1
|
Bayrami A, Sojoudi M, Rahim Pouran S, Habibi-Yangjeh A, Sojoudi S. Linum usitatissimum Delivery over Chitosan Nanobiopolymer: Enhanced Effects on Polycystic Ovary Syndrome Condition. IET Nanobiotechnol 2024; 2024:6693566. [PMID: 39050969 PMCID: PMC11268972 DOI: 10.1049/2024/6693566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/12/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Herein, chitosan nanoparticle (CHIT) was used as a safe and biocompatible matrix to carry flaxseed (Linum usitatissimum L.) extract (FSE). The number of main features and bio-interface properties of CHIT-FSE were determined by SEM, DLS, FTIR, XRD, TGA, and zeta potential analyses and compared to those of chitosan lacking FSE. A GC-MS analysis was also conducted to reveal the bioactive compounds of FSE. The active anchoring of the FSE phytomolecules over chitosan nanoparticles with enhanced thermal and structural stability was correspondingly verified. Subsequently, the influence of CHIT-FSE, CHIT-TPP, and FSE supplementation was assessed on hormonal and biochemical markers of polycystic ovary syndrome (PCOS) in female rats and compared with untreated and healthy control groups. After 16 days of treatment, CHIT-FSE represented the best performance for controlling the serum levels of the studied biochemical (lipid profile and blood glucose level) and hormonal (insulin, testosterone, luteinizing, and follicle-stimulating hormone) parameters. Considering the negligible therapeutic activity of CHIT-TPP, the enhanced activity of CHIT-FSE compared to only FSE was expounded based on the potent action of chitosan nanoparticles in enhanced stabilization, bioavailability, transport, and permeability of the therapeutically important phytomolecules. As per the results of this investigation, supporting medically important biomolecules over chitosan can enhance their therapeutic effectiveness in controlling PCOS.
Collapse
Affiliation(s)
- Abolfazl Bayrami
- Department of BiologyFaculty of ScienceUniversity of Mohaghegh Ardabili, Ardabil P.O. Box 179, Iran
| | - Maryam Sojoudi
- Department of BiologyFaculty of ScienceUniversity of Mohaghegh Ardabili, Ardabil P.O. Box 179, Iran
| | - Shima Rahim Pouran
- Department of Environmental and Occupational HealthSocial Determinants of Health Research CentreArdabil University of Medical Sciences, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of ChemistryFaculty of ScienceUniversity of Mohaghegh Ardabili, Ardabil P.O. Box 179, Iran
| | - Sanaz Sojoudi
- Department of BiologyFaculty of ScienceUniversity of Mohaghegh Ardabili, Ardabil P.O. Box 179, Iran
| |
Collapse
|
2
|
Li J, Ma X, Luo L, Tang D, Zhang L. The What and Who of Dietary Lignans in Human Health: Special Attention to Estrogen Effects and Safety Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16419-16434. [PMID: 37870451 DOI: 10.1021/acs.jafc.3c02680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Lignans are a group of phenolic compounds found in plant-based diets. The human body can obtain lignans through diet, which are then metabolized into enterolignans. The enterolignans have been linked to several health benefits, including anticancer, anti-inflammatory, antioxidant effects, and estrogen effects. This review explores the relationship between the estrogenic effects of lignans and health. This review not only considers the estrogen-like activity of lignans but also discusses the safe dosage of lignans at different life stages. In addition, this review also identified other types of bioactive compounds that can act synergistically with lignans to promote health. Studies have shown that lignan administration during pregnancy and lactation reduces the risk of breast cancer in offspring. Further studies are needed to investigate the estrogenic safety effects of lignan on pregnant women and children. Whether lignans combine with other nutrients in complex food substrates to produce synergistic effects remains to be investigated. This review provides a basis for future studies on the safe dose of lignan and recommended dietary intake of lignan. We believe that the acquired as discussed here has implications for developing dietary therapies that can promote host nutrition and modulate estrogenic diseases.
Collapse
Affiliation(s)
- Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaoyang Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Lianzhong Luo
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen 361023, China
| | - Danqing Tang
- The School of Foreign Languages of Jimei University, Xiamen 361021, China
| | - Lingyu Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
3
|
Mueed A, Deng Z, Korma SA, Shibli S, Jahangir M. Anticancer potential of flaxseed lignans, their metabolites and synthetic counterparts in relation with molecular targets: current challenges and future perspectives. Food Funct 2023; 14:2286-2303. [PMID: 36820797 DOI: 10.1039/d2fo02208g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lignans are known dietary polyphenols found in cereals, plants and seeds. Flaxseed is one of the major sources of lignans mainly existing in the form of secoisolariciresinol diglucoside (SDG) which can be metabolised by the gut microbes into secoisolariciresinol (SECO) and mammalian lignan (enterodiol and enterolactone) that are easily absorbed through the intestines. Numerous studies reveal that flaxseed lignans (FLs) can be promising chemotherapeutics/chemopreventive agents. Their anticancer activity can occur through the induction of apoptosis, inhibition of cell proliferation, and the hindering of metastasis and angiogenesis. The anti-carcinogenesis of flaxseed lignans is achieved through multiple molecular mechanisms involving biochemical entities such as cellular kinases, cell cycle mediators, transcription factors, inflammatory cytokines, reactive oxygen species, and drug transporters. This review summarizes the bioavailability of FLs, their anticancer mechanisms in relevance to molecular targets, safety, and the scope of future research. Overall, FLs can be utilized in functional foods, dietary supplements, and pharmaceuticals for the management and prevention of cancers.
Collapse
Affiliation(s)
- Abdul Mueed
- State key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Zeyuan Deng
- State key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt
| | - Sahar Shibli
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Muhammad Jahangir
- Department of Food Science & Technology, The University of Haripur, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
4
|
Plaha NS, Awasthi S, Sharma A, Kaushik N. Distribution, biosynthesis and therapeutic potential of lignans. 3 Biotech 2022; 12:255. [PMID: 36065422 PMCID: PMC9440181 DOI: 10.1007/s13205-022-03318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022] Open
Abstract
Lignans have long been known for their abundant therapeutic properties due to their polyphenolic structure. Linseed is the richest plant source of lignans and has been studied widely for their properties. The most prevalent lignan, secoisolariciresinol diglucoside (SDG), is consumed with linseed and converted into mammalian lignans, enterodiol (END) and enterolactone (ENL), by the gut microbiota. SDG can easily be assessed using HPLC and its deglycosylated form viz secoisolariciresinol can be asses using GC-MS techniques. Variety of extraction and analysis methods has been reported for plant lignans. SDG is known to have therapeutic properties including anti-oxidant, anti-cancerous, anti-inflammatory, modulation of gene expression, anti-diabetic, estrogenic and anti-estrogenic. Despite a large number of bioactivities, strong evidences for the underlying mechanisms for most of the properties are still unknown. SDG is most studied for its anti-cancerous properties. But the use of lignans as anti-carcinogenic agent is limited and commercially not reported due to challenges of purification at commercial level, rapid metabolism, untargeted delivery and toxic compounds associated with lignans. Exploration of more prominent and active derivatives of SDG and their targeted drug delivery should be an important research toward the use of bioactive lignans of linseed.
Collapse
Affiliation(s)
- Navdeep Singh Plaha
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, UP India
| | - Sumegha Awasthi
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, UP India
| | - Ayushi Sharma
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, UP India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, UP India
| |
Collapse
|
5
|
Dashdondov O, Wazir J, Sukhbaatar G, Mikrani R, Dorjsuren B, Aktar N, Zhou X. Herbal nutraceutical treatment of chronic prostatitis-chronic pelvic pain syndrome: a literature review. Int Urol Nephrol 2021; 53:1515-1528. [PMID: 33907984 DOI: 10.1007/s11255-021-02868-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is the most frequent form of prostatitis, and has a serious impact on patients' quality of life, and causes severe symptoms. The pain in the pelvic, perineal and penile areas, lower abdominal pain, and pain during urination or ejaculation are the main complaints of CP/CPPS. The underlying complex and unknown pathophysiology of this syndrome have made the management of CP/CPPS and the availability of monotherapy challenging. To identify an effective monotherapy, a plethora of clinical trials failed due to its puzzling etiology. Antibiotics, anti-inflammatory, and a-blockers have been commonly used for the treatment of CP/CPPS, but the desired and complete effects have not been gotten yet. The patients and clinicians are attracted to alternative therapies because of their multi-targeted effects. Attention toward natural compounds effectiveness and safety, supporting the development of a new nutraceutical science. In the alternative remedies for the treatment of prostatic diseases, medicinal herbs, in the form of herb parts or extracts, are getting attention due to their positive effects on prostatic diseases. At present, there is no available detailed literature review about the efficacy of medicinal herbs in the treatment of CP/CPPS. This review aimed to explore the useful medicinal herbs in the treatment of CP/CPPS from different perspectives and their possible mechanism of action in managing CP/CPPS.
Collapse
Affiliation(s)
- Ochbayasakh Dashdondov
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, China
| | - Junaid Wazir
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, People's Republic of China
| | - Ganbolor Sukhbaatar
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, China
| | - Buyankhishig Dorjsuren
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, China
| | - Nasrin Aktar
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, China. .,Department of Surgery, Nanjing Shuiximen Hospital, Nanjing, Jiangsu Province, 211198, People's Republic of China. .,Zhongda Hospital, Affiliated with Southeast University, Nanjing, 210017, Jiangsu Province, China.
| |
Collapse
|
6
|
Improvement of testosterone deficiency by fermented Momordica charantia extracts in aging male rats. Food Sci Biotechnol 2021; 30:443-454. [PMID: 33868755 DOI: 10.1007/s10068-020-00872-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022] Open
Abstract
This study evaluated the efficacy of Momordica charantia (MC; bitter melon) extracts against andropause symptoms. We fermented MC with Lactobacillus plantarum and verified the ability of the fermented MC extracts (FMEs) to control testosterone deficiency by using aging male rats as an animal model of andropause. FME administration considerably increased total and free testosterone levels, muscle mass, forced swimming time, and total and motile sperm counts in aging male rats. In contrast, sex hormone-binding globulin, retroperitoneal fat, serum cholesterol, and triglyceride levels were significantly reduced in the treated groups compared to the non-treated control aging male rats. Furthermore, we observed that FME enhanced the expression of testosterone biosynthesis-related genes but reduced the expression of testosterone degradation-related genes in a mouse Leydig cell line. These results suggest that FME has effective pharmacological activities that increase and restore free testosterone levels and that FME may be employed as a promising natural product for alleviating testosterone deficiency syndrome. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-020-00872-x.
Collapse
|
7
|
Pejčić T, Tosti T, Džamić Z, Gašić U, Vuksanović A, Dolićanin Z, Tešić Ž. The Polyphenols as Potential Agents in Prevention and Therapy of Prostate Diseases. Molecules 2019; 24:molecules24213982. [PMID: 31689909 PMCID: PMC6864651 DOI: 10.3390/molecules24213982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/28/2023] Open
Abstract
In recent years, the progress of science and medicine greatly has influenced human life span and health. However, lifestyle habits, like physical activity, smoking cessation, moderate alcohol consumption, diet, and maintaining a normal body weight represent measures that greatly reduce the risk of various diseases. The type of diet is very important for disease development. Numerous epidemiological clinical data confirm that longevity is linked to predominantly plant-based diets and it is related to a long life; whereas the western diet, rich in red meat and fats, increases the risk of oxidative stress and thus the risk of developing various diseases and pre-aging. This review is focused on the bioavailability of polyphenols and the use of polyphenols for the prevention of prostate diseases. Special focus in this paper is placed on the isoflavonoids and flavan-3-ols, subgroups of polyphenols, and their protective effects against the development of prostate diseases.
Collapse
Affiliation(s)
- Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| | - Zoran Džamić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Uroš Gašić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Aleksandar Vuksanović
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Zana Dolićanin
- Department for Biomedical Sciences, State University at Novi Pazar, 36300 Novi Pazar, Serbia.
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| |
Collapse
|
8
|
Potential Therapeutic Effects of Underground Parts of Kalanchoe gastonis-bonnieri on Benign Prostatic Hyperplasia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6340757. [PMID: 30719063 PMCID: PMC6334319 DOI: 10.1155/2019/6340757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/09/2018] [Indexed: 12/01/2022]
Abstract
Benign Prostatic Hyperplasia (BPH) affects mainly older men. It is estimated to affect 50% of 51-60-year-old men and 70% of 61-70-year-old men. BPH is a nonmalignant proliferation of epithelial and stromal cells of the prostate gland regions. Despite the use of conventional pharmacological therapy, herbal medicines are used in BPH therapy, and several mechanisms of action have been suggested based on their complex chemical composition. Considering the ethnomedicinal uses of Kalanchoe gastonis-bonnieri (KGB), we evaluated the inhibitory effects on the proliferation of stromal cells from primary benign prostatic hyperplasia (BPH) of four different aqueous extracts from this plant: underground parts from specimens in flower (T1 treatment), leaves from specimens in flower (T2 treatment), and flowers (T3 treatment) and leaves from specimens not in flower (T4 treatment). T1, T2, T3, and T4 treatments at 250 μg/ml for 72 hours inhibited BPH cells by 56.7%, 29.2%, 39.4%, and 13.5%, respectively, showing that the KGB underground parts extract (T1 treatment) was the most active. Our findings show that the extract of the KGB underground parts (150 and 250 μg/ml) stimulates important changes in the BPH cells, modulating crucial processes such as proliferation, viability, and apoptosis. HPLC-DAD-MS/MS analysis provided a tentative identification of glycosylated syringic acid derivatives, glycosylated forms of volatile compounds, and lignans in this extract. Finally, these results suggest that there is a potential therapeutic use for KGB in BPH, which could improve the clinical management of the disease.
Collapse
|
9
|
Inhibitory effects of Pycnogenol®, a pine bark extract, in a rat model of testosterone propionate-induced benign prostatic hyperplasia. Lab Anim Res 2018; 34:111-117. [PMID: 30310407 PMCID: PMC6170226 DOI: 10.5625/lar.2018.34.3.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022] Open
Abstract
Benign prostate hyperplasia (BPH) is a male reproductive disease that has gained increasing importance in recent years. The present study investigated whether Pycnogenol® (PYC), a standardized French maritime pine bark extract, could prevent BPH induced by testosterone propionate (TP) in rats. Male Sprague-Dawley rats were randomly divided into five groups of six rats. One group was used as a normal control rats and the other groups received subcutaneous injections of TP for 4 weeks to induce BPH. In the two treatment groups, PYC (20 or 40 mg/kg) was administered daily for 4 weeks by oral gavage concurrently with the induction of TP. All rats were sacrificed at the scheduled termination time, the prostates were weighed, and histopathologic examinations were conducted. Dihydrotestosterone (DHT) levels in serum and the prostate were measured, and the expression of proliferating cell nuclear antigen (PCNA) and Ki-67 proteins was investigated. BPH-treated animals showed increases in the relative weight of the prostate, higher concentrations of DHT in serum and the prostate, and higher expression of PCNA and Ki-67 in the prostate; in contrast, PYC-treated animals had significant reductions in these factors compared with the BPH animals. These findings indicated that PYC inhibited the development of BPH and that this was closely associated with a reduction in DHT concentration.
Collapse
|
10
|
Zhou J, Lei Y, Chen J, Zhou X. Potential ameliorative effects of epigallocatechin‑3‑gallate against testosterone-induced benign prostatic hyperplasia and fibrosis in rats. Int Immunopharmacol 2018; 64:162-169. [PMID: 30179845 DOI: 10.1016/j.intimp.2018.08.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/15/2018] [Accepted: 08/26/2018] [Indexed: 12/15/2022]
Abstract
Green tea is among the most popular beverages in the world and is an important source of phytoestrogens. Epigallocatechin‑3‑gallate (EGCG) is the major polyphenol in green tea. The aim of this study was to investigate the anti-benign prostatic hyperplasia (BPH) activity and underling mechanisms of EGCG in testosterone-induced BPH rats and in BPH-1 cells. Prostatic levels of oxidative stress and inflammation makers, as well as angiogenesis related growth factors were measured. Additionally, the prostatic levels of sex hormonal mediators (androgen receptor (AR), estrogen receptor (ER)-α and ER-β), hypoxia-inducible factor (HIF)-1α, transforming growth factor-β1 (TGF-β1), type I TGF-β receptor (TGF-βRI), Smad3, phosphorylation-Smad3 (p-Smad3), epithelial-mesenchymal transition (EMT) markers (E-cadherin, collagen-I, fibronectin and α-SMA) and microRNA (miR)-133a/b were analyzed by immunohistochemistry assay, western blot and/or quantitative RT-PCR. It was observed that EGCG attenuated the prostatic oxidative stress and inflammatory microenvironment, ameliorated prostatic hyperplasia and collagen deposition, reduced the levels of angiogenesis related growth factors, inhibited the over-expression of AR, ER-α, HIF-1α, TGF-β1, TGF-βRI and p-Smad3, enhanced the expression of ER-β, increased the levels of miR-133a/b, as well as relieved prostatic EMT in rats. Both HIF-1α inhibitor and EGCG decreased the expression of HIF-1α and TGF-β1, as well as attenuated EMT in BPH-1 cells. It indicated that EGCG could attenuate testosterone-induced BPH and fibrosis.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Pharmacy, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongfang Lei
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinglou Chen
- Department of Pharmacy, Wuhan Fourth Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiuli Zhou
- Department of Nursing, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
García-Mateos D, García-Villalba R, Otero JA, Marañón JA, Espín JC, Álvarez AI, Merino G. An altered tissue distribution of flaxseed lignans and their metabolites in Abcg2 knockout mice. Food Funct 2018; 9:636-642. [PMID: 29292449 DOI: 10.1039/c7fo01549f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lignans are dietary polyphenols, which are metabolized by gut microbiota into the phytoestrogenic metabolites enterolignans, mainly enterolactone and enterodiol. Breast Cancer Resistance Protein (BCRP/ABCG2) is an efflux transporter that affects the plasma and milk secretion of several drugs and natural compounds. We hypothesized here that Abcg2 could influence the levels of lignans and their derived metabolites in target tissues. Consequently, we aimed to evaluate the role of Abcg2 in the tissue distribution of these compounds. We used Abcg2-/- knockout and wild-type male mice fed with a lignan-enriched diet for one week and analysed their plasma, small intestine, colon, liver, kidneys and testicles. High levels of lignans as well as enterolignans and their glucuronide and sulfate conjugates in the small intestine and colon were detected, with higher concentrations of the conjugates in the wild-type compared with Abcg2-/- mice. Particularly relevant was the detection of 24-fold and 8-fold higher concentrations of enterolactone-sulfate and enterolactone-glucuronide, respectively, in the kidney of Abcg2-/- compared with wild-type mice. In conclusion, our study showed that lignans and their derived metabolites were in vivo substrates of Abcg2, which affected their plasma and tissue levels. These results highlight the role of Abcg2 in influencing the health-beneficial properties of dietary lignans.
Collapse
Affiliation(s)
- Dafne García-Mateos
- Department of Biomedical Sciences - Physiology, Veterinary Faculty, University of Leon, 24071 Campus de Vegazana, León, Spain.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ren GY, Chen CY, Chen WG, Huang Y, Qin LQ, Chen LH. The treatment effects of flaxseed-derived secoisolariciresinol diglycoside and its metabolite enterolactone on benign prostatic hyperplasia involve the G protein-coupled estrogen receptor 1. Appl Physiol Nutr Metab 2016; 41:1303-1310. [DOI: 10.1139/apnm-2016-0332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secoisolariciresinol diglucoside (SDG), a lignan extracted from flaxseed, has been shown to suppress benign prostatic hyperplasia (BPH). However, little is known about the mechanistic basis for its anti-BPH activity. The present study showed that enterolactone (ENL), the mammalian metabolite of SDG, shared the similar binding site of G1 on a new type of membranous estrogen receptor, G-protein-coupled estrogen eceptor 1 (GPER), by docking simulations method. ENL and G1 (the specific agonist of GPER) inhibited the proliferation of human prostate stromal cell line WPMY-1 as shown by MTT assay and arrested cell cycle at the G0/G1 phase, which was displayed by propidium iodide staining following flow cytometer examination. Silencing GPER by short interfering RNA attenuated the inhibitory effect of ENL on WPMY-1 cells. The therapeutic potential of SDG in the treatment of BPH was confirmed in a testosterone propionate-induced BPH rat model. SDG significantly reduced the enlargement of the rat prostate and the number of papillary projections of prostatic alveolus and thickness of the pseudostratified epithelial and stromal cells when comparing with the model group. Mechanistic studies showed that SDG and ENL increased the expression of GPER both in vitro and in vivo. Furthermore, ENL-induced cell cycle arrest may be mediated by the activation of GPER/ERK pathway and subsequent upregulation of p53 and p21 and downregulation of cyclin D1. This work, in tandem with previous studies, will enhance our knowledge regarding the mechanism(s) of dietary phytochemicals on BPH prevention and ultimately expand the scope of adopting alternative approaches in BPH treatment.
Collapse
Affiliation(s)
- Guan-Yu Ren
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Soochow University, 188 Shizi street, Suzhou 215006, China
| | - Chun-Yang Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Soochow University, 188 Shizi street, Suzhou 215006, China
| | - Wei-Guo Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Soochow University, 188 Shizi street, Suzhou 215006, China
| | - Ya Huang
- Institute of Neuroscience, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China
| | - Li-Qiang Qin
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China
| | - Li-Hua Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China
| |
Collapse
|