1
|
Jha D, Prajapati SK, Deb PK, Jaiswal M, Mazumder PM. Madhuca longifolia-hydro-ethanolic-fraction reverses mitochondrial dysfunction and modulates selective GLUT expression in diabetic mice fed with high fat diet. Mol Biol Rep 2024; 51:209. [PMID: 38270737 DOI: 10.1007/s11033-023-08962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Metabolic disorder is characterized as chronic low-grade inflammation which elevates the systemic inflammatory markers. The proposed hypothesis behind this includes occurrence of hypoxia due to intake of high fat diet leading to oxidative stress and mitochondrial dysfunction. AIM In the present work our aim was to elucidate the possible mechanism of action of hydroethanolic fraction of M. longifolia leaves against the metabolic disorder. METHOD AND RESULTS In the present investigation, effect of Madhuca longifolia hydroethanolic fraction (MLHEF) on HFD induced obesity and diabetes through mitochondrial action and selective GLUT expression has been studied. In present work, it was observed that HFD (50% of diet) on chronic administration aggravates the metabolic problems by causing reduced imbalanced oxidative stress, ATP production, and altered selective GLUT protein expression. Long term HFD administration reduced (p < 0.001) the SOD, CAT level significantly along with elevated liver function marker AST and ALT. MLHEF administration diminishes this oxidative stress. HFD administration also causes decreased ATP/ADP ratio owing to suppressed mitochondrial function and elevating LDH level. This oxidative imbalance further leads to dysregulated GLUT expression in hepatocytes, skeletal muscles and white adipose tissue. HFD leads to significant (p < 0.001) upregulation in GLUT 1 and 3 expression while significant (p < 0.001) downregulation in GLUT 2 and 4 expressions in WAT, liver and skeletal muscles. Administration of MLHEF significantly (p < 0.001) reduced the LDH level and also reduces the mitochondrial dysfunction. CONCLUSION Imbalances in GLUT levels were significantly reversed in order to maintain GLUT expression in tissues on the administration of MLHEF.
Collapse
Affiliation(s)
- Dhruv Jha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| | - Santosh Kumar Prajapati
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, 33613, USA
| | - Prashanta Kumar Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Mohit Jaiswal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| |
Collapse
|
2
|
Wagner W, Sobierajska K, Pułaski Ł, Stasiak A, Ciszewski WM. Whole grain metabolite 3,5-dihydroxybenzoic acid is a beneficial nutritional molecule with the feature of a double-edged sword in human health: a critical review and dietary considerations. Crit Rev Food Sci Nutr 2023; 64:8786-8804. [PMID: 37096487 DOI: 10.1080/10408398.2023.2203762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Nonprocessed foodstuffs of plant origin, especially whole-grain cereals, are considered to be health-promoting components of the human diet. While most of their well-studied effects derive from their high fiber content and low glycemic index, the presence of underrated phenolic phytonutrients has recently been brought to the attention of nutritionists. In this review, we report and discuss findings on the sources and bioactivities of 3,5-dihydroxybenzoic acid (3,5-DHBA), which is both a direct dietary component (found, e.g., in apples) and, more importantly, a crucial metabolite of whole-grain cereal-derived alkylresorcinols (ARs). 3,5-DHBA is a recently described exogenous agonist of the HCAR1/GPR81 receptor. We concentrate on the HCAR1-mediated effects of 3,5-DHBA in the nervous system, on the maintenance of cell stemness, regulation of carcinogenesis, and response to anticancer therapy. Unexpectedly, malignant tumors take advantage of HCAR1 expression to sense 3,5-DHBA to support their growth. Thus, there is an urgent need to fully identify the role of whole-grain-derived 3,5-DHBA during anticancer therapy and its contribution in the regulation of vital organs of the body via its specific HCAR1 receptor. We discuss here in detail the possible consequences of the modulatory capabilities of 3,5-DHBA in physiological and pathological conditions in humans.
Collapse
Affiliation(s)
- Waldemar Wagner
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Wojciech M Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Dora D, Bokhari SMZ, Aloss K, Takacs P, Desnoix JZ, Szklenárik G, Hurley PD, Lohinai Z. Implication of the Gut Microbiome and Microbial-Derived Metabolites in Immune-Related Adverse Events: Emergence of Novel Biomarkers for Cancer Immunotherapy. Int J Mol Sci 2023; 24:ijms24032769. [PMID: 36769093 PMCID: PMC9916922 DOI: 10.3390/ijms24032769] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed how we think about tumor management. Combinations of anti-programmed death ligand-1 (PD-L1) immunotherapy have become the standard of care in many advanced-stage cancers, including as a first-line therapy. Aside from improved anti-tumor immunity, the mechanism of action of immune checkpoint inhibitors (ICIs) exposes a new toxicity profile known as immune-related adverse effects (irAEs). This novel toxicity can damage any organ, but the skin, digestive and endocrine systems are the most frequently afflicted. Most ICI-attributed toxicity symptoms are mild, but some are severe and necessitate multidisciplinary side effect management. Obtaining knowledge on the various forms of immune-related toxicities and swiftly changing treatment techniques to lower the probability of experiencing severe irAEs has become a priority in oncological care. In recent years, there has been a growing understanding of an intriguing link between the gut microbiome and ICI outcomes. Multiple studies have demonstrated a connection between microbial metagenomic and metatranscriptomic patterns and ICI efficacy in malignant melanoma, lung and colorectal cancer. The immunomodulatory effect of the gut microbiome can have a real effect on the biological background of irAEs as well. Furthermore, specific microbial signatures and metabolites might be associated with the onset and severity of toxicity symptoms. By identifying these biological factors, novel biomarkers can be used in clinical practice to predict and manage potential irAEs. This comprehensive review aims to summarize the clinical aspects and biological background of ICI-related irAEs and their potential association with the gut microbiome and metabolome. We aim to explore the current state of knowledge on the most important and reliable irAE-related biomarkers of microbial origin and discuss the intriguing connection between ICI efficacy and toxicity.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.)
| | | | - Kenan Aloss
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | - Peter Takacs
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
| | - Juliane Zsuzsanna Desnoix
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
| | - György Szklenárik
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | | | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
- National Korányi Institute of Pulmonology, Pihenő út 1-3, 1121 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.)
| |
Collapse
|
4
|
Ciszewski WM, Sobierajska K, Stasiak A, Wagner W. Lactate drives cellular DNA repair capacity: Role of lactate and related short-chain fatty acids in cervical cancer chemoresistance and viral infection. Front Cell Dev Biol 2022; 10:1012254. [PMID: 36340042 PMCID: PMC9627168 DOI: 10.3389/fcell.2022.1012254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2023] Open
Abstract
The characteristic feature of a cancer microenvironment is the presence of a highly elevated concentration of L-lactate in the tumor niche. The lactate-rich environment is also maintained by commensal mucosal microbiota, which has immense potential for affecting cancer cells through its receptoric and epigenetic modes of action. Some of these lactate activities might be associated with the failure of anticancer therapy as a consequence of the drug resistance acquired by cancer cells. Upregulation of cellular DNA repair capacity and enhanced drug efflux are the most important cellular mechanisms that account for ineffective radiotherapy and drug-based therapies. Here, we present the recent scientific knowledge on the role of the HCA1 receptor for lactate and lactate intrinsic activity as an HDAC inhibitor in the development of an anticancer therapy-resistant tumor phenotype, with special focus on cervical cancer cells. In addition, a recent study highlighted the viable role of interactions between mammalian cells and microorganisms in the female reproductive tract and demonstrated an interesting mechanism regulating the efficacy of retroviral transduction through lactate-driven modulation of DNA-PKcs cellular localization. To date, very few studies have focused on the mechanisms of lactate-driven enhancement of DNA repair and upregulation of particular multidrug-resistance proteins in cancer cells with respect to their intracellular regulatory mechanisms triggered by lactate. This review presents the main achievements in the field of lactate impact on cell biology that may promote undesirable alterations in cancer physiology and mitigate retroviral infections.
Collapse
Affiliation(s)
| | | | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Waldemar Wagner
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
5
|
Lactic Acid Regulation: A Potential Therapeutic Option in Rheumatoid Arthritis. J Immunol Res 2022; 2022:2280973. [PMID: 36061305 PMCID: PMC9433259 DOI: 10.1155/2022/2280973] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, persistent autoimmune disease that causes severe joint tissue damage and irreversible disability. Cumulative evidence suggests that patients suffering from RA for long durations are at risk of functional damage to cardiovascular, kidney, lung, and other tissues. This seriously affects the quality of work and life of patients. To date, no clear etiology of RA has been found. Recent studies have revealed that the massive proliferation of synoviocytes and immune cells requires a large amount of energy supply. Rapid energy supply depends on the anaerobic glucose metabolic pathway in both RA animal models and clinical patients. Anaerobic glycolysis can increase intracellular lactic acid (LA) content. LA induces the overexpression of monocarboxylate transporters (MCTs) in cell membranes. MCTs rapidly transport LA from the intracellular to the intercellular or articular cavity. Hence, a relatively high accumulation of LA could be formed in the intercellular and articular cavities of inflammatory joints. Moreover, LA contributes to the migration and activation of immune cells. Immune cells proliferate and secrete interleukins (IL) including IL-1, IL-2, IL-13, IL-17, and other inflammatory factors. These inflammatory factors enhance the immune inflammatory response of the body and aggravate the condition of RA patients. In this paper, the effects of LA on RA pathogenesis will be summarized from the perspective of the production, transport, and metabolism of synoviocytes and immune cells. Additionally, the drugs involved in the production, transport, and metabolism of LA are highlighted.
Collapse
|
6
|
Gredic M, Wu CY, Hadzic S, Pak O, Savai R, Kojonazarov B, Doswada S, Weiss A, Weigert A, Guenther A, Brandes RP, Schermuly RT, Grimminger F, Seeger W, Sommer N, Kraut S, Weissmann N. Myeloid-cell-specific deletion of inducible nitric oxide synthase protects against smoke-induced pulmonary hypertension in mice. Eur Respir J 2022; 59:2101153. [PMID: 34475225 PMCID: PMC8989054 DOI: 10.1183/13993003.01153-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a common complication of COPD, associated with increased mortality and morbidity. Intriguingly, pulmonary vascular alterations have been suggested to drive emphysema development. Previously, we identified inducible nitric oxide synthase (iNOS) as an essential enzyme for development and reversal of smoke-induced PH and emphysema, and showed that iNOS expression in bone-marrow-derived cells drives pulmonary vascular remodelling, but not parenchymal destruction. In this study, we aimed to identify the iNOS-expressing cell type driving smoke-induced PH and to decipher pro-proliferative pathways involved. METHODS To address this question we used 1) myeloid-cell-specific iNOS knockout mice in chronic smoke exposure and 2) co-cultures of macrophages and pulmonary artery smooth muscle cells (PASMCs) to decipher underlying signalling pathways. RESULTS Myeloid-cell-specific iNOS knockout prevented smoke-induced PH but not emphysema in mice. Moreover, iNOS deletion in myeloid cells ameliorated the increase in expression of CD206, a marker of M2 polarisation, on interstitial macrophages. Importantly, the observed effects on lung macrophages were hypoxia-independent, as these mice developed hypoxia-induced PH. In vitro, smoke-induced PASMC proliferation in co-cultures with M2-polarised macrophages could be abolished by iNOS deletion in phagocytic cells, as well as by extracellular signal-regulated kinase inhibition in PASMCs. Crucially, CD206-positive and iNOS-positive macrophages accumulated in proximity of remodelled vessels in the lungs of COPD patients, as shown by immunohistochemistry. CONCLUSION In summary, our results demonstrate that iNOS deletion in myeloid cells confers protection against PH in smoke-exposed mice and provide evidence for an iNOS-dependent communication between M2-like macrophages and PASMCs in underlying pulmonary vascular remodelling.
Collapse
Affiliation(s)
- Marija Gredic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Cheng-Yu Wu
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Stefan Hadzic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Oleg Pak
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Rajkumar Savai
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Baktybek Kojonazarov
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig-University, Giessen, Germany
| | - Siddartha Doswada
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Astrid Weiss
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas Guenther
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- European IPF Registry & Biobank (eurIPFreg), Giessen, Germany
- Agaplesion Evangelisches Krankenhaus Mittelhessen, Giessen, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
- DZHK - German Center for Cardiovascular Research, Partner site Rhine-Main, Germany
| | - Ralph T Schermuly
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Friedrich Grimminger
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Werner Seeger
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Natascha Sommer
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Simone Kraut
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
7
|
Wagner W, Sobierajska K, Kania KD, Paradowska E, Ciszewski WM. Lactate Suppresses Retroviral Transduction in Cervical Epithelial Cells through DNA-PKcs Modulation. Int J Mol Sci 2021; 22:ijms222413194. [PMID: 34947988 PMCID: PMC8708659 DOI: 10.3390/ijms222413194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 01/02/2023] Open
Abstract
Recently, we have shown the molecular basis for lactate sensing by cervical epithelial cells resulting in enhanced DNA repair processes through DNA-PKcs regulation. Interestingly, DNA-PKcs is indispensable for proper retroviral DNA integration in the cell host genome. According to recent findings, the mucosal epithelium can be efficiently transduced by retroviruses and play a pivotal role in regulating viral release by cervical epithelial cells. This study examined the effects of lactate on lentiviral transduction in cervical cancer cells (HeLa, CaSki, and C33A) and model glioma cell lines (DNA-PKcs proficient and deficient). Our study showed that L- and D-lactate enhanced DNA-PKcs presence in nuclear compartments by between 38 and 63%, which corresponded with decreased lentiviral transduction rates by between 15 and 36%. Changes in DNA-PKcs expression or its inhibition with NU7441 also greatly affected lentiviral transduction efficacy. The stimulation of cells with either HCA1 agonist 3,5-DHBA or HDAC inhibitor sodium butyrate mimicked, in part, the effects of L-lactate. The inhibition of lactate flux by BAY-8002 enhanced DNA-PKcs nuclear localization which translated into diminished lentiviral transduction efficacy. Our study suggests that L- and D-lactate present in the uterine cervix may play a role in the mitigation of viral integration in cervical epithelium and, thus, restrict the viral oncogenic and/or cytopathic potential.
Collapse
Affiliation(s)
- Waldemar Wagner
- Laboratory of Cellular Immunology, Institute of Medical Biology PAS, 106 Lodowa Street, 93-232 Lodz, Poland
- Correspondence: ; Tel.: +48-42-27-23-633
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Lodz, Poland; (K.S.); (W.M.C.)
| | - Katarzyna Dominika Kania
- Laboratory of Virology, Institute of Medical Biology PAS, 106 Lodowa Street, 93-232 Lodz, Poland; (K.D.K.); (E.P.)
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology PAS, 106 Lodowa Street, 93-232 Lodz, Poland; (K.D.K.); (E.P.)
| | - Wojciech Michał Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Lodz, Poland; (K.S.); (W.M.C.)
| |
Collapse
|
8
|
Luo Y, Li L, Chen X, Gou H, Yan K, Xu Y. Effects of lactate in immunosuppression and inflammation: Progress and prospects. Int Rev Immunol 2021; 41:19-29. [PMID: 34486916 DOI: 10.1080/08830185.2021.1974856] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lactate used to be considered as a waste product of glucose metabolism. However, accumulating evidence has revealed its crucial role in regulating various biological and pathological processes. Hypoxia, inflammation, viral infection, and tumor promote the production of lactate. Then lactate activates G protein-coupled receptor 81 (GPR81) or shuttles across membranes by monocarboxylate-transporters (MCTs) to execute its intricate effects. Many studies highlighted the function of lactate in regulating dendritic cells, monocytes, natural killer cells, mast cells, T cells, tumor cells, fibroblasts, macrophages polarization, and the differentiation of Th1, Th17, MDSCs, Tregs; all of which play a role in maintaining the immune homeostasis of the host when challenged with the noxious stimuli. In this review, we summarized the influence of lactate in diverse tissue-specific cells, and discuss their effects on viral infection, acute inflammation, chronic inflammation, sepsis, and tumor immunosuppression. The goal of this review is to expose that lactate has a double-edged effect on host immunity and accompanying inflammatory reactions, which could be a potentially effective target for treating the tumor and multiple infectious diseases.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xu Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Huiqing Gou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Ke Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Ma LN, Huang XB, Muyayalo KP, Mor G, Liao AH. Lactic Acid: A Novel Signaling Molecule in Early Pregnancy? Front Immunol 2020; 11:279. [PMID: 32180770 PMCID: PMC7057764 DOI: 10.3389/fimmu.2020.00279] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Aerobic glycolysis is a recognized feature shared by tumors, leading to the accumulation of lactic acid in their local microenvironments. Like the tumors, the blastocysts, placenta, trophoblasts and decidual immune cells can also produce a large amount of lactic acid through aerobic glycolysis during the early pregnancy. Moreover, the placenta expresses the transporters of the lactic acid. While several studies have described the role of lactic acid in the tumor microenvironment, especially lactic acid's modulation of immune cells, the role of lactic acid produced during pregnancy is still unclear. In this paper, we reviewed the scientific evidence detailing the effects of lactic acid in the tumor microenvironment. Based on the influence of the lactic acid on immune cells and tumors, we proposed that lactic acid released in the unique uterine environment could have similar effects on the trophoblast cells and immune cells during the early pregnancy.
Collapse
Affiliation(s)
- Li-Na Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Bo Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ai-Hua Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Mendes V, Galvão I, Vieira AT. Mechanisms by Which the Gut Microbiota Influences Cytokine Production and Modulates Host Inflammatory Responses. J Interferon Cytokine Res 2019; 39:393-409. [PMID: 31013453 DOI: 10.1089/jir.2019.0011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract encounters a wide variety of microorganisms, including beneficial symbionts, pathobionts, and pathogens. Recent evidence has shown that the gut microbiota, directly or indirectly through its components, such as metabolites, actively participates in the host inflammatory response by cytokine-microbiota or microbiota-cytokine modulation interactions, both in the gut and systemically. Therefore, further elucidation of host cytokine molecular pathways and microbiota components will provide a novel and promising therapeutic approach to control or prevent inflammatory disease and to maintain host homeostasis. The purpose of this review is to summarize well-established scientific findings and provide an updated overview regarding the direct and indirect mechanisms by which the gut microbiota can influence the inflammatory response by modulating the host's cytokine pathways that are mostly involved, but not exclusively so, with gut homeostasis. In addition, we will highlight recent results from our group, which suggest that the microbiota promotes cytokine release from inflammatory cells though activation of microbial metabolite sensor receptors that are more highly expressed on inflammatory and intestinal epithelial cells.
Collapse
Affiliation(s)
- Viviani Mendes
- 1 Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,2 Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Izabela Galvão
- 3 Department of Cellular Biology ICB, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Angelica Thomaz Vieira
- 1 Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,2 Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Jha D, Mitra Mazumder P. High fat diet administration leads to the mitochondrial dysfunction and selectively alters the expression of class 1 GLUT protein in mice. Mol Biol Rep 2019; 46:1727-1736. [PMID: 30725350 DOI: 10.1007/s11033-019-04623-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/18/2019] [Indexed: 01/07/2023]
Abstract
Metabolic syndrome is an agglomeration of disorders including obesity, diabetes and cardiovascular diseases and characterized as chronic mild inflammation which elevates the circulatory inflammatory markers. This could be due to mitochondrial dysfunction, oxidative stress and hypoxia as a consequence of high fat diet (HFD) intake. The present study focuses on the effects of HFD on lactate and mitochondrial metabolism as well as tissue dependent changes in glucose transporter (GLUT) expression in liver, skeletal muscles and adipose tissue of mouse. Lactate dehydrogenase (LDH) and mitochondrial dysfunction established the link between the occurrences of metabolic stress due to HFD. In this work, it was observed that chronic HFD administration aggravated the metabolic alterations by causing reduced ATP production, imbalanced oxidative stress and altered class 1 GLUTs expression. Chronic HFD significantly reduced (p < 0.001) the superoxide dismutase (SOD), catalase (CAT) activities alongside elevated liver injury markers AST and ALT. This in turn causes decreased ATP/ADP ratio, mitochondrial dysfunction and exacerbated LDH levels. This imbalance further led to altered GLUT expression in hepatic cells, adipose tissue and skeletal muscles. HFD significantly (p < 0.001) upregulated the GLUT 1 and 3 expressions while significant downregulated (p < 0.001) GLUT 2 and 4 expression in liver, skeletal muscles and white adipose tissue. These results revealed the link between class 1 GLUTs, mitochondrial dysfunction and HFD-induced metabolic disorder. It can be concluded that HFD impacts mitochondrial metabolism and reprograms tissue-dependent glucose transporter.
Collapse
Affiliation(s)
- Dhruv Jha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
12
|
IL-13 may be involved in the development of CAD via different mechanisms under different conditions in a Chinese Han population. Sci Rep 2018; 8:6182. [PMID: 29670225 PMCID: PMC5906444 DOI: 10.1038/s41598-018-24592-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/05/2018] [Indexed: 01/23/2023] Open
Abstract
Interleukin-13 (IL-13) has important functions in atherosclerosis, but its role in coronary artery disease (CAD) is unclear. Here, we studied the genetic role of IL-13 in CAD in a Chinese Han population using tag SNPs covering the whole IL13 gene (i.e., rs1881457, rs2069744 and rs20541) and a two-stage cohort containing 1863 CAD cases and 1841 controls. Traditional risk factors for CAD, such as age, BMI, and other factors, were used as covariates in logistic regression analysis. In the total population, we found that two haplotypes of IL13 (ATG and ATA, ordered rs1881457C-rs2069744T-rs20541A) significantly contributed to the risk of CAD with adjusted p values less than 0.05 (padj = 0.019 and padj = 0.042, respectively). In subgroup population analyses, the variant rs1881457C was found to significantly contribute to a nearly two fold increase in the risk of CAD in men (padj = 0.023, OR = 1.91, 95% CI: 1.09-3.33). The variant rs1881457C also significantly contributed to a nearly twofold risk of late-onset CAD (padj = 0.024, OR = 1.93, 95% CI: 1.09-3.42). In conclusion, IL13 might be involved in CAD via different mechanisms under different conditions in the Chinese Han population.
Collapse
|
13
|
Lactate, a Neglected Factor for Diabetes and Cancer Interaction. Mediators Inflamm 2016; 2016:6456018. [PMID: 28077918 PMCID: PMC5203906 DOI: 10.1155/2016/6456018] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 12/23/2022] Open
Abstract
Increasing body of evidence suggests that there exists a connection between diabetes and cancer. Nevertheless, to date, the potential reasons for this association are still poorly understood and currently there is no clinical evidence available to direct the proper management of patients presenting with these two diseases concomitantly. Both cancer and diabetes have been associated with abnormal lactate metabolism and high level of lactate production is the key biological property of these diseases. Conversely, high lactate contribute to a higher insulin resistant status and a more malignant phenotype of cancer cells, promoting diabetes and cancer development and progression. In view of associations between diabetes and cancers, the role of high lactate production in diabetes and cancer interaction should not be neglected. Here, we review the available evidence of lactate's role in different biological characteristics of diabetes and cancer and interactive relationship between them. Understanding the molecular mechanisms behind metabolic remodeling of diabetes- and cancer-related signaling would endow novel preventive and therapeutic approaches for diabetes and cancer treatment.
Collapse
|