1
|
Botet-Carreras A, Tamames-Tabar C, Salles F, Rojas S, Imbuluzqueta E, Lana H, Blanco-Prieto MJ, Horcajada P. Improving the genistein oral bioavailability via its formulation into the metal-organic framework MIL-100(Fe). J Mater Chem B 2021; 9:2233-2239. [PMID: 33596280 DOI: 10.1039/d0tb02804e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the interesting chemopreventive, antioxidant and antiangiogenic effects of the natural bioflavonoid genistein (GEN), its low aqueous solubility and bioavailability make it necessary to administer it using a suitable drug carrier system. Nanometric porous metal-organic frameworks (nanoMOFs) are appealing systems for drug delivery. Particularly, mesoporous MIL-100(Fe) possesses a variety of interesting features related to its composition and structure, which make it an excellent candidate to be used as a drug nanocarrier (highly porous, biocompatible, can be synthesized as homogenous and stable nanoparticles (NPs), etc.). In this study, GEN was entrapped via simple impregnation in MIL-100 NPs achieving remarkable drug loading (27.1 wt%). A combination of experimental and computing techniques was used to achieve a deep understanding of the encapsulation of GEN in MIL-100 nanoMOF. Subsequently, GEN delivery studies were carried out under simulated physiological conditions, showing on the whole a sustained GEN release for 3 days. Initial pharmacokinetic and biodistribution studies were also carried out upon the oral administration of the GEN@MIL-100 NPs in a mouse model, evidencing a higher bioavailability and showing that this oral nanoformulation appears to be very promising. To the best of our knowledge, the GEN-loaded MIL-100 will be the first antitumor oral formulation based on nanoMOFs studied in vivo, and paves the way to the efficient delivery of nontoxic antitumorals via a convenient oral route.
Collapse
Affiliation(s)
- Adrià Botet-Carreras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain. and Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Cristina Tamames-Tabar
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain. and Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Fabrice Salles
- ICGM, CNRS, Univ. Montpellier, ENSCM, Montpellier, France
| | - Sara Rojas
- IMDEA Energy, Avda. Ramón de la Sagra 3, 28035 Móstoles, Madrid, Spain.
| | - Edurne Imbuluzqueta
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Hugo Lana
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - María José Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Patricia Horcajada
- Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France and IMDEA Energy, Avda. Ramón de la Sagra 3, 28035 Móstoles, Madrid, Spain.
| |
Collapse
|
2
|
Żelechowska P, Brzezińska-Błaszczyk E, Różalska S, Agier J, Kozłowska E. Mannan activates tissue native and IgE-sensitized mast cells to proinflammatory response and chemotaxis in TLR4-dependent manner. J Leukoc Biol 2021; 109:931-942. [PMID: 33047839 DOI: 10.1002/jlb.4a0720-452r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Mast cells take part in host defense against microorganisms as they are numerous at the portal of infection, exert several essential mechanisms of pathogen destruction, and they express pattern recognition receptors. Accumulating evidence indicates that these cells are involved in the control and clearance of bacterial, viral, or parasitic infections, but much less is known about their contribution in defense against fungi. The study was aimed to establish whether mannan, which comprises an outermost layer and major structural constituent of the fungal cell wall, may directly stimulate tissue mast cells to the antifungal response. Our findings indicate that mannan activates mast cells isolated from the rat peritoneal cavity to initiate the proinflammatory response. We found that mannan stimulates mast cells to release histamine and to generate cysteinyl leukotrienes, cytokines (IFN-γ, GM-CSF, TNF), and chemokines (CCL2, CCL3). It also increased the mRNA expression of various cytokines/chemokines. We also documented that mannan strongly activates mast cells to generate reactive oxygen species and serves as a potent chemoattractant for these cells. Furthermore, we established that mannan-induced activity of mast cells is mediated via TLR4 with the involvement of the spleen tyrosine kinase molecule. Taking together, our results clearly support the idea that mast cells act as sentinel cells and crucially determine the course of the immune response during fungal infection. Additionally, presented data on IgE-coated mast cells suggest that exposure to fungal mannan could influence the severity of IgE-dependent diseases, including allergic ones.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Kadam R, Wiafe B, Metcalfe PD. Mesenchymal stem cells ameliorate partial bladder outlet obstruction-induced epithelial-mesenchymal transition type II independent of mast cell recruitment and degranulation. Can Urol Assoc J 2021; 15:E29-E35. [PMID: 32701447 PMCID: PMC7769523 DOI: 10.5489/cuaj.6501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Partial bladder outlet obstruction (pBOO) results in increased urinary storage pressure and significant morbidity. Increased pressure results in a sequence of programmed events: an initial inflammatory phase, smooth muscle hypertrophy, and fibrosis. Although epithelial-mesenchymal transition (EMT) and mast cell accumulation play intermediary roles in some fibrotic conditions, their role in pBOO has not yet been elucidated. Mesenchymal stem cell (MSC) therapy is emerging as a promising treatment for several conditions. It potently inhibits bladder deterioration after pBOO; however, its mechanism of action is insufficiently understood. Thus, we hypothesize that EMT type II pathway plays a significant role in pBOO, aided by the recruitment and activation of mast cells, and these are potently inhibited by MSCs. METHODS pBOO was surgically induced in female Sprague-Dawley rats and simultaneously treated with MSCs. Treatment effect was determined after two or four weeks and compared to untreated controls. Immunohistochemistry was used to measure markers characteristic of EMT (vimentin, collagenase, and collagen). Whole and degranulated mast cell counts were also performed. RESULTS pBOO resulted in an increased expression of collagenase, vimentin, and collagen. Mast cell recruitment increased proportionately to the length of bladder obstruction. MSC treatment significantly mitigated the EMT type II response, but mast cell recruitment and degranulation were unaffected. CONCLUSIONS Our results demonstrate the involvement of EMT type II in the pathophysiology of pBOO and confirm its mitigation with MSC treatment independent of mast cells response. The observations provide insight into the mechanism of action and have therapeutic ramifications.
Collapse
Affiliation(s)
- Rutuja Kadam
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Bridget Wiafe
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Peter D Metcalfe
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Meadows V, Kennedy L, Hargrove L, Demieville J, Meng F, Virani S, Reinhart E, Kyritsi K, Invernizzi P, Yang Z, Wu N, Liangpunsakul S, Alpini G, Francis H. Downregulation of hepatic stem cell factor by Vivo-Morpholino treatment inhibits mast cell migration and decreases biliary damage/senescence and liver fibrosis in Mdr2 -/- mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165557. [PMID: 31521820 PMCID: PMC6878979 DOI: 10.1016/j.bbadis.2019.165557] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Primary sclerosing cholangitis (PSC) is characterized by increased mast cell (MC) infiltration, biliary damage and hepatic fibrosis. Cholangiocytes secrete stem cell factor (SCF), which is a chemoattractant for c-kit expressed on MCs. We aimed to determine if blocking SCF inhibits MC migration, biliary damage and hepatic fibrosis. METHODS FVB/NJ and Mdr2-/- mice were treated with Mismatch or SCF Vivo-Morpholinos. We measured (i) SCF expression and secretion; (ii) hepatic damage; (iii) MC migration/activation and histamine signaling; (iv) ductular reaction and biliary senescence; and (v) hepatic fibrosis. In human PSC patients, SCF expression and secretion were measured. In vitro, cholangiocytes were evaluated for SCF expression and secretion. Biliary proliferation/senescence was measured in cholangiocytes pretreated with 0.1% BSA or the SCF inhibitor, ISK03. Cultured HSCs were stimulated with cholangiocyte supernatant and activation measured. MC migration was determined with cholangiocytes pretreated with BSA or ISK03 loaded into the bottom of Boyden chambers and MCs into top chamber. RESULTS Biliary SCF expression and SCF serum levels increase in human PSC. Cholangiocytes, but not hepatocytes, from SCF Mismatch Mdr2-/- mice have increased SCF expression and secretion. Inhibition of SCF in Mdr2-/- mice reduced (i) hepatic damage; (ii) MC migration; (iii) histamine and SCF serum levels; and (iv) ductular reaction/biliary senescence/hepatic fibrosis. In vitro, cholangiocytes express and secrete SCF. Blocking biliary SCF decreased MC migration, biliary proliferation/senescence, and HSC activation. CONCLUSION Cholangiocytes secrete increased levels of SCF inducing MC migration, contributing to biliary damage/hepatic fibrosis. Targeting MC infiltration may be an option to ameliorate PSC progression.
Collapse
Affiliation(s)
- Vik Meadows
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Lindsey Kennedy
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Laura Hargrove
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Jennifer Demieville
- Research, Central Texas Veterans Health Care System, United States of America
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, United States of America
| | - Shohaib Virani
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Evan Reinhart
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Konstantina Kyritsi
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | | | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, United States of America
| | - Nan Wu
- Richard L. Roudebush VA Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, United States of America
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, United States of America
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University College of Medicine, United States of America.
| |
Collapse
|
5
|
Żelechowska P, Brzezińska-Błaszczyk E, Wiktorska M, Różalska S, Wawrocki S, Kozłowska E, Agier J. Adipocytokines leptin and adiponectin function as mast cell activity modulators. Immunology 2019; 158:3-18. [PMID: 31220342 DOI: 10.1111/imm.13090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/10/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
A growing body of data indicates that adipocytokines, including leptin and adiponectin, are critical components not only of metabolic regulation but also of the immune system, mainly by influencing the activity of cells participating in immunological and inflammatory processes. As mast cells (MCs) are the key players in the course of those mechanisms, this study aimed to evaluate the impact of leptin and adiponectin on some aspects of MC activity. We documented that in vivo differentiated mature tissue MCs from the rat peritoneal cavity express a receptor for leptin (OB-R), as well as receptors for adiponectin (AdipoR1 and AdipoR2). We established that leptin, but not adiponectin, stimulates MCs to release of histamine as well as to generation of cysteinyl leukotrienes (cysLTs) and chemokine CCL2. We also found that both adipocytokines affect mRNA expression of various cytokines/chemokines. Leptin and adiponectin also activate MCs to produce reactive oxygen species. Moreover, we documented that leptin significantly augments the surface expression of receptors for cysLTs, i.e. CYSLTR1, CYSLTR2, and GPR17 on MCs, while adiponectin increases only GPR17 expression, and decreases CYSLTR2. Finally, we showed that both adipocytokines serve as potent chemoattractants for MCs. In intracellular signaling in MCs activated by leptin Janus-activated kinase 2, phospholipase C, phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK1/2), and p38 molecules play a part whereas the adiponectin-induced activity of MCs is mediated through PI3K, p38, and ERK1/2 pathways. Our observations that leptin and adiponectin regulate MC activity might indicate that adipocytokines modulate the different processes in which MCs are involved.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Magdalena Wiktorska
- Department of Molecular Cell Mechanisms, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Sebastian Wawrocki
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Leptin stimulates tissue rat mast cell pro-inflammatory activity and migratory response. Inflamm Res 2018; 67:789-799. [PMID: 30019195 PMCID: PMC6096628 DOI: 10.1007/s00011-018-1171-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/22/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
Objective The aim of this study was to determine whether leptin, a member of the adipocytokines involved in immune and inflammatory response regulation, may influence some aspects of mast cell biology. Materials and methods Experiments were done in vitro on fully mature tissue rat mast cells isolated from the peritoneal cavity, and leptin was used at concentrations 0.001–100 ng/ml. The effect of leptin on mast cell degranulation (histamine release assay), intracellular Ca2+ level (fluorimetry), pro-inflammatory mediator release (ELISA technique), surface receptor expression (flow cytometry and confocal microscopy), and migration (Boyden microchamber assay) was estimated. Results Leptin was found to stimulate mast cells to degranulation and histamine release. It induced the intracellular Ca2+ increase, as well. In response to leptin stimulation, mast cells generated and released cysLTs and chemokine CCL3. Leptin-induced upregulation of CYSLTR1 and CYSLTR2 surface expression was observed. Moreover, this adipocytokine stimulated mast cells to migratory response, even in the absence of extracellular matrix (ECM) proteins. Conclusions Our observations clearly documented that leptin promotes the pro-inflammatory activity of mast cells, and it thereby engages these cells in the inflammatory processes.
Collapse
|
7
|
Cheng L, Chen J, Fu Q, He S, Li H, Liu Z, Tan G, Tao Z, Wang D, Wen W, Xu R, Xu Y, Yang Q, Zhang C, Zhang G, Zhang R, Zhang Y, Zhou B, Zhu D, Chen L, Cui X, Deng Y, Guo Z, Huang Z, Huang Z, Li H, Li J, Li W, Li Y, Xi L, Lou H, Lu M, Ouyang Y, Shi W, Tao X, Tian H, Wang C, Wang M, Wang N, Wang X, Xie H, Yu S, Zhao R, Zheng M, Zhou H, Zhu L, Zhang L. Chinese Society of Allergy Guidelines for Diagnosis and Treatment of Allergic Rhinitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:300-353. [PMID: 29949830 PMCID: PMC6021586 DOI: 10.4168/aair.2018.10.4.300] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/17/2017] [Accepted: 10/05/2017] [Indexed: 11/20/2022]
Abstract
Allergic rhinitis (AR) is a global health problem that causes major illnesses and disabilities worldwide. Epidemiologic studies have demonstrated that the prevalence of AR has increased progressively over the last few decades in more developed countries and currently affects up to 40% of the population worldwide. Likewise, a rising trend of AR has also been observed over the last 2-3 decades in developing countries including China, with the prevalence of AR varying widely in these countries. A survey of self-reported AR over a 6-year period in the general Chinese adult population reported that the standardized prevalence of adult AR increased from 11.1% in 2005 to 17.6% in 2011. An increasing number of Journal Articles and imporclinical trials on the epidemiology, pathophysiologic mechanisms, diagnosis, management and comorbidities of AR in Chinese subjects have been published in international peer-reviewed journals over the past 2 decades, and substantially added to our understanding of this disease as a global problem. Although guidelines for the diagnosis and treatment of AR in Chinese subjects have also been published, they have not been translated into English and therefore not generally accessible for reference to non-Chinese speaking international medical communities. Moreover, methods for the diagnosis and treatment of AR in China have not been standardized entirely and some patients are still treated according to regional preferences. Thus, the present guidelines have been developed by the Chinese Society of Allergy to be accessible to both national and international medical communities involved in the management of AR patients. These guidelines have been prepared in line with existing international guidelines to provide evidence-based recommendations for the diagnosis and management of AR in China.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Huabin Li
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guolin Tan
- Department of Otolaryngology Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Dehui Wang
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Weiping Wen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Qintai Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chonghua Zhang
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Gehua Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruxin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Yuan Zhang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Bing Zhou
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Luquan Chen
- Department of Traditional Chinese Medicine, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Xinyan Cui
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuqin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhiqiang Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhenxiao Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Zizhen Huang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Houyong Li
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Jingyun Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Wenting Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqing Li
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Lin Xi
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Hongfei Lou
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Meiping Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuhui Ouyang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Wendan Shi
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xiaoyao Tao
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiqin Tian
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Nan Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Hui Xie
- Department of Otorhinolaryngology, Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaoqing Yu
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji University, Shanghai, China
| | - Renwu Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Ming Zheng
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Han Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Luping Zhu
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Luo Zhang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Immunomodulation Effects of Schizonepeta tenuifolia Briq. on the IgE-Induced Allergic Model of RBL-2H3 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6514705. [PMID: 29849717 PMCID: PMC5937521 DOI: 10.1155/2018/6514705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 12/15/2022]
Abstract
Schizonepeta tenuifolia (ST) Briq. is a traditional herbal medicine commonly used to treat allergic skin diseases, where the inflammation process is closely related to symptom severity. This study aimed to explore the immunomodulatory effect of ST by using immunoglobulin E- (IgE-) stimulated RBL-2H3 cell cultures, a common cell line for studying mast cell degranulation and inflammatory cytokine release in vitro. After stimulating the RBL-2H3 cells with IgE, ST at concentrations of 10, 50, or 100 μg/mL was added to the cell cultures. Cell viability, inflammatory cytokines (IL-6, IL-13, IL-4, TNF-α, and IFN-γ), anti-inflammatory cytokine IL-10, and degranulation ability were examined 48 and 72 hours after administration of ST. The markers of inflammation and allergic reaction, IFN-γ, TNF-α, IL-4, and IL-6, were suppressed, especially after treatment with 100 μg/mL ST. However, the anti-inflammation marker IL-10 was also suppressed by ST. Trend analysis showed that a higher ST concentration was associated with lower IFN-γ and TNF-α levels. Moreover, degranulation of RBL-2H3 cells was assessed by measuring the release of β-hexosaminidase, which was suppressed by ST at 10 μg/mL. This study showed an immunomodulatory effect of ST at the cellular level and suggests the role of ST in treating allergic diseases.
Collapse
|
9
|
Wiet MG, Piscioneri A, Khan SN, Ballinger MN, Hoyland JA, Purmessur D. Mast Cell-Intervertebral disc cell interactions regulate inflammation, catabolism and angiogenesis in Discogenic Back Pain. Sci Rep 2017; 7:12492. [PMID: 28970490 PMCID: PMC5624870 DOI: 10.1038/s41598-017-12666-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/19/2017] [Indexed: 01/07/2023] Open
Abstract
Low back pain (LBP) is a widespread debilitating disorder of significant socio-economic importance and intervertebral disc (IVD) degeneration has been implicated in its pathogenesis. Despite its high prevalence the underlying causes of LBP and IVD degeneration are not well understood. Recent work in musculoskeletal degenerative diseases such as osteoarthritis have revealed a critical role for immune cells, specifically mast cells in their pathophysiology, eluding to a potential role for these cells in the pathogenesis of IVD degeneration. This study sought to characterize the presence and role of mast cells within the IVD, specifically, mast cell-IVD cell interactions using immunohistochemistry and 3D in-vitro cell culture methods. Mast cells were upregulated in painful human IVD tissue and induced an inflammatory, catabolic and pro-angiogenic phenotype in bovine nucleus pulposus and cartilage endplate cells at the gene level. Healthy bovine annulus fibrosus cells, however, demonstrated a protective role against key inflammatory (IL-1β and TNFα) and pro-angiogenic (VEGFA) genes expressed by mast cells, and mitigated neo-angiogenesis formation in vitro. In conclusion, mast cells can infiltrate and elicit a degenerate phenotype in IVD cells, enhancing key disease processes that characterize the degenerate IVD, making them a potential therapeutic target for LBP.
Collapse
Affiliation(s)
- Matthew G Wiet
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, 201 Davis Heart and Lung Research Institute, 473 W 12th Avenue, Columbus, Ohio, 43210, USA
| | - Andrew Piscioneri
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, 201 Davis Heart and Lung Research Institute, 473 W 12th Avenue, Columbus, Ohio, 43210, USA
| | - Safdar N Khan
- Department of Orthopedics, The Ohio State University Wexner Medical Center, 1070 OSU CarePoint East, 543 Taylor Avenue, Columbus, Ohio, 43203, USA
| | - Megan N Ballinger
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, 201 Davis Heart and Lung Research Institute, 473 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, United Kingdom
- NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester Academic Health Science Centre, Central Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, 201 Davis Heart and Lung Research Institute, 473 W 12th Avenue, Columbus, Ohio, 43210, USA.
- Department of Orthopedics, The Ohio State University Wexner Medical Center, 1070 OSU CarePoint East, 543 Taylor Avenue, Columbus, Ohio, 43203, USA.
| |
Collapse
|
10
|
Correlation of IL-18 with Tryptase in Atopic Asthma and Induction of Mast Cell Accumulation by IL-18. Mediators Inflamm 2016; 2016:4743176. [PMID: 27069315 PMCID: PMC4812453 DOI: 10.1155/2016/4743176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/13/2016] [Accepted: 02/18/2016] [Indexed: 11/17/2022] Open
Abstract
Interleukin- (IL-) 18 and tryptase were previously reported to relate to asthma, but the correlation between these two potent proinflammatory molecules in asthma and their roles in mast cell accumulation remain uninvestigated. Using flow cytometric analysis technique and ovalbumin- (OVA-) sensitized mouse model, it was found that IL-18 and tryptase levels in the plasma of moderate and severe asthma were elevated, and they correlated well with each other. Tryptase and agonist peptides of protease activated receptor- (PAR-) 2 induced substantial quantity of IL-18 release. IL-18 and tryptase provoked mast cell accumulation in peritoneum of OVA-sensitized mice. OVA-sensitization increased number of IL-18 receptor (R)+ mast cells. IL-18 and tryptase induced dramatic increase in IL-18R+ mast cells and mean fluorescence intensity (MFI) of IL-18R on mast cells. Moreover, while IL-18 induced an increase in PAR-2+ mast cells in nonsensitized mice, IL-18 and tryptase provoked increases in IL-4 and thymic stromal lymphopoietin (TSLP) in the peritoneum of OVA-sensitized mice. In summary, the correlation between IL-18 and tryptase in plasma of patients with asthma indicates close interactions between them, which should be considered for development of anti-IL-18 and antitryptase therapies. Interactions between IL-18 and tryptase may contribute to mast cell recruitment in asthma.
Collapse
|
11
|
Liu X, Wang J, Zhang H, Zhan M, Chen H, Fang Z, Xu C, Chen H, He S. Induction of Mast Cell Accumulation by Tryptase via a Protease Activated Receptor-2 and ICAM-1 Dependent Mechanism. Mediators Inflamm 2016; 2016:6431574. [PMID: 27378825 PMCID: PMC4917695 DOI: 10.1155/2016/6431574] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/10/2016] [Indexed: 02/05/2023] Open
Abstract
Mast cells are primary effector cells of allergy, and recruitment of mast cells in involved tissue is one of the key events in allergic inflammation. Tryptase is the most abundant secretory product of mast cells, but little is known of its influence on mast cell accumulation. Using mouse peritoneal model, cell migration assay, and flow cytometry analysis, we investigated role of tryptase in recruiting mast cells. The results showed that tryptase induced up to 6.7-fold increase in mast cell numbers in mouse peritoneum following injection. Inhibitors of tryptase, an antagonist of PAR-2 FSLLRY-NH2, and pretreatment of mice with anti-ICAM-1, anti-CD11a, and anti-CD18 antibodies dramatically diminished tryptase induced mast cell accumulation. On the other hand, PAR-2 agonist peptides SLIGRL-NH2 and tc-LIGRLO-NH2 provoked mast cell accumulation following injection. These implicate that tryptase induced mast cell accumulation is dependent on its enzymatic activity, activation of PAR-2, and interaction between ICAM-1 and LFA-1. Moreover, induction of trans-endothelium migration of mast cells in vitro indicates that tryptase acts as a chemoattractant. In conclusion, provocation of mast cell accumulation by mast cell tryptase suggests a novel self-amplification mechanism of mast cell accumulation. Mast cell stabilizers as well as PAR-2 antagonist agents may be useful for treatment of allergic reactions.
Collapse
Affiliation(s)
- Xin Liu
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Junling Wang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Huiyun Zhang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Mengmeng Zhan
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Hanqiu Chen
- Allergy and Inflammation Research Institute, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou 515031, China
| | - Zeman Fang
- Allergy and Inflammation Research Institute, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou 515031, China
| | - Chiyan Xu
- Allergy and Inflammation Research Institute, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou 515031, China
| | - Huifang Chen
- Allergy and Inflammation Research Institute, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou 515031, China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- *Shaoheng He:
| |
Collapse
|
12
|
Investigation of the lower resistance meridian: speculation on the pathophysiological functions of acupuncture meridians. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:107571. [PMID: 25525443 PMCID: PMC4267216 DOI: 10.1155/2014/107571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/17/2014] [Indexed: 01/01/2023]
Abstract
It was pointed out in the two earlier papers of the present author that the meridians are in fact zones in the loose connective tissue containing richer interstitial fluid and thus are lower-resistance passages for diffusion of meridian-signal carriers or mediators. Moreover, a hypothesis, which incorporates the wide variety of functions of the loose connective tissue, the circulatory system, and the nervous system into the meridian function, has been proposed and in the hypothesis the mast cell plays some key roles. In the present paper, considering also the latest knowledge on cell migration along with some existing experimental results, it is further pointed out that meridians ought to be lower-resistance passages for chemotactic migration of cells and mast cells can indeed migrate longitudinally along meridians. Finally, the present paper points out that if we add the last two points to the hypothesis and keep in mind that mast cells have been known very recently to be versatile regulators of inflammation, tissue remodeling, host defense, and homeostasis, the rich pathophysiological functions of the meridian pointed out by the traditional Chinese medicine can be understood quite naturally.
Collapse
|
13
|
Bond G, Nowocin A, Sacks SH, Wong W. Kinetics of mast cell migration during transplantation tolerance. Transpl Immunol 2014; 32:40-5. [PMID: 25460809 DOI: 10.1016/j.trim.2014.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND After inflammatory stimulus, mast cells (MC) migrate to secondary lymphoid organs contributing to adaptive immune response. There is growing evidence that MC also contribute to transplant tolerance, but little is known about MC kinetics in the setting of transplant tolerance and rejection. Likewise it has been demonstrated that complement split products, which are known to act as chemoattractants for MC, are necessary for transplant tolerance. METHODS Naive skin and lymph nodes, skin grafts and draining lymph nodes from wild type and complement deficient mice treated with a tolerogenic protocol were analyzed. RESULTS Early after tolerance induction MC leave the graft and migrate to the draining lymph nodes. After this initial efflux, MC reappear in tolerant skin grafts in numbers exceeding that of naive skin. MC density in draining lymph nodes obtained from tolerant mice also increased post transplant. There was no difference in MC density, migration and degranulation status between wild type and complement deficient mice implicating that chemotaxis is not disturbed in complement deficient mice. CONCLUSION This study gives detailed insight in kinetics of MC migration during transplant tolerance induction and rejection providing further evidence for a role of MC in transplant tolerance.
Collapse
Affiliation(s)
- Gregor Bond
- MRC Centre for Transplantation, King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, London, UK
| | - Anna Nowocin
- MRC Centre for Transplantation, King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, London, UK
| | - Steven H Sacks
- MRC Centre for Transplantation, King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, London, UK
| | - Wilson Wong
- MRC Centre for Transplantation, King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, London, UK.
| |
Collapse
|
14
|
Weiterer S, Schulte D, Müller S, Kohlen T, Uhle F, Weigand MA, Henrich M. Tumor necrosis factor alpha induces a serotonin dependent early increase in ciliary beat frequency and epithelial transport velocity in murine tracheae. PLoS One 2014; 9:e91705. [PMID: 24626175 PMCID: PMC3953516 DOI: 10.1371/journal.pone.0091705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 02/14/2014] [Indexed: 12/21/2022] Open
Abstract
The tracheal epithelium prevents via its highly effective clearance mechanism the contamination of the lower airways by pathogens. This mechanism is driven by ciliary bearing cells which are not only in contact with the gas phase; in addition they are also influenced by inflammatory mediators. These mediators can alter the protective function of the epithelium. Since the pro-inflammatoric cytokine tumor necrosis factor-α (TNF-α) plays a pivotal role within the inflammatory cascade, we investigated its effect onto the tracheal epithelium measured by its ciliary beat frequency and the particle transport velocity. In organ explant experiments the ciliary beat frequency and the particle transport velocity were measured under the application of TNF-α using tracheae from male C57BL6J mice. We observed a dose dependent TNF-α induced increase of both particle transport velocity and ciliary beat frequency. Knock out mice experiments made evident that the increase was depended on the expression of tumor necrosis factor receptor 1 (TNF-R1). The increases in ciliary beat frequency as well as the accelerated particle transport velocity were either inhibited by the unspecific serotonin antagonist methysergide or by cyproheptadine a specific 5-HT2 receptor antagonist. Thus, acetylcholine antagonists or nitric oxide synthase (NOS) inhibitors failed to inhibit the TNF-α induced activation. In conclusion, TNF-α may play a pivotal role in the protection of lower airways by inducing ciliary activity and increase in particle transport velocity via TNF-R1 and 5-HT2 receptor.
Collapse
Affiliation(s)
- Sebastian Weiterer
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dagmar Schulte
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabrina Müller
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Thomas Kohlen
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Florian Uhle
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Markus A. Weigand
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Michael Henrich
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
15
|
Słodka A, Wiktorska M, Brzezińska-Błaszczyk E. IgE by Itself Affects Mature Rat Mast Cell Preformed and De Novo-Synthesized Mediator Release and Amplifies Mast Cell Migratory Response. PLoS One 2013; 8:e79286. [PMID: 24205379 PMCID: PMC3813586 DOI: 10.1371/journal.pone.0079286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Background Immunoglobulin E (IgE) binds to high affinity receptor FcεRI numerously expressed on mast cells. Recent findings have revealed that IgE by itself may regulate various aspects of mast cell biology, however, detailed data is still limited. Methodology/Findings Here, we have examined the influence of IgE alone, used at different concentrations, on mast cell activity and releasability. For the study we have employed in vivo differentiated mature tissue mast cells isolated from rat peritoneal cavity. Mast cells were exposed to IgE alone and then the release of preformed and de novo-synthesized mediators, surface FcεRI expression and mast cell migratory response were assessed. IgE by itself was found to up-regulate FcεRI expression and activate mast cells to degranulation, as well as de novo synthesis and release of cysteinyl leukotrienes and TNF. We have provided evidence that IgE alone also amplified spontaneous and CCL5- or TNF-induced migration of mast cells. Importantly, IgE was effective only at concentrations ≥ 3 µg/mL. A molecular basis investigation using an array of specific inhibitors showed that Src kinases, PLC/PLA2, MAP kinases (ERK and p38) and PI3K were entirely or partially involved in IgE-induced mast cell response. Furthermore, IgE alone stimulated the phosphorylation of MAP kinases and PI3K in rat mast cells. Conclusion Our results clearly demonstrated that IgE by itself, at higher concentrations, influences mast cell activity and releasability. As there are different conditions when the IgE level is raised it might be supposed that in vivo IgE is one of the important factors modulating mast cell biology within tissues.
Collapse
Affiliation(s)
- Aleksandra Słodka
- Department of Experimental Immunology, Medical University of Łódź, Łódź, Poland
| | - Magdalena Wiktorska
- Department of Molecular and Medical Biophysics, Medical University of Łódź, Łódź, Poland
| | | |
Collapse
|
16
|
He SH, Zhang HY, Zeng XN, Chen D, Yang PC. Mast cells and basophils are essential for allergies: mechanisms of allergic inflammation and a proposed procedure for diagnosis. Acta Pharmacol Sin 2013; 34:1270-83. [PMID: 23974516 DOI: 10.1038/aps.2013.88] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023]
Abstract
The current definition of allergy is a group of IgE-mediated diseases. However, a large portion of patients with clinical manifestations of allergies do not exhibit elevated serum levels of IgE (sIgEs). In this article, three key factors, ie soluble allergens, sIgEs and mast cells or basophils, representing the causative factors, messengers and primary effector cells in allergic inflammation, respectively, were discussed. Based on current knowledge on allergic diseases, we propose that allergic diseases are a group of diseases mediated through activated mast cells and/or basophils in sensitive individuals, and allergic diseases include four subgroups: (1) IgE dependent; (2) other immunoglobulin dependent; (3) non-immunoglobulin mediated; (4) mixture of the first three subgroups. According to our proposed definition, pseudo-allergic-reactions, in which mast cell or basophil activation is not mediated via IgE, or to a lesser extent via IgG or IgM, should be non-IgE-mediated allergic diseases. Specific allergen challenge tests (SACTs) are gold standard tests for diagnosing allergies in vivo, but risky. The identification of surface membrane activation markers of mast cells and basophils (CD203c, CCR3, CD63, etc) has led to development of the basophil activation test (BAT), an in vitro specific allergen challenge test (SACT). Based on currently available laboratory allergy tests, we here propose a laboratory examination procedure for allergy.
Collapse
|
17
|
Kim EK, Kim YS, Milner JA, Wang TT. Indole-3-Carbinol and 3′,3′-Diindolylmethane Modulate Androgen's Effect on C-C Chemokine Ligand 2 and Monocyte Attraction to Prostate Cancer Cells. Cancer Prev Res (Phila) 2013; 6:519-29. [DOI: 10.1158/1940-6207.capr-12-0419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Raz Y, Erez N. An inflammatory vicious cycle: Fibroblasts and immune cell recruitment in cancer. Exp Cell Res 2013; 319:1596-603. [PMID: 23567181 DOI: 10.1016/j.yexcr.2013.03.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/12/2013] [Accepted: 03/16/2013] [Indexed: 01/07/2023]
Abstract
Cancer-associated fibroblasts (CAFs) have been established as a key component of the crosstalk between tumor cells and their microenvironment. The ability of CAFs to orchestrate tumor-promoting inflammation is central to their role in facilitating tumor growth, invasion, and metastasis. Here we review pathways by which CAFs and their soluble mediators provide multiple complex signals that modulate the recruitment, functional activation status, and retention of immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Yael Raz
- Lis Maternity Hospital, Tel Aviv Sorasky Medical Center, affiliated to Sackler School of Medicine, Tel Aviv, Israel; Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel.
| |
Collapse
|
19
|
Bąbolewska E, Witczak P, Pietrzak A, Brzezińska-Błaszczyk E. Different potency of bacterial antigens TLR2 and TLR4 ligands in stimulating mature mast cells to cysteinyl leukotriene synthesis. Microbiol Immunol 2012; 56:183-90. [PMID: 22233438 DOI: 10.1111/j.1348-0421.2012.00426.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of study was to compare the potency of different bacterial antigens to induce rat mature mast cell to cysteinyl leukotriene (cysLT) generation. We examined Toll-like receptor (TLR)2 agonists, i.e. lipoteichoic acid (LTA) Staphylococcus faecalis, Streptococcus pyogenes, Bacillus subtilis and Staphylococcus aureus, lipoarabinomannan (LAM) Mycobacterium smegmatis, peptydoglican (PGN) Staphylococcus aureus, as well as TLR4 agonists, i.e. lipopolysaccharide (LPS) Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enteritidis, Pophyromonas gingivalis and Escherichia coli. We also estimated the effect of tumor necrosis factor (TNF)-, interleukin (IL)-6-, CCL5-, and IL-10-priming on mast cell cysLT synthesis following bacterial antigen activation. We found that all bacterial antigens activated mast cells to cysLT generation; however, the extent of cysLT release in response to stimulation varied. Out of the examined antigens LPS P. gingivalis exhibited the highest potency, as it induced cysLT generation acting at a very low concentration (10(-4) ng/mL). Other LPSs affected mast cells at higher (up to 10(5) -fold) concentrations. LTAs were the most effective at concentrations of 5 × 10(2) ng/mL, while LAM and PGN stimulated mast cells to maximal cysLT generation at concentrations as high as 10(5) ng/mL. Anti-TLR2 and anti-TLR4 antibodies, as well as nuclear factor κB (NF-κB) inhibitor significantly diminished cysLT generation in response to bacterial antigen stimulation. Priming with TNF, IL-6 and CCL5 did not affect bacterial antigen-induced cysLT generation, while IL-10-pretreatment caused significant decrease in cysLT synthesis by mast cells. These observations might have a great pathophysiological importance; inasmuch cysLTs strongly influence the development and intensity of inflammation during bacterial infection.
Collapse
Affiliation(s)
- Edyta Bąbolewska
- Department of Experimental Immunology, Medical University of Łódź, Łódź, Poland
| | | | | | | |
Collapse
|
20
|
Halova I, Draberova L, Draber P. Mast cell chemotaxis - chemoattractants and signaling pathways. Front Immunol 2012; 3:119. [PMID: 22654878 PMCID: PMC3360162 DOI: 10.3389/fimmu.2012.00119] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/24/2012] [Indexed: 01/09/2023] Open
Abstract
Migration of mast cells is essential for their recruitment within target tissues where they play an important role in innate and adaptive immune responses. These processes rely on the ability of mast cells to recognize appropriate chemotactic stimuli and react to them by a chemotactic response. Another level of intercellular communication is attained by production of chemoattractants by activated mast cells, which results in accumulation of mast cells and other hematopoietic cells at the sites of inflammation. Mast cells express numerous surface receptors for various ligands with properties of potent chemoattractants. They include the stem cell factor (SCF) recognized by c-Kit, antigen, which binds to immunoglobulin E (IgE) anchored to the high affinity IgE receptor (FcεRI), highly cytokinergic (HC) IgE recognized by FcεRI, lipid mediator sphingosine-1-phosphate (S1P), which binds to G protein-coupled receptors (GPCRs). Other large groups of chemoattractants are eicosanoids [prostaglandin E2 and D2, leukotriene (LT) B4, LTD4, and LTC4, and others] and chemokines (CC, CXC, C, and CX3C), which also bind to various GPCRs. Further noteworthy chemoattractants are isoforms of transforming growth factor (TGF) β1–3, which are sensitively recognized by TGF-β serine/threonine type I and II β receptors, adenosine, C1q, C3a, and C5a components of the complement, 5-hydroxytryptamine, neuroendocrine peptide catestatin, tumor necrosis factor-α, and others. Here we discuss the major types of chemoattractants recognized by mast cells, their target receptors, as well as signaling pathways they utilize. We also briefly deal with methods used for studies of mast cell chemotaxis and with ways of how these studies profited from the results obtained in other cellular systems.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | | | | |
Collapse
|
21
|
In vivo hydroquinone exposure causes tracheal hyperresponsiveness due to TNF secretion by epithelial cells. Toxicol Lett 2012; 211:10-7. [DOI: 10.1016/j.toxlet.2012.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 12/21/2022]
|
22
|
Nautiyal KM, Liu C, Dong X, Silver R. Blood-borne donor mast cell precursors migrate to mast cell-rich brain regions in the adult mouse. J Neuroimmunol 2011; 240-241:142-6. [PMID: 22018703 DOI: 10.1016/j.jneuroim.2011.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 01/04/2023]
Abstract
Mast cells are hematopoietic immune cells located throughout the body, including within the brain. Reconstitution of mast cell deficient Kit(W-sh/W-sh) mice has proven valuable in determining peripheral mast cell function. Here we study the brain mast cell population using a novel method of blood transfusion for reconstitution. We show that blood transfusion results in mast cells of donor origin in the WT mouse, including in the brain where they are restricted to regions bearing host mast cells. In contrast, in Kit(W-sh/W-sh) mice, transfusion results in mast cells in the pinna of the ear, but not the brain.
Collapse
Affiliation(s)
- Katherine M Nautiyal
- Department of Psychology, Columbia University, New York, NY 10027, United States
| | | | | | | |
Collapse
|
23
|
Zhang X, Zheng H, Ma W, Wang F, Zeng X, Liu C, He S. Tryptase Enzyme Activity Is Correlated with Severity of Chronic Obstructive Pulmonary Disease. TOHOKU J EXP MED 2011; 224:179-87. [DOI: 10.1620/tjem.224.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xiaojun Zhang
- Clinical Experiment Centre, the First Affiliated Hospital of Nanjing Medical University
- The General Hospital of PLA
| | - Honggao Zheng
- Allergy and Inflammation Research Institute, the Key Immunopharmacology Laboratory of Guangdong Province
| | - Wenjing Ma
- Clinical Experiment Centre, the First Affiliated Hospital of Nanjing Medical University
| | - Fang Wang
- Clinical Experiment Centre, the First Affiliated Hospital of Nanjing Medical University
| | - Xiaoning Zeng
- Clinical Experiment Centre, the First Affiliated Hospital of Nanjing Medical University
| | | | - Shaoheng He
- Clinical Experiment Centre, the First Affiliated Hospital of Nanjing Medical University
- Allergy and Inflammation Research Institute, the Key Immunopharmacology Laboratory of Guangdong Province
| |
Collapse
|
24
|
Li WW, Guo TZ, Li XQ, Kingery WS, Clark JD. Fracture induces keratinocyte activation, proliferation, and expression of pro-nociceptive inflammatory mediators. Pain 2010; 151:843-852. [PMID: 20934254 PMCID: PMC2972360 DOI: 10.1016/j.pain.2010.09.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/17/2022]
Abstract
Tibia fracture in rats results in chronic vascular and nociceptive changes in the injured limb resembling complex regional pain syndrome (CRPS) and up-regulates expression of interleukin 1β (IL-1β), interleukin IL-6 (IL-6), tumor necrosis factor-α (TNF-α), and nerve growth factor-β (NGF-β) in the hindpaw skin. When fractured rats are treated with cytokine or NGF inhibitors nociceptive sensitization is blocked. Because there is no leukocyte infiltration in the hindpaw skin we postulated that resident skin cells produce the inflammatory mediators causing nociceptive sensitization after fracture. To test this hypothesis rats underwent distal tibia fracture and hindlimb casting for 4 weeks, then the hindpaw skin was harvested and immunostained for keratin, cytokines and NGF. BrdU staining was used to evaluate cell proliferation. Hindpaw nociceptive thresholds, edema, and temperature were tested before and up to 96h after intraplantar injections of IL-6 and TNF-α. Tibia fracture caused keratinocyte activation, proliferation, and up-regulated IL-1β, IL-6, TNF-α and NGF-β protein expression in the hindpaw keratinocytes. Local injections of IL-6 and TNF-α induced hindpaw mechanical allodynia lasting for several days and modest increases in temperature and edema. These data indicate that activated keratinocytes proliferate and express IL-1β, IL-6, TNF-α, and NGF-β after fracture and that excess amounts of inflammatory mediators in the skin cause sustained nociceptive sensitization. This is the first study demonstrating in vivo keratinocyte expression of IL-6, TNF-α and NGF-β in a CRPS model and we postulate that the keratinocyte is the primary cellular source for the inflammatory signals mediating cutaneous nociceptive sensitization in early CRPS.
Collapse
Affiliation(s)
- Wen-Wu Li
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA
| | - Tian-Zhi Guo
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Xiang-qi Li
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA
| | - Wade S. Kingery
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA
| | - J. David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, and Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
25
|
Johansson A, Rudolfsson S, Hammarsten P, Halin S, Pietras K, Jones J, Stattin P, Egevad L, Granfors T, Wikström P, Bergh A. Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1031-41. [PMID: 20616342 DOI: 10.2353/ajpath.2010.100070] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mast cells affect growth in various human tumors, but their role in prostate cancer (PC) is unclear. Here, we identify mast cells as independent prognostic markers in PC using a large cohort of untreated PC patients with a long follow-up. By analyzing mast cells in different tissue compartments, our data indicate that intratumoral and peritumoral mast cells have anti- opposed to protumor properties. Intratumoral mast cells negatively regulate angiogenesis and tumor growth, whereas peritumoral mast cells stimulate the expansion of human prostate tumors. We also observed mast cell recruitment particularly to the peritumoral compartment in men during the formation of castrate-resistant prostate tumors. In our ortothopic rat model, mast cells accumulated in the peritumoral tissue where they enhanced angiogenesis and tumor growth. In line with this, prostate mast cells expressed high levels of the angiogenic factor FGF-2. Similar to the situation in men, mast cells infiltrated rat prostate tumors that relapsed after initially effective castration treatment, concurrent with a second wave of angiogenesis and an up-regulation of FGF-2. We conclude that mast cells are novel independent prognostic markers in PC and affect tumor progression in animals and patients. In addition, peritumoral mast cells provide FGF-2 to the tumor micro environment, which may contribute to their stimulating effect on angiogenesis.
Collapse
Affiliation(s)
- Anna Johansson
- Department of Medical Biosciences, Umeå University, Umeå, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wierzbicki M, Brzezińska-Błaszczyk E. Diverse effects of bacterial cell wall components on mast cell degranulation, cysteinyl leukotriene generation and migration. Microbiol Immunol 2010; 53:694-703. [PMID: 19954457 DOI: 10.1111/j.1348-0421.2009.00174.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nowadays there is more and more evidence that mast cells take part in antibacterial defence. Mast cells have the ability to kill bacteria via phagocytose-dependent or phagocytose-independent ways and express antimicrobial peptides that can directly kill pathogens at their site of entry. What is more, mast cells are capable of processing bacterial antigens for presentation through class I and II MHC molecules. Some data indicate that these cells can release various proinflammatory mediators in response to activation with bacteria and/or their products, however this information is still far from complete. Therefore, in this study we examined the ability of PGN from Staphylococcus aureus, LPS from Eschericha coli and LAM from Mycobacterium smegmatis to stimulate mature rat mast cell degranulation as well as cysteinyl LT generation. We also studied the influence of these bacterial components on mast cell migration. We found that PGN, LPS and LAM all failed to induce mast cell degranulation and histamine release. At the same time, activation of mast cells with these bacterial antigens resulted in generation and release of significant amounts of LT. Moreover, we documented that, even in the presence of laminin, none of the bacterial antigens used stimulated mast cell migration. However, PGN did induce migration of RANTES-primed mast cells, and LPS did stimulate mast cell migratory response after priming with IL-6. Our results show that PGN, LPS and LAM might be among the important bacterial antigens involved in mast cell activation during bacterial infection.
Collapse
Affiliation(s)
- Maciej Wierzbicki
- Department of Experimental Immunology, Medical University of Łódź, Łódź, Poland
| | | |
Collapse
|
27
|
Chen Y, Pat B, Zheng J, Cain L, Powell P, Shi K, Sabri A, Husain A, Dell'italia LJ. Tumor necrosis factor-alpha produced in cardiomyocytes mediates a predominant myocardial inflammatory response to stretch in early volume overload. J Mol Cell Cardiol 2010; 49:70-8. [PMID: 20045005 DOI: 10.1016/j.yjmcc.2009.12.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/03/2009] [Accepted: 12/16/2009] [Indexed: 11/26/2022]
Abstract
Acute stretch caused by volume overload (VO) of aorto-caval fistula (ACF) induces a variety of myocardial responses including mast cell accumulation, matrix metalloproteinase (MMP) activation, and collagen degradation, all of which are critical in dictating long-term left ventricle (LV) outcome to VO. Meanwhile, these responses can be part of myocardial inflammation dictated by tumor necrosis factor-alpha (TNF-alpha), which is elevated after acute ACF. However, it is unknown whether TNF-alpha mediates a major myocardial inflammatory response to stretch in early VO. In 24-h ACF and sham rats, microarray gene expression profiling and subsequent Ingenuity Pathway Analysis identified a predominant inflammatory response and a gene network of biologically interactive genes strongly linked to TNF-alpha. Western blot demonstrated increased local production of TNF-alpha in the LV (1.71- and 1.66-fold in pro- and active-TNF-alpha over control, respectively, P<0.05) and cardiomyocytes (2- and 4-fold in pro- and active-TNF-alpha over control, respectively, P<0.05). TNF-alpha neutralization with infliximab (5.5 mg/kg) attenuated the myocardial inflammatory response to acute VO, as indicated by inhibition of inflammatory gene upregulation, myocardial infiltration (total CD45+ cells, mast cells, and neutrophils), MMP-2 activation, collagen degradation, and cardiac cell apoptosis, without improving LV remodeling and function. These results indicate that TNF-alpha produced by cardiomyocytes mediates a predominant inflammatory response to stretch in the early VO in the ACF rat, suggesting an important role of TNF-alpha in initiating pathophysiological response of myocardium to VO.
Collapse
Affiliation(s)
- Yuanwen Chen
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Misiak-Tłoczek A, Brzezińska-Błaszczyk E. IL-6, but not IL-4, stimulates chemokinesis and TNF stimulates chemotaxis of tissue mast cells: involvement of both mitogen-activated protein kinases and phosphatidylinositol 3-kinase signalling pathways. APMIS 2009; 117:558-67. [PMID: 19664126 DOI: 10.1111/j.1600-0463.2009.02518.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An increase in the number of mast cells within tissues is observed in many pathophysiological conditions. Current data indicate that migration of mature mast cells might be one of the key mechanisms responsible for rapid local accumulation of these cells. Considering that interleukin (IL)-6 and IL-4, as well as tumour necrosis factor (TNF), influence mast cell activity in various ways, the purpose of the current study was to examine whether these cytokines function as rat peritoneal mast cell chemoattractants. We showed that IL-4, in the concentration range from 10(-6) to 10(-3) ng/ml, did not induce a mast cell migratory response, even in the presence of laminin and fibronectin. Under the same experimental conditions, mast cells were shown to migrate in response to IL-6 stimulation in the presence of laminin. The optimal concentration of IL-6 for maximal migration of mast cells was 10(-4) ng/ml (i.e. approximately 5 nM). In comparison, the optimal concentration of TNF for maximal migration of mast cells was 5 x 10(-5) ng/ml (i.e. approximately 3 fM). IL-6-stimulated mast cell migration was the result of chemokinesis, whereas TNF-induced migration was the result of chemotaxis. Mast cell migratory responses to IL-6 and TNF were entirely blocked by specific anti-IL-6R and anti-TNFR1 antibodies. We also documented that the migration response of mast cells to stimulation with IL-6 and TNF was mediated through signal transduction pathways involving mitogen-activated protein kinases and phosphatidylinositol 3-kinase. Taken together, our results indicate that IL-6, as well as TNF, induces tissue mast cell migration. Thus, these proinflammatory cytokines can be responsible for mast cell accumulation at the site of diverse conditions accompanied by inflammation.
Collapse
Affiliation(s)
- Anna Misiak-Tłoczek
- Department of Experimental Immunology, Medical University of Łódź, Łódź, Poland
| | | |
Collapse
|
29
|
Liu C, Liu Z, Li Z, Wu Y. Molecular regulation of mast cell development and maturation. Mol Biol Rep 2009; 37:1993-2001. [PMID: 19644767 DOI: 10.1007/s11033-009-9650-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
Mast cells play a crucial role in the pathogenesis of allergic diseases. In recent years, tremendous progresses have been made in studies of mast cell origination, migration, proliferation, maturation and survival, and the cytokines regulating these activities. These advances have significantly improved our understandings to mast cell biology and to the molecular mechanisms of mast cells in the pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Chenxiong Liu
- Allergy and Immunology Institute, School of Medicine, Shenzhen University, Shenzhen, China
| | | | | | | |
Collapse
|
30
|
Pietrzak A, Misiak-Tłoczek A, Brzezińska-Błaszczyk E. Interleukin (IL)-10 inhibits RANTES-, tumour necrosis factor (TNF)- and nerve growth factor (NGF)-induced mast cell migratory response but is not a mast cell chemoattractant. Immunol Lett 2009; 123:46-51. [PMID: 19428551 DOI: 10.1016/j.imlet.2009.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 01/19/2009] [Accepted: 02/05/2009] [Indexed: 01/14/2023]
Abstract
Interleukin (IL)-10 is an important immunoregulatory cytokine with multiple biologic effects on different cell types. This cytokine also affects mast cell development, survival and activity. Mast cells are well known for their role in diverse pathophysiological processes including inflammatory events. Mast cell number in tissues is high and relatively constant. However, it is well established that these cells accumulate at the sites of inflammation in response to chemoattractants, e.g. RANTES, tumour necrosis factor (TNF) and nerve growth factor (NGF). In the present study, we examined whether IL-10 influenced RANTES-, TNF- and NGF-induced rat peritoneal mast cell migration. We also studied whether IL-10 could act as mast cell chemoattractant. We provided evidence, for the first time ever, that IL-10 influenced mature mast cell migration, i.e. it strongly decreased RANTES-induced mast cell migration and completely inhibited mast cell migratory response to TNF and NGF. The effective concentration of IL-10 that inhibited RANTES-, TNF- and NGF-induced mast cell migratory response was in the nanomolar range. The inhibitory effect of IL-10 on cytokine-stimulated mast cell migration was specific, as it was completely blocked by anti-IL-10R antibodies, and STAT3-dependent. In addition, our results have shown that IL-10 was not a mast cell chemoattractant. Thus, our findings clearly demonstrated that IL-10 may affect mast cell number within tissue by inhibiting local mast cell accumulation stimulated by chemotactic factors.
Collapse
Affiliation(s)
- Anna Pietrzak
- Department of Experimental Immunology, Medical University of Łódź, Pomorska 251, 92-215 Łódź, Poland
| | | | | |
Collapse
|