1
|
Kim JE, Min KS, Go J, Park HY, Choi YK, Lee IB, Shin J, Cho HJ, Kim HS, Hwang DY, Oh WK, Kim KS, Lee CH. Water extract of Humulus japonicus improves age‑related cognitive decline by inhibiting acetylcholinesterase activity and the acetylcholine signaling pathway. Mol Med Rep 2025; 31:131. [PMID: 40116124 PMCID: PMC11938412 DOI: 10.3892/mmr.2025.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
The aging process is associated with a decline in certain cognitive abilities, including learning and memory. This age‑related cognitive decline is associated with a reduction in neurogenesis and alterations in the cholinergic system. Humulus japonicus (HJ), an ornamental plant in the family Cannabaceae, has been reported to exert beneficial effects against neurodegenerative pathophysiologies in mouse models of disorders such as Alzheimer's and Parkinson's disease. Despite the increasingly aging populations of numerous societies, no study has yet investigated the effects of HJ on cognitive decline associated with normal aging. The present study therefore aimed to examine the protective potential of HJ water (HJW) extract against age‑related cognitive decline and scopolamine‑induced cognitive impairment. The analyses revealed that the oral administration of HJW markedly improved novel objective recognition and spatial learning in the novel object recognition and Morris water maze tests, respectively, in aged mice. The administration of 600 mg/kg HJW further increased neurogenesis and CA1 thickness in the hippocampi of aged mice. In scopolamine‑induced cognitive impairment, administration of 400 or 600 mg/kg HJW markedly increased novel object recognition performance in scopolamine‑treated mice. The inhibitory effect of HJW on acetylcholinesterase (AChE) and the activation effects of HJW on the calcium/calmodulin‑dependent kinase (CaMK)IIα‑cAMP response element‑binding protein (CREB) and AKT‑glycogen synthase kinase‑3 β (GSK3β) pathways were further demonstrated. Overall, these results indicate that HJW administration improves cognitive function through the regulation of AChE activity and CaMKIIα‑CREB and AKT‑GSK3β pathways.
Collapse
Affiliation(s)
- Ju-Eun Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kyeong-Seon Min
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Gyeongsang 50463, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - In-Bok Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jaewon Shin
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Ju Cho
- NHB Co., Ltd., Seoul 04735, Republic of Korea
| | | | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Gyeongsang 50463, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
He T, Lin X, Su A, Zhang Y, Xing Z, Mi L, Wei T, Li Z, Wu W. Mitochondrial dysfunction-targeting therapeutics of natural products in Parkinson's disease. Front Pharmacol 2023; 14:1117337. [PMID: 37234707 PMCID: PMC10206024 DOI: 10.3389/fphar.2023.1117337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease worldwide, often occurs in middle-aged and elderly individuals. The pathogenesis of PD is complex and includes mitochondrial dysfunction, and oxidative stress. Recently, natural products with multiple structures and their bioactive components have become one of the most important resources for small molecule PD drug research targeting mitochondrial dysfunction. Multiple lines of studies have proven that natural products display ameliorative benefits in PD treatment by regulating mitochondrial dysfunction. Therefore, a comprehensive search of recent published articles between 2012 and 2022 in PubMed, Web of Science, Elesvier, Wliey and Springer was carried out, focusing on original publications related to natural products against PD by restoring mitochondrial dysfunction. This paper presented the mechanisms of various kinds of natural products on PD-related mitochondrial dysfunction regulation and provided evidence that natural products are promising to be developed as drugs for PD therapeutics.
Collapse
|
3
|
Kang CM, Bang JS, Park SY, Jung TW, Kim HC, Chung YH, Jeong JH. The Aqueous Extract of Humulus japonicus Ameliorates Cognitive Dysfunction in Alzheimer's Disease Models via Modulating the Cholinergic System. J Med Food 2022; 25:943-951. [PMID: 36178947 DOI: 10.1089/jmf.2021.k.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Humulus japonicus (HJ) is an herbal medicine, which has been reported as being antioxidative and anti-inflammatory. The present study aimed to investigate the effect of oral administration of HJ water extract (HJW) on cognitive function through the cholinergic system in Alzheimer's disease (AD) mouse models. Institute of Cancer Research mice injected with beta-amyloid (Aβ) (1-42) (i.c.v.) and APP/PS1 transgenic (TG) mice were orally administered with HJW at 500 mg/kg/day for 3 weeks. Aβ-injected mice and APP/PS1 TG mice showed cognitive dysfunction, which was evaluated by various behavioral tests. HJW treatment significantly attenuated memory impairments in Aβ-injected mice and APP/PS1 TG mice. Aβ injection decreased acetylcholine (ACh) concentrations and choline acetyltransferase (ChAT) activity, and increased acetylcholinesterase (AChE) activity. These cholinergic impairments were also found in APP/PS1 TG mice. HJW significantly attenuated cholinergic alterations in Aβ-injected mice and TG mice. In addition, HJW significantly decreased Aβ plaque deposition in the cerebral cortex and hippocampus of TG mice. Therefore, the present study demonstrated that HJW protected against AD-related memory impairments via enhancing the cholinergic system and inhibiting Aβ plaque deposition.
Collapse
Affiliation(s)
- Chang Muk Kang
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Joon Seok Bang
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Global Innovative Drug, The Graduate School of Chung-Ang University, Seoul, Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Global Innovative Drug, The Graduate School of Chung-Ang University, Seoul, Korea
| |
Collapse
|
4
|
Lee DW, Ryu YK, Chang DH, Park HY, Go J, Maeng SY, Hwang DY, Kim BC, Lee CH, Kim KS. Agathobaculum butyriciproducens Shows Neuroprotective Effects in a 6-OHDA-Induced Mouse Model of Parkinson's Disease. J Microbiol Biotechnol 2022; 32:1168-1177. [PMID: 36168204 PMCID: PMC9628974 DOI: 10.4014/jmb.2205.05032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disease and is characterized by dopaminergic neuronal death in the midbrain. Recently, the association between alterations in PD pathology and the gut microbiota has been explored. Microbiota-targeted interventions have been suggested as a novel therapeutic approach for PD. Agathobaculum butyriciproducens SR79T (SR79) is an anaerobic bacterium. Previously, we showed that SR79 treatment induced cognitive improvement and reduced Alzheimer's disease pathologies in a mouse model. In this study, we hypothesized that SR79 treatment may have beneficial effects on PD pathology. To investigate the therapeutic effects of SR79 on PD, 6-hydroxydopamine (6-OHDA)-induced mouse models were used. D-Amphetamine sulfate (d-AMPH)-induced behavioral rotations and dopaminergic cell death were analyzed in unilateral 6-OHDA-lesioned mice. Treatment with SR79 significantly decreased ipsilateral rotations induced by d-AMPH. Moreover, SR79 treatment markedly activated the AKT/GSK3β signaling pathway in the striatum. In addition, SR79 treatment affected the Nrf2/ARE signaling pathway and its downstream target genes in the striatum of 6-OHDA-lesioned mice. Our findings suggest a protective role of SR79 in 6-OHDA-induced toxicity by regulating the AKT/Nrf2/ARE signaling pathway and astrocyte activation. Thus, SR79 may be a potential microbe-based intervention and therapeutic strategy for PD.
Collapse
Affiliation(s)
- Da Woon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Biomaterials Science, College of Natural Resources and Life Science and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dong-Ho Chang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - So-Young Maeng
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,College of Biosciences and Biotechnology, Chung-Nam National University, Daejeon 34134, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Byoung-Chan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,HealthBiome, Inc., Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea,Corresponding authors C.H. Lee E-mail:
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,
K.S. Kim Phone: 82-42-860-4634 Fax : 82-42-860-4609 E-mail:
| |
Collapse
|
5
|
Li RL, Wang LY, Duan HX, Zhang Q, Guo X, Wu C, Peng W. Regulation of mitochondrial dysfunction induced cell apoptosis is a potential therapeutic strategy for herbal medicine to treat neurodegenerative diseases. Front Pharmacol 2022; 13:937289. [PMID: 36210852 PMCID: PMC9535092 DOI: 10.3389/fphar.2022.937289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disease is a progressive neurodegeneration caused by genetic and environmental factors. Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) are the three most common neurodegenerative diseases clinically. Unfortunately, the incidence of neurodegenerative diseases is increasing year by year. However, the current available drugs have poor efficacy and large side effects, which brings a great burden to the patients and the society. Increasing evidence suggests that occurrence and development of the neurodegenerative diseases is closely related to the mitochondrial dysfunction, which can affect mitochondrial biogenesis, mitochondrial dynamics, as well as mitochondrial mitophagy. Through the disruption of mitochondrial homeostasis, nerve cells undergo varying degrees of apoptosis. Interestingly, it has been shown in recent years that the natural agents derived from herbal medicines are beneficial for prevention/treatment of neurodegenerative diseases via regulation of mitochondrial dysfunction. Therefore, in this review, we will focus on the potential therapeutic agents from herbal medicines for treating neurodegenerative diseases via suppressing apoptosis through regulation of mitochondrial dysfunction, in order to provide a foundation for the development of more candidate drugs for neurodegenerative diseases from herbal medicine.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| |
Collapse
|
6
|
Go J, Park HY, Lee DW, Maeng SY, Lee IB, Seo YJ, An JP, Oh WK, Lee CH, Kim KS. Humulus japonicus attenuates LPS-and scopolamine-induced cognitive impairment in mice. Lab Anim Res 2022; 38:21. [PMID: 35854340 PMCID: PMC9297604 DOI: 10.1186/s42826-022-00134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Neuroinflammation plays an important role in cognitive decline and memory impairment in neurodegenerative disorders. Previously, we demonstrated that Humulus japonicus (HJ) has anti-inflammatory effects in rodent models of Alzheimer’s disease and Parkinson’s disease. The present study aimed to examine the protective potential of HJ extracts against lipopolysaccharide (LPS)-induced cognitive impairment and scopolamine-induced amnesia in mouse models. Cognitive improvement of mice was investigated by novel object recognition test. For analyzing effects on neuroinflammation, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed. Results We found that the oral administration of HJ significantly improved cognitive dysfunction induced by LPS in a novel object recognition test. The LPS-induced activation of microglia was notably decreased by HJ treatment in the cortex and hippocampus. HJ administration with LPS also significantly increased the mRNA expression of interleukin (IL)-10 and decreased the mRNA expression of IL-12 in the parietal cortex of mice. The increased expression of LPS-induced complement C1q B chain (C1bq) and triggering receptor expressed on myeloid cells 2 (Trem2) genes was significantly suppressed by HJ treatment. In addition, HJ administration significantly improved novel object recognition in a scopolamine-induced amnesia mouse model. Conclusions These findings revealed that HJ has a beneficial effect on cognitive impairment and neuroinflammation induced by systemic inflammation and on amnesia induced by scopolamine in mice.
Collapse
Affiliation(s)
- Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Da Woon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - So-Young Maeng
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea.,College of Biosciences and Biotechnology, Chung-Nam National University, Daejeon, 34134, Republic of Korea
| | - In-Bok Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yun Jeong Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin-Pyo An
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences College of Pharmacy, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences College of Pharmacy, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
7
|
Ameliorative Effects of Humulus japonicus Extract and Polysaccharide-Rich Extract of Phragmites rhizoma in Rats with Gastrointestinal Dysfunctions Induced by Water Avoidance Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9993743. [PMID: 35096122 PMCID: PMC8799342 DOI: 10.1155/2022/9993743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022]
Abstract
Chronic stress can cause the gastrointestinal disorders characterized by an altered bowel movement and abdominal pain. Studies have shown that Humulus japonicus extract (HJE) has anti-inflammatory and antidiarrheal effects, and Phragmites rhizoma extract (PEP) has antioxidative and antistress effects. The present study aimed to investigate the possible effects of HJE and PEP in rat models with stress-induced gastrointestinal dysfunctions. The rats were exposed to water avoidance stress (WAS, 1 h/day) for 10 days to induce gastrointestinal disorders. We found that WAS significantly increased fecal pellet output during 1 h stress, gastric emptying, colonic contractility, and permeability compared to the normal rats. Pretreatment with HJE and PEP (0.25 and 0.5 mL/kg, both administered separately) improved the increased gastric emptying and colonic contractility induced by electrical field stimulation, acetylcholine, and serotonin and also alleviated the increased colonic permeability. HJE and PEP also increased the claudin-1 and occludin expressions, reduced by WAS. WAS increased the concentration of TNF-α and TBARS and reduced FRAP. HJE and PEP recovered these effects. HJE and PEP improved the gastrointestinal disorders induced by WAS by upregulating the tight junction protein, possibly acting on cholinergic and serotonergic receptors to abolish the colonic hypercontractility and hyperpermeability and degradation of inflammatory cytokines via an antioxidant effect.
Collapse
|
8
|
WANG F, SHIN JY, CHO BO, HAO S, PARK JH, JANG SI. Antioxidative stress effects of Humulus japonicus extracts on neuronal PC12 cells. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Feng WANG
- Jeonju University, Korea; Yuncheng University, China
| | | | | | | | | | - Seon Il JANG
- Jeonju University, Korea; Ato Q&A Co., LTD, Korea; Jeonju University, Korea
| |
Collapse
|
9
|
Jang S, Wang F, Cho B, Shin J, Hao S. Humulus japonicus extract alleviates oxidative stress and apoptosis in 6-hydroxydopamine-induced PC12 cells. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.343387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
WANG F, CHO BO, SHIN JY, HAO S, JANG SI. Anti-neuroinflammatory activity of Humulus japonicus extract and its active compound luteolin on lipopolysaccharide-induced inflammatory response in SIM-A9 microglia via NF-κB and MAPK signaling pathways. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.78621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Feng WANG
- Jeonju University, Republic of Korea; Yuncheng University, PR, China
| | - Byoung Ok CHO
- Jeonju University, Republic of Korea; Ato Q&A Co., LTD, Republic of Korea
| | - Jae Young SHIN
- Jeonju University, Republic of Korea; Ato Q&A Co., LTD, Republic of Korea
| | | | - Seon Il JANG
- Jeonju University, Republic of Korea; Jeonju University, Republic of Korea; Ato Q&A Co., LTD, Republic of Korea
| |
Collapse
|
11
|
Karthikkeyan G, Pervaje R, Pervaje SK, Prasad TSK, Modi PK. Prevention of MEK-ERK-1/2 hyper-activation underlines the neuroprotective effect of Glycyrrhiza glabra L. (Yashtimadhu) against rotenone-induced cellular and molecular aberrations. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114025. [PMID: 33775804 DOI: 10.1016/j.jep.2021.114025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/07/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yashtimadhu choorna (powder) is prepared from the dried root of Glycyrrhiza glabra L., commonly known as licorice. The Indian Ayurvedic system classifies Yashtimadhu as a Medhya Rasayana that can enhance brain function, improves memory, and possess neuroprotective functions, which can be used against neurodegenerative diseases like Parkinson's disease (PD). AIM OF THE STUDY We aimed to decipher the neuroprotective effects of G. glabra L., i.e., Yashtimadhu, in a rotenone-induced PD model. MATERIALS AND METHODS Retinoic acid-differentiated IMR-32 cells were treated with rotenone (PD model) and Yashtimadhu, and were assessed for cellular toxicity, live-dead staining, cell cycle, oxidative stress, protein abundance, and kinase phosphorylation. RESULTS Yashtimadhu conferred protection against rotenone-induced cytotoxicity, countered cell death, reduced expression of pro-apoptotic proteins (cleaved-caspases-9, and 3, cleaved-PARP, BAX, and BAK) and increased anti-apoptotic protein, BCL-2. Rotenone-induced cell cycle re-entry (G2/M transition), was negated by Yashtimadhu and was confirmed with PCNA levels. Yashtimadhu countered rotenone-mediated activation of mitochondrial proteins involved in oxidative stress, cytochrome-C, PDHA1, and HSP60. Inhibition of rotenone-induced ERK-1/2 hyperphosphorylation prevented activation of apoptosis, which was confirmed with MEK-inhibitor, highlighted the action of Yashtimadhu via ERK-1/2 modulation. CONCLUSIONS We provide the evidence for neuroprotection conferred by G. glabra L. (Yashtimadhu) and its mechanism via inhibiting MEK-ERK-1/2 hyper-phosphorylation, prevention of mitochondrial stress, and subsequent prevention of apoptosis. The study highlights Yashtimadhu as a promising candidate with neuroprotective effects, the potential of which can be harnessed for identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | | | - Sameera Krishna Pervaje
- Yenepoya Medical College and Hospital, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | | | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
12
|
Park HY, Go J, Ryu YK, Choi DH, Noh JR, An JP, Oh WK, Han PL, Lee CH, Kim KS. Humulus japonicus rescues autistic‑like behaviours in the BTBR T + Itpr3 tf/J mouse model of autism. Mol Med Rep 2021; 23:448. [PMID: 33880583 PMCID: PMC8060795 DOI: 10.3892/mmr.2021.12087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 01/13/2023] Open
Abstract
Humulus japonicus (HJ) is a traditional herbal medicine that exhibits anti-inflammatory, antimicrobial and anti-tumor effects that is used for the treatment of hypertension, pulmonary disease and leprosy. Recently, it has also been reported that HJ demonstrates neuroprotective properties in animal models of neurodegenerative diseases. The current study hypothesised that the administration of HJ would exhibit therapeutic effects in autism spectrum disorder (ASD), a neurodevelopmental disorder with lifelong consequences. The BTBR T+ Itpr3tf/J mouse model of ASD was used to investigate the anti-autistic like behavioural effects of HJ. Chronic oral administration of the ethanolic extract of HJ significantly increased social interaction, attenuated repetitive grooming behaviour and improved novel-object recognition in BTBR mice. Anti-inflammatory effects of HJ in the brain were analysed using immunohistochemistry and reverse-transcription quantitative PCR analysis. Microglia activation was markedly decreased in the striatum and hippocampus, and pro-inflammatory cytokines, including C-C Motif Chemokine Ligand 2, interleukin (IL)-1β and IL-6, were significantly reduced in the hippocampus following HJ treatment. Moreover, HJ treatment normalised the phosphorylation levels of: N-methyl-D-aspartate receptor subtype 2B and calcium/calmodulin-dependent protein kinase type II subunit α in the hippocampus of BTBR mice. The results of the present study demonstrated that the administration of HJ may have beneficial potential for ameliorating behavioural deficits and neuroinflammation in ASD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jin-Pyo An
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Lee HJ, Dhodary B, Lee JY, An JP, Ryu YK, Kim KS, Lee CH, Oh WK. Dereplication of Components Coupled with HPLC-qTOF-MS in the Active Fraction of Humulus japonicus and It's Protective Effects against Parkinson's Disease Mouse Model. Molecules 2019; 24:E1435. [PMID: 30979037 PMCID: PMC6480934 DOI: 10.3390/molecules24071435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
Humulus japonicus is an annual plant belonging to the Cannabacea family, and it has been traditionally used to treat pulmonary tuberculosis, dysentery, chronic colitis, and hypertension. We investigated the active components against Parkinson's disease from H. japonicus fraction (HJF) using high performance liquid chromatography (HPLC) coupled with quadruple-time-of-flight mass spectroscopy (qTOF-MS) and NMR. Fourteen compounds were isolated from HJF, including one new compound, using HPLC-qTOF-MS and NMR. The major compounds of HJF were luteolin-7-O-glucoside and apigenin-7-O-glucoside, and there was approximately 12.57- and 9.68-folds increase in the contents of these flavonoids compared to those of the 70% EtOH extract. Apigenin and luteolin exhibited the strongest inhibitory effects on monoamine oxidase (MAO) B enzyme activity. In animal studies, limb-use behavior was significantly reduced by unilateral 6-OHDA lesion and ipsilateral rotations. These results indicated that oral administration of 300 mg/kg HJF resulted in the improvement of motor asymmetry and motor impairment in unilateral 6-OHDA-lesioned mice. HJF, including active components leads to an improvement of motor behavior in a Parkinson's disease mouse model.
Collapse
Affiliation(s)
- Hee Ju Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea.
| | - Basanta Dhodary
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Ju Yong Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Jin-Pyo An
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
14
|
|
15
|
Go J, Park TS, Han GH, Park HY, Ryu YK, Kim YH, Hwang JH, Choi DH, Noh JR, Hwang DY, Kim S, Oh WK, Lee CH, Kim KS. Piperlongumine decreases cognitive impairment and improves hippocampal function in aged mice. Int J Mol Med 2018; 42:1875-1884. [PMID: 30066827 PMCID: PMC6108885 DOI: 10.3892/ijmm.2018.3782] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/06/2018] [Indexed: 11/18/2022] Open
Abstract
Piperlongumine (PL), a biologically active compound from the Piper species, has been shown to exert various pharmacological effects in a number of conditions, including tumours, diabetes, pain, psychiatric disorders and neurodegenerative disease. In this study, we evaluated the therapeutic effects of PL on hippocampal function and cognition decline in aged mice. PL (50 mg/kg/day) was intragastrically administrated to 23‑month‑old female C57BL/6J mice for 8 weeks. Novel object recognition and nest building behaviour tests were used to assess cognitive and social functions. Additionally, immunohistochemistry and western blot analysis were performed to examine the effects of PL on the hippocampus. We found that the oral administration of PL significantly improved novel object recognition and nest building behaviour in aged mice. Although neither the percentage area occupied by astrocytes and microglia nor the level of 4‑hydroxynonenal protein, a specific marker of lipid peroxidation, were altered by PL treatment, the phosphorylation levels of N‑methyl‑D‑aspartate receptor subtype 2B (NR2B), calmodulin‑dependent protein kinase II alpha (CaMKIIα) and extracellular signal‑regulated kinase 1/2 (ERK1/2) were markedly increased in the hippocampus of aged mice following the administration of PL. We also found that PL treatment resulted in a CA3‑specific increase in the phosphorylation level of cyclic AMP response element binding protein, which is recognized as a potent marker of neuronal plasticity, learning and memory. Moreover, the number of doublecortin‑positive cells, a specific marker of neurogenesis, was significantly increased following PL treatment in the dentate gyrus of the hippocampus. On the whole, these data demonstrate that PL treatment may be a potential novel approach in the treatment of age‑related cognitive impairment and hippocampal changes.
Collapse
Affiliation(s)
- Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463
| | - Tae-Shin Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
| | - Geun-Hee Han
- College of Pharmacy, Seoul National University, Seoul 08826
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul 08826
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113
| |
Collapse
|
16
|
Piperlongumine activates Sirtuin1 and improves cognitive function in a murine model of Alzheimer’s disease. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Dong R, Zhang B, Tai L, Liu H, Shi F, Liu N. The Neuroprotective Role of MiR‐124‐3p in a 6‐Hydroxydopamine‐Induced Cell Model of Parkinson's Disease via the Regulation of ANAX5. J Cell Biochem 2017; 119:269-277. [DOI: 10.1002/jcb.26170] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Rui‐Fang Dong
- Department of NeurologyCangzhou Central HospitalCangzhou CityHebei Province 061001China
| | - Bing Zhang
- Department of NeurologyThe First Hospital of ShijiazhuangShijiazhuangHebei Province 050011China
| | - Li‐Wen Tai
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebei Province 050011China
| | - Hong‐Mei Liu
- Department of NeurologyCangzhou Central HospitalCangzhou CityHebei Province 061001China
| | - Fang‐Kun Shi
- Department of NeurologyCangzhou Central HospitalCangzhou CityHebei Province 061001China
| | - Ning‐Ning Liu
- Department of NeurologyCangzhou Central HospitalCangzhou CityHebei Province 061001China
| |
Collapse
|