran. ; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Shafaghat
- Department of Immunology, International Branch of Aras, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Abbasi-Kenarsari
- Drug Applied Research Center and Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Drug Applied Research Center and Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Drug Applied Research Center and Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. ; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Department of Immunology, International Branch of Aras, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Yousefi M, Younesi V, Bayat AA, Jadidi-Niaragh F, Abbasi E, Razavi A, Khosravi-Eghbal R, Asgarian-Omran H, Shokri F. Comparative human and mouse antibody responses against tetanus toxin at clonal level. J Immunotoxicol 2015; 13:243-8. [DOI: 10.3109/1547691x.2015.1046572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mehdi Yousefi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,
| | - Vahid Younesi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| | - Ali Ahmad Bayat
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, and
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| | - Ebrahim Abbasi
- Department of Bacterial Vaccines, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| | - Roya Khosravi-Eghbal
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, and
| |
Collapse
|
15
|
Shafaghat F, Abbasi-Kenarsari H, Majidi J, Movassaghpour AA, Shanehbandi D, Kazemi T. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line. Adv Pharm Bull 2015; 5:69-75. [PMID: 25789221 PMCID: PMC4352225 DOI: 10.5681/apb.2015.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/02/2014] [Accepted: 09/09/2014] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. METHODS CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. RESULTS 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. CONCLUSION Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems.
Collapse
Affiliation(s)
- Farzaneh Shafaghat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, International Branch of Aras, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Abbasi-Kenarsari
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Shabani M, Bayat AA, Jeddi-Tehrani M, Rabbani H, Hojjat-Farsangi M, Ulivieri C, Amirghofran Z, Baldari CT, Shokri F. Ligation of human Fc receptor like-2 by monoclonal antibodies down-regulates B-cell receptor-mediated signalling. Immunology 2014; 143:341-53. [PMID: 24797767 DOI: 10.1111/imm.12311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/26/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022] Open
Abstract
B-cell antigen receptor (BCR) signalling and its regulation through negative and positive regulators are critical for balancing B-cell response and function. Human Fc receptor like-2 (FCRL2), a member of the newly identified FCRL family, could influence B-cell signalling due to possession of both immunoreceptor tyrosine-based activation and inhibitory motifs (ITAM and ITIM). Since the natural ligand of FCRL2 has not been identified, we generated FCRL2-specific monoclonal antibodies (mAbs) and employed them to investigate the influence of FCRL2 stimulation on BCR signalling in an FCRL2-expressing B-cell line. Two anti-FCRL2 mAb-producing hybridoma clones (5A7-E7 and 3D8-G8) were selected. None of the mAbs displayed any cross-reactivity with the other members of the FCRL family including recombinant FCRL1, -3, -4 and -5, as tested by FACS and ELISA techniques. Engagement of the FCRL2 by these mAbs resulted in significant inhibition of BCR signalling mediators such as calcium mobilization and phosphorylation of the mitogen-activated protein kinases Erk, p38 and Jnk. These findings indicate that the FCRL2 ITIM motifs are functional and the anti-FCRL2 mAbs may mimic the natural ligand of FCRL2 by induction of inhibitory signals in B cells.
Collapse
Affiliation(s)
- Mahdi Shabani
- Monoclonal Antibody Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran; Department of Immunology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tahmasebi F, Kazemi T, Amiri MM, Khoshnoodi J, Mahmoudian J, Bayat AA, Jeddi-Tehrani M, Rabbani H, Shokri F. In vitro assessment of the effects of anti-HER2 monoclonal antibodies on proliferation of HER2-overexpressing breast cancer cells. Immunotherapy 2014; 6:43-9. [PMID: 24341883 DOI: 10.2217/imt.13.156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND HER2 proto-oncogene is critical in the biology of breast cancer and an important therapeutic target of monoclonal antibodies (mAbs). We have recently established a panel of anti-HER2 mAbs recognizing different epitopes within the extracellular domain of HER2. MATERIALS & METHODS In the present study the antiproliferative effect of these mAbs was investigated on HER2-overexpressing human breast cancer cell line BT474, using radioactive thymidine incorporation assay. RESULTS Our results demonstrated that while two of the mAbs (1T0 and 2A8) inhibited cell proliferation dose dependently, similar to trastuzumab, six mAbs (1F2, 1B5, 1H9, 4C7, 1H6 and 2A9) augmented cell proliferation. Treatment of BT474 cells with different combinations of two mAbs induced either synergistic inhibitory or stimulatory effects. DISCUSSION Our findings indicate that combination of some stimulatory mAbs could completely abolish the inhibitory effect of other mAbs against HER2. Employment of some combinations of mAbs with significant synergistic inhibitory function may improve the therapeutic efficacy of HER2-specific mAbs.
Collapse
Affiliation(s)
- Fathollah Tahmasebi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Golsaz Shirazi F, Mohammadi H, Amiri MM, Singethan K, Xia Y, Bayat AA, Bahadori M, Rabbani H, Jeddi-Tehrani M, Protzer U, Shokri F. Monoclonal antibodies to various epitopes of hepatitis B surface antigen inhibit hepatitis B virus infection. J Gastroenterol Hepatol 2014; 29:1083-91. [PMID: 24325676 DOI: 10.1111/jgh.12483] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM Antibodies against the "a" determinant of hepatitis B surface antigen (HBsAg) are able to neutralize circulating hepatitis B virus (HBV) particles and prevent HBV infection. It has been proposed that a single amino acid exchange may allow the virus to escape the immune response. We used a set of monoclonal antibodies (MAbs) to investigate whether a single mutation may account for virus escape from humoral immunity. METHODS Nine murine HBsAg-specific MAbs were raised. Reactivity of all antibodies with 14 recombinant mutants of HBsAg was assessed by ELISA. HBV infection of HepaRG cells was used to evaluate viral neutralization capacity of MAbs in vitro. RESULTS All MAbs were able to inhibit the establishment of HBV infection in a dose-dependent fashion, but recognition of HBsAg variants varied. The MAbs were classified into three subgroups based on their pattern of reactivity to the HBsAg variants. Accordingly, three MAbs showed weak reactivity (< 40%) to variants with mutations within the first loop of "a" determinant, five MAbs displayed negligible binding to variants with mutations within the second loop, and one MAb lost its binding to variants having mutations in both loops of the "a" determinant. CONCLUSIONS Our results indicate that antibodies against different epitopes of the "a" determinant of HBsAg are able to neutralize HBV. It seems that mutations within a single or a limited number of amino acids within this determinant can hardly result in viral escape. These results have important implications for the development of antibody-based therapies against HBV.
Collapse
Affiliation(s)
- Forough Golsaz Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Amiri MM, Jeddi-Tehrani M, Kazemi T, Bahadori M, Maddah M, Hojjat-Farsangi M, Khoshnoodi J, Rabbani H, Shokri F. Construction and characterization of a new chimeric antibody against HER2. Immunotherapy 2013; 5:703-15. [DOI: 10.2217/imt.13.67] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: Immunotherapy with anti-HER2 antibodies has shown promising results in patients with HER2-positive breast cancer. We have recently reported characterization of a mouse monoclonal antibody (mAb) against HER2, which binds to an epitope different from that recognized by trastuzumab and specifically inhibits proliferation of tumor cells overexpressing HER2. In the present study we report chimerization of this antibody. Materials & methods: The immunoglobulin variable region heavy and light chain genes of 1T0 hybridoma cells were amplified and ligated to human γ-1 and κ constant region genes using splice overlap extension PCR. The chimeric antibody was subsequently expressed and characterized by ELISA, western blot and flow cytometry. Results: The purified chimeric antibody specifically binds to recombinant HER2 and HER2-overexpressing tumor cells and inhibits proliferation of these cells. The binding affinity of the chimeric mAb was comparable with the parental mouse mAb. Conclusion: This chimeric anti-HER2 mAb is a potentially valuable tool for targeted immunotherapy.
Collapse
Affiliation(s)
- Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Tohid Kazemi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Motahareh Bahadori
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahshid Maddah
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Hojjat-Farsangi
- Immune & Gene Therapy Laboratory, Cancer Center Karolinska, Karolinska Hospital, Stockholm, Sweden
| | - Jalal Khoshnoodi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hodjatallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fazel Shokri
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
20
|
Kouchakzadeh H, Shojaosadati SA, Tahmasebi F, Shokri F. Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin nanoparticles. Int J Pharm 2013; 447:62-9. [PMID: 23454849 DOI: 10.1016/j.ijpharm.2013.02.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 12/11/2022]
Abstract
Human serum albumin (HSA) nanoparticles represent an attractive strategy for active targeting of therapeutics into tumor cells due to the presence of superficial functional groups. HER2 is highly expressed in a significant proportion of cancers and monoclonal antibodies (mAbs) directed against HER2 hold great promise for effective therapy. Herein, covalent coupling of a novel mAb (1F2) directed against the extracellular domain of HER2 to the surface of HSA nanoparticles was evaluated to obtain nanoparticles with highest cellular uptake. HER2 reactivity of 1F2-conjugated nanoparticles produced under different conditions was screened by an indirect ELISA and flow cytometry techniques. Monoclonal antibody thiolation with 100-fold molar excess of 2-iminothiolane and the ratio of 10:1 for the thiolated 1F2 (μg) to PEGylated nanoparticles (mg), were optimum for the attachment process. Under this condition, 23±4% of 1F2 was conjugated to nanoparticles. The flow cytometry results show that 1F2-modified nanoparticles interact with nearly all HER2 receptors on the surface of BT474 cells. In addition, no cellular uptake was observed on MCF7 cells. In vitro analyses showed no significant cytotoxicity of produced system against BT474 cells. Therefore, 1F2-attached HSA nanoparticles represent a potential delivery system for targeted transport of therapeutic agents into HER2-positive tumor cells.
Collapse
Affiliation(s)
- Hasan Kouchakzadeh
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
21
|
Yousefi M, Tahmasebi F, Younesi V, Razavi A, Khoshnoodi J, Bayat AA, Abbasi E, Rabbani H, Jeddi-Tehrani M, Shokri F. Characterization of neutralizing monoclonal antibodies directed against tetanus toxin fragment C. J Immunotoxicol 2013; 11:28-34. [DOI: 10.3109/1547691x.2013.763872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|