1
|
Dinius A, Kozanecka ZJ, Hoffmann KP, Krull R. Intensification of bioprocesses with filamentous microorganisms. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Abstract
Many industrial biotechnological processes use filamentous microorganisms to produce platform chemicals, proteins, enzymes and natural products. Product formation is directly linked to their cellular morphology ranging from dispersed mycelia over loose clumps to compact pellets. Therefore, the adjustment and control of the filamentous cellular morphology pose major challenges for bioprocess engineering. Depending on the filamentous strain and desired product, optimal morphological shapes for achieving high product concentrations vary. However, there are currently no overarching strain- or product-related correlations to improve process understanding of filamentous production systems. The present book chapter summarizes the extensive work conducted in recent years in the field of improving product formation and thus intensifying biotechnological processes with filamentous microorganisms. The goal is to provide prospective scientists with an extensive overview of this scientifically diverse, highly interesting field of study. In the course of this, multiple examples and ideas shall facilitate the combination of their acquired expertise with promising areas of future research. Therefore, this overview describes the interdependence between filamentous cellular morphology and product formation. Moreover, the currently most frequently used experimental techniques for morphological structure elucidation will be discussed in detail. Developed strategies of morphology engineering to increase product formation by tailoring and controlling cellular morphology and thus to intensify processes with filamentous microorganisms will be comprehensively presented and discussed.
Collapse
Affiliation(s)
- Anna Dinius
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| | - Zuzanna J. Kozanecka
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| | - Kevin P. Hoffmann
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| | - Rainer Krull
- Institute of Biochemical Engineering , Technische Universität Braunschweig , Rebenring 56 , 38106 Braunschweig , Germany
- Center of Pharmaceutical Engineering , Technische Universität Braunschweig , Franz-Liszt-Str. 35a , 38106 Braunschweig , Germany
| |
Collapse
|
4
|
Vesth TC, Nybo JL, Theobald S, Frisvad JC, Larsen TO, Nielsen KF, Hoof JB, Brandl J, Salamov A, Riley R, Gladden JM, Phatale P, Nielsen MT, Lyhne EK, Kogle ME, Strasser K, McDonnell E, Barry K, Clum A, Chen C, LaButti K, Haridas S, Nolan M, Sandor L, Kuo A, Lipzen A, Hainaut M, Drula E, Tsang A, Magnuson JK, Henrissat B, Wiebenga A, Simmons BA, Mäkelä MR, de Vries RP, Grigoriev IV, Mortensen UH, Baker SE, Andersen MR. Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nat Genet 2018; 50:1688-1695. [PMID: 30349117 DOI: 10.1038/s41588-018-0246-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/23/2018] [Indexed: 01/27/2023]
Abstract
Aspergillus section Nigri comprises filamentous fungi relevant to biomedicine, bioenergy, health, and biotechnology. To learn more about what genetically sets these species apart, as well as about potential applications in biotechnology and biomedicine, we sequenced 23 genomes de novo, forming a full genome compendium for the section (26 species), as well as 6 Aspergillus niger isolates. This allowed us to quantify both inter- and intraspecies genomic variation. We further predicted 17,903 carbohydrate-active enzymes and 2,717 secondary metabolite gene clusters, which we condensed into 455 distinct families corresponding to compound classes, 49% of which are only found in single species. We performed metabolomics and genetic engineering to correlate genotypes to phenotypes, as demonstrated for the metabolite aurasperone, and by heterologous transfer of citrate production to Aspergillus nidulans. Experimental and computational analyses showed that both secondary metabolism and regulation are key factors that are significant in the delineation of Aspergillus species.
Collapse
Affiliation(s)
- Tammi C Vesth
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jane L Nybo
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sebastian Theobald
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens C Frisvad
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kristian F Nielsen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob B Hoof
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Julian Brandl
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.,Amyris, Inc., Emeryville, CA, USA
| | - John M Gladden
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, USA.,Sandia National Laboratory, Livermore, CA, USA
| | - Pallavi Phatale
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, USA.,Chemical and Biological Process Development Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Morten T Nielsen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ellen K Lyhne
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martin E Kogle
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kimchi Strasser
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Erin McDonnell
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Cindy Chen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Matt Nolan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 7257, Aix-Marseille University, Marseille, France.,Institut National de la Recherche Agronomique, USC 1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 7257, Aix-Marseille University, Marseille, France.,Institut National de la Recherche Agronomique, USC 1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Jon K Magnuson
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, USA.,Chemical and Biological Process Development Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 7257, Aix-Marseille University, Marseille, France.,Institut National de la Recherche Agronomique, USC 1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Blake A Simmons
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Miia R Mäkelä
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Uffe H Mortensen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Scott E Baker
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, USA. .,Environmental Molecular Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Mikael R Andersen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
5
|
Brandl J, Aguilar-Pontes MV, Schäpe P, Noerregaard A, Arvas M, Ram AFJ, Meyer V, Tsang A, de Vries RP, Andersen MR. A community-driven reconstruction of the Aspergillus niger metabolic network. Fungal Biol Biotechnol 2018; 5:16. [PMID: 30275963 PMCID: PMC6158834 DOI: 10.1186/s40694-018-0060-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/17/2018] [Indexed: 11/17/2022] Open
Abstract
Background Aspergillus niger is an important fungus used in industrial applications for enzyme and acid production. To enable rational metabolic engineering of the species, available information can be collected and integrated in a genome-scale model to devise strategies for improving its performance as a host organism. Results In this paper, we update an existing model of A. niger metabolism to include the information collected from 876 publications, thereby expanding the coverage of the model by 940 reactions, 777 metabolites and 454 genes. In the presented consensus genome-scale model of A. niger iJB1325 , we integrated experimental data from publications and patents, as well as our own experiments, into a consistent network. This information has been included in a standardized way, allowing for automated testing and continuous improvements in the future. This repository of experimental data allowed the definition of 471 individual test cases, of which the model complies with 373 of them. We further re-analyzed existing transcriptomics and quantitative physiology data to gain new insights on metabolism. Additionally, the model contains 3482 checks on the model structure, thereby representing the best validated genome-scale model on A. niger developed until now. Strain-specific model versions for strains ATCC 1015 and CBS 513.88 have been created containing all data used for model building, thereby allowing users to adopt the models and check the updated version against the experimental data. The resulting model is compliant with the SBML standard and therefore enables users to easily simulate it using their preferred software solution. Conclusion Experimental data on most organisms are scattered across hundreds of publications and several repositories.To allow for a systems level understanding of metabolism, the data must be integrated in a consistent knowledge network. The A. niger iJB1325 model presented here integrates the available data into a highly curated genome-scale model to facilitate the simulation of flux distributions, as well as the interpretation of other genome-scale data by providing the metabolic context. Electronic supplementary material The online version of this article (10.1186/s40694-018-0060-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julian Brandl
- 1Technical University of Denmark, Soeltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Maria Victoria Aguilar-Pontes
- 2Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Paul Schäpe
- 6Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Anders Noerregaard
- 1Technical University of Denmark, Soeltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Mikko Arvas
- 3VTT Technical Research Centre of Finland, Tietotie 2, 02044 Espoo, Finland.,7Present Address: Finnish Red Cross Blood Service, Helsinki, Finland
| | - Arthur F J Ram
- 5Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Vera Meyer
- 6Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Adrian Tsang
- 4Concordia University, 7141 Sherbrooke Street West, H4B1R6 Montreal, Québec Canada
| | - Ronald P de Vries
- 2Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Mikael R Andersen
- 1Technical University of Denmark, Soeltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Karpe AV, Beale DJ, Godhani NB, Morrison PD, Harding IH, Palombo EA. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10696-704. [PMID: 26611372 DOI: 10.1021/acs.jafc.5b04834] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Winery-derived biomass waste was degraded by Penicillium chrysogenum under solid state fermentation over 8 days in a (2)H2O-supplemented medium. Multivariate statistical analysis of the gas chromatography-mass spectrometry (GC-MS) data resulted in the identification of 94 significant metabolites, within 28 different metabolic pathways. The majority of biomass sugars were utilized by day 4 to yield products such as sugars, fatty acids, isoprenoids, and amino acids. The fungus was observed to metabolize xylose to xylitol, an intermediate of ethanol production. However, enzyme inhibition and autolysis were observed from day 6, indicating 5 days as the optimal time for fermentation. P. chrysogenum displayed metabolism of pentoses (to alcohols) and degraded tannins and lignins, properties that are lacking in other biomass-degrading ascomycetes. Rapid fermentation (3-5 days) may not only increase the pentose metabolizing efficiency but also increase the yield of medicinally important metabolites, such as syringate.
Collapse
Affiliation(s)
- Avinash V Karpe
- Department of Chemistry and Biotechnology, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), P.O. Box 2583, Dutton Park, Queensland 4001, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), P.O. Box 2583, Dutton Park, Queensland 4001, Australia
| | - Nainesh B Godhani
- Department of Mechanical and Product Design Engineering, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Paul D Morrison
- Australian Centre for Research on Separation Science, School of Applied Sciences, RMIT University , P.O. Box 2547, Melbourne, Victoria 3000, Australia
| | - Ian H Harding
- Department of Chemistry and Biotechnology, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
8
|
Walisko R, Moench-Tegeder J, Blotenberg J, Wucherpfennig T, Krull R. The Taming of the Shrew--Controlling the Morphology of Filamentous Eukaryotic and Prokaryotic Microorganisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 149:1-27. [PMID: 25796624 DOI: 10.1007/10_2015_322] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the most sensitive process characteristics in the cultivation of filamentous biological systems is their complex morphology. In submerged cultures, the observed macroscopic morphology of filamentous microorganisms varies from freely dispersed mycelium to dense spherical pellets consisting of a more or less dense, branched and partially intertwined network of hyphae. Recently, the freely dispersed mycelium form has been in high demand for submerged cultivation because this morphology enhances the growth and production of several valuable products. A distinct filamentous morphology and productivity are influenced by the environment and can be controlled by inoculum concentration, spore viability, pH value, cultivation temperature, dissolved oxygen concentration, medium composition, mechanical stress or process mode as well as through the addition of inorganic salts or microparticles, which provides the opportunity to tailor a filamentous morphology. The suitable morphology for a given bioprocess varies depending on the desired product. Therefore, the advantages and disadvantages of each morphological type should be carefully evaluated for every biological system. Because of the high industrial relevance of filamentous microorganisms, research in previous years has aimed at the development of tools and techniques to characterise their growth and obtain quantitative estimates of their morphological properties. The focus of this review is on current advances in the characterisation and control of filamentous morphology with a separation of eukaryotic and prokaryotic systems. Furthermore, recent strategies to tailor the morphology through classical biochemical process parameters, morphology and genetic engineering to optimise the productivity of these filamentous systems are discussed.
Collapse
Affiliation(s)
- Robert Walisko
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gaußstraße 17, 38106, Braunschweig, Germany,
| | | | | | | | | |
Collapse
|