1
|
Efati M, Sahebkar A, Tavallaei S, Alidadi S, Hosseini H, Hamidi-Alamdari D. Protective effect of Leuco-methylene blue against acetaminophen-induced liver injury: an experimental study. Drug Chem Toxicol 2025:1-13. [PMID: 40207489 DOI: 10.1080/01480545.2025.2485347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/21/2025] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Acetaminophen is a commonly used drug for mild to moderate pain relief; however, acetaminophen toxicity due to the formation of toxic metabolites is a major cause of drug-induced liver injury. Methylene blue is an FDA-approved drug for the treatment of methemoglobinemia and has potential applications in the treatment of carbon monoxide and cyanide poisoning. Leuco-methylene blue, a colorless form of methylene blue, is more effective in entering cells and counteracting oxidative stress, making it a valuable option in regulating mitochondrial function and ATP production. In this study, we aimed to evaluate the effect of LMB on liver damage caused by acetaminophen toxicity. Thirty-six rats were divided into six groups: control, APAP, NAC, LMB, MB, and NAC+LMB. All groups except the control received acetaminophen (1500 mg/kg), followed by treatments with NAC (100 mg/kg), LMB (5 mg/kg), MB (5 mg/kg), and NAC+LMB after 3 hours. The rats were sacrificed 24 hours post-acetaminophen administration. LMB significantly reduced serum levels of liver enzymes (ALT, AST, and ALP) and increased the expression of genes involved in mitochondrial biogenesis and antioxidant defense (PGC-1, Nrf2, and Tfam). Additionally, LMB significantly increased total antioxidant capacity and glutathione reductase levels, decreased the prooxidant-antioxidant balance (PAB), and reduced the expression of inflammatory cytokines (IL-6 and TNF-α) in the liver tissue. LMB effectively reduced the severity of acetaminophen-induced liver damage through antioxidant and anti-inflammatory effects. LMB can effectively ameliorate APAP-induced toxicity in rats, with comparable efficacy to N-acetylcysteine with respect to most complications of acetaminophen-induced toxicity in rats.
Collapse
Affiliation(s)
- Majid Efati
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Tavallaei
- Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soodeh Alidadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Daryoush Hamidi-Alamdari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Albayrak O, Hatipoglu BN, Ozbeyli D, Sen A, Koyuncuoglu T, Cevik O, Ercan F, Kanpalta F, Dogan A, Pazarbasi SE, Sener G. Dodder ( Cuscuta sp.) extract prevents cognitive deficits in a rat model of hepatic encephalopathy. North Clin Istanb 2024; 11:512-519. [PMID: 39650325 PMCID: PMC11622753 DOI: 10.14744/nci.2023.95776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/11/2024] Open
Abstract
OBJECTIVE In our study, the protective effect of dodder plant extract against encephalopathy induced by cholestatic liver disease model was investigated. METHODS Spraque Dawley rats were used in the study. For the cholestatic liver disease model, the bile duct ligation (BDL) was applied. The groups were determined as control, Cuscuta sp. (CUS), BDL and BDL + CUS. Double ligation was performed in the bile duct in the BDL groups. For the applications, saline (SF) was administered to the control and BDL groups for 28 days while 250 mg/kg of Cuscuta sp. extract was given by oral gavage to the CUS and BDL + CUS groups. At the end of the experiment, cognitive evaluations were made by applying new object recognition and Morris water maze tests. After these tests, blood-brain barrier (BBB) measurements were made in half of the groups. In the other half of the groups, brain tissue samples were taken by decapitation and transforming growth factor-beta (TGF-β), 8-hydroxydeoxyguanosine (8-OHdG) and sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) measurements were made in the tissues. Histological examinations of the tissues were also performed. RESULTS Cognitive performance was low, and BBB permeability was found to be increased in the group with bile duct ligation. In addition, TGF-β and 8-OHdG levels were increased in tissues, while Na+/K+-ATPase enzyme activity was suppressed. Treatment with Cuscuta sp. increased cognitive performance and decreased BBB permeability. Other biochemical parameters examined were significantly (p<0.05-0.001) reversed and supported by histological findings. CONCLUSION Our findings in the study suggest that dodder plant may be beneficial for the protection of cognitive performance and brain tissue in encephalopathy caused by cholestasis.
Collapse
Affiliation(s)
- Omercan Albayrak
- Department of Research and Development, Anatolia Geneworks, Istanbul, Turkiye
| | - Bilge Nur Hatipoglu
- Department of Pharmacology, Marmara University Faculty of Pharmacy, Istanbul, Turkiye
| | - Dilek Ozbeyli
- Department of Medical Services and Techniques, Marmara University Vocational School of Health Services, Istanbul, Turkiye
| | - Ali Sen
- Department of Pharmacognosy, Marmara University Faculty of Pharmacy, Istanbul, Turkiye
| | - Turkan Koyuncuoglu
- Department of Physiology, Biruni University Faculty of Medicine, Istanbul, Turkiye
| | - Ozge Cevik
- Department of Biochemistry, Adnan Menderes University Faculty of Medicine, Aydin, Turkiye
| | - Feriha Ercan
- Department of Histology and Embryology, Marmara University Faculty of Medicine, Istanbul, Turkiye
| | - Fatma Kanpalta
- Department of Histology and Embryology, Marmara University Faculty of Medicine, Istanbul, Turkiye
| | - Ahmet Dogan
- Department of Pharmaceutical Botany, Marmara University Faculty of Pharmacy, Istanbul, Turkiye
| | - Seren Ede Pazarbasi
- Department of Pharmacy Services, Fenerbahce University Vocational School of Health Services, Istanbul, Turkiye
| | - Goksel Sener
- Department of Pharmacology, Fenerbahce University Faculty of Pharmacy, Istanbul, Turkiye
| |
Collapse
|
3
|
Chilvery S, Yelne A, Khurana A, Saifi MA, Bansod S, Anchi P, Godugu C. Acetaminophen induced hepatotoxicity: An overview of the promising protective effects of natural products and herbal formulations. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154510. [PMID: 36332383 DOI: 10.1016/j.phymed.2022.154510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The liver plays an important role in regulating the metabolic processes and is the most frequently targeted organ by toxic chemicals. Acetaminophen (APAP) is a well-known anti-allergic, anti-pyretic, non-steroidal anti-inflammatory drug (NSAID), which upon overdose leads to hepatotoxicity, the major adverse event of this over-the-counter drug. PURPOSE APAP overdose induced acute liver injury is the second most common cause that often requires liver transplantation worldwide, for which N-acetyl cysteine is the only synthetic drug clinically approved as an antidote. So, it was felt that there is a need for the novel therapeutic approach for the treatment of liver diseases with less adverse effects. This review provides detailed analysis of the different plant extracts; phytochemicals and herbal formulations for the amelioration of APAP-induced liver injury. METHOD The data was collected using different online resources including PubMed, ScienceDirect, Google Scholar, Springer, and Web of Science using keywords given below. RESULTS Over the past decades various reports have revealed that plant-based approaches may be a better treatment choice for the APAP-induced hepatotoxicity in pre-clinical experimental conditions. Moreover, herbal compounds provide several advantages over the synthetic drugs with fewer side effects, easy availability and less cost for the treatment of life-threatening diseases. CONCLUSION The current review summarizes the hepatoprotective effects and therapeutic mechanisms of various plant extracts, active phytoconstituents and herbal formulations with potential application against APAP induced hepatotoxicity as the numbers of hepatoprotective natural products are more without clinical relativity. Further, pre-clinical pharmacological research will contribute to the designing of natural products as medicines with encouraging prospects for clinical application.
Collapse
Affiliation(s)
- Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Yelne
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Xu SY, Zhang Y, Han T, Li XR, Lihong-Li, Zuo L. UPLC-Q/TOF-MS based plasma metabolomics study of hepatoprotective effect of Cuscutae semen on CCl4-induced liver injury model of rats. Biomed Chromatogr 2022; 36:e5489. [PMID: 36002930 DOI: 10.1002/bmc.5489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Hepatic disorders is a serious health problem threaten human. Cuscutae semen (CS) is a broadly used Chinese medicine as a tonic to nourish the liver and kidney. OBJECTIVE Our research aimed to assess the hepatoprotective effect of CS on CCl4 -induced liver injury rats via plasma metabolomics. METHODS The liver injury rats were induced by 40% CCl4 in olive oil twice a week for 21 days. The CS group received CS 2g/kg every day for 21 days. The liver tissues were used for histological studies. The serum was used for biochemical parameters analysis. Plasma metabolomic analysis were performed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS). RESULTS Administration of CS could relieve hepatocyte necrosis, decrease levels of serum biochemical parameters in comparison with CCl4 group. The principal component analysis (PCA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA) analyses on plasma metabolomes showed an obvious separation among the control, model and CS groups. The heatmap showed that CS-administered mice had the similar metabolite profiles as the control group. Seven influential pathways in plasma of hepatoprotective impacted by CS were identified. CONCLUSION This study verified the hepatoprotective effect of CS, and the related metabolic pathways were discussed.
Collapse
Affiliation(s)
- Shu-Ya Xu
- School of animal medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Ri Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lihong-Li
- School of animal medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Lijie Zuo
- School of animal medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
5
|
Alshahrani S, Ashafaq M, Hussain S, Mohammed M, Sultan M, Jali AM, Siddiqui R, Islam F. Renoprotective effects of cinnamon oil against APAP-Induced nephrotoxicity by ameliorating oxidative stress, apoptosis and inflammation in rats. Saudi Pharm J 2021; 29:194-200. [PMID: 33679180 PMCID: PMC7910143 DOI: 10.1016/j.jsps.2021.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Acetaminophen (APAP) is used as a primary medication in relieving moderate pain and fever. However, APAP is associated with toxic effects in renal tissue that appear because of its free radicals property. The principle goal of the present work is to assess the kidney damage by APAP and its restore antioxidative property of cinnamon oil (CO). Animals were distributed into six animals each in six groups. Rats were administered with three varying doses of CO from 50 to 200 mg/kg b.w. respectively and only a single dose of APAP. APAP induced an alteration in serum biochemical markers, imbalance in oxidative parameters, morphological changes in kidney tissue along with increased interleukins cytokines (IL-1β & 6) and caspase (3, 9) levels. CO administration significantly ameliorates all the parameters and histopathological changes were restored. Moreover, it also restored the activities of antioxidative enzymes. Our work proved that an variance of oxidative markers in the kidney by APAP is ameliorated by CO in rats. Thus, CO could be used in reducing APAP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Mohammad Ashafaq
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Manal Mohammed
- Substance Abuse Research Center (SARC), College of Pharmacy, Jazan University, Saudi Arabia
| | - Muhammad Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Rahimullah Siddiqui
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Fakhrul Islam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| |
Collapse
|
6
|
Abedini MR, Paki S, Mohammadifard M, Foadoddini M, Vazifeshenas-Darmiyan K, Hosseini M. Evaluation of the in vivo and in vitro safety profile of Cuscuta epithymum ethanolic extract. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:645-656. [PMID: 34804901 PMCID: PMC8588959 DOI: 10.22038/ajp.2021.18529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/27/2021] [Accepted: 07/03/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cuscuta epithymum (CE) is one of the most popular medicinal plants in the world. However, detailed information about its toxicity is not available. Hence, this study aimed to evaluate the safety profile of CE ethanolic extract in vitro and in vivo. MATERIALS AND METHODS The extract's in vitro toxicity profile was investigated on normal fibroblast and cervical cancer cells by cytotoxicity test. In the next step, acute oral and intraperitoneal (i.p.) toxicity of the CE extract was evaluated in Wistar rats and BALB/c mice, respectively. Sub-acute oral toxicity was also examined by administering repeated oral doses of the CE extract (50, 200, and 500 mg/kg) to Wistar rats for 28 days. RESULTS The CE extract exhibited a significant cytotoxicity on both normal (IC50 0.82 mg/ml, p<0.001) and cancer cells (IC50 1.42 mg/ml, p<0.001). Acute oral administration of a single dose of CE extract (175-5000 mg/kg) did not cause mortality; however, its i.p. administration caused mortality at doses greater than 75 mg/kg (i.p. LD50 154.8 mg/kg). In the sub-acute toxicity test, no significant effects in terms of weight change, organ weights, blood chemistry, or kidney pathology were observed. However, at 200 and 500 mg/kg doses, the CE extract significantly increased liver pathological scores compared to the control group (p<0.05 and p<0.01, respectively). CONCLUSION CE exhibited toxicities in i.p. acute and repeated oral dose administrations. It showed identical cytotoxicity against normal and cancer cells. This herb must be prescribed cautiously by traditional medicine practitioners.
Collapse
Affiliation(s)
- Mohammad Reza Abedini
- Cellular and Molecular Research Center, Department of Pharmacology, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Paki
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahtab Mohammadifard
- Department of Pathology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Foadoddini
- Department of Physiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Khadijeh Vazifeshenas-Darmiyan
- Cellular and Molecular Research Center, Department of Biochemistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran,Corresponding Author: Tel: +98-5632381511, Fax: +98-5632433004, ,
| |
Collapse
|
7
|
Hussain S, Ashafaq M, Alshahrani S, Siddiqui R, Ahmed RA, Khuwaja G, Islam F. Cinnamon oil against acetaminophen-induced acute liver toxicity by attenuating inflammation, oxidative stress and apoptosis. Toxicol Rep 2020; 7:1296-1304. [PMID: 33024703 PMCID: PMC7528057 DOI: 10.1016/j.toxrep.2020.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023] Open
Abstract
Acetaminophen (APAP) is used as a primary drug due to its antipyretic and analgesic activity. The mechanism of action of APAP toxicity in the liver is due to the depletion of glutathione which elicited free radicals generation. Therefore, the objective of our work is to investigate the APAP induced liver damage and its repair by free radical scavenging activity of cinnamon oil (CO) in male Wistar rats. To investigate the effects of CO at different doses (50, 100 and 200 mg/kg b.w.), animals were given a single oral dose of CO per day for 14 days between 12:00-1:00 PM. The biochemical changes, imbalance in oxidative markers, interleukins, caspases and histopathological studies were determined for quantifying the hepatoprotective effect of CO. One dose of APAP (2 g/kg b.w.) results in significant hepatotoxicity and marked increase the serum markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), bilirubin, albumin, total protein, content of lipid peroxidation (LPO), interleukins (IL-1β, IL-6), caspase-3, -9 expression, DNA fragmentation and histopathological changes were observed. Significant decrease in the levels of LPO, interleukins IL-1β, IL-6, caspase-3, -9 expressions, qualitative as well as quantitative determination of DNA fragments and histopathological changes were reversed by the administration of CO dose dependently. Furthermore, it also restores the depleted activity of antioxidative enzymes. Our study shows that an imbalance in the oxidative parameter in the liver by APAP is restored by treating the animals with CO.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- ANOVA, analysis of variance
- APAP, N-acetyl-p-aminophenol
- AST, aspartate aminotransferase
- Acetaminophen
- BHA, butylated hydroxyanisole
- CO, cinnamon oil
- Cinnamon oil
- DNA fragmentation
- GPx, glutathione peroxidase
- GR, glutathione reductase
- GSH, glutathione
- Hepatotoxicity
- LPO, lipid peroxidation
- MDA, malondialdehyde
- MEC, molar extinction coefficient
- NAPQI, N-acetyl parabenzoquinoneimine
- Oxidative stress
- PMS, post mitochondrial supernatants
- SOD, superoxide dismutase
Collapse
Affiliation(s)
- Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Mohammed Ashafaq
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Rahimullah Siddiqui
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Saudi Arabia
| | - Fakhrul Islam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| |
Collapse
|
8
|
Chang L, Xu D, Zhu J, Ge G, Kong X, Zhou Y. Herbal Therapy for the Treatment of Acetaminophen-Associated Liver Injury: Recent Advances and Future Perspectives. Front Pharmacol 2020; 11:313. [PMID: 32218738 PMCID: PMC7078345 DOI: 10.3389/fphar.2020.00313] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury worldwide, and mitochondrial oxidative stress is considered the major event responsible for APAP-associated liver injury (ALI). Despite the identification of N-acetyl cysteine, a reactive oxygen species scavenger that is regarded as an effective clinical treatment, therapeutic effectiveness remains limited due to rapid disease progression and diagnosis at a late phase, which leads to the need to explore various therapeutic approaches. Since the early 1990s, a number of natural products and herbs have been found to have hepatoprotective effects against APAP-induced hepatotoxicity in terms of acute liver failure prevention and therapeutic amelioration of ALI. In this review, we summarize the hepatoprotective effects and mechanisms of medicinal plants, including herbs and fruit extracts, along with future perspectives that may provide guidance to improve the current status of herbal therapy against ALI.
Collapse
Affiliation(s)
- Ling Chang
- Department of Gastroenterology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongwei Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Ying Zhou
- Department of Gastroenterology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Sun J, Wang J, Hu L, Yan J. K-3-Rh Protects Against Cerebral Ischemia/Reperfusion Injury by Anti-Apoptotic Effect Through PI3K-Akt Signaling Pathway in Rat. Neuropsychiatr Dis Treat 2020; 16:1217-1227. [PMID: 32494141 PMCID: PMC7229797 DOI: 10.2147/ndt.s233622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS Ischemic stroke is the main cause of nerve damage and brain dysfunction, accompanied by strong brain cell apoptosis. This study aimed to investigate the effect of kaempferol-3-O-rhamnoside (K-3-rh) on cerebral ischemia-reperfusion (I/R) injury. METHODS AND MATERIALS A rat model of cerebral I/R injury was established. The effects of K-3-rh on cerebral infarction size, brain water content and neurological deficits in rats were evaluated. Apoptosis of ischemic brain cells after mouse I/R was observed by TUNEL staining and flow cytometry. Western blot and qRT-PCR were used to detect the effect of K-3-rh on the expression of apoptosis-related proteins. RESULTS K-3-rh can improve the neurological deficit score, reduce the infarct volume and brain water content, and inhibit cell apoptosis. In addition, K-3-rh significantly downregulated the expression of Bax and p53 and upregulated the expression of Bcl-2, and the phosphorylation level of Akt. Blockade of PI3K activity by the PI3K inhibitor wortmannin not only reversed the effects of K-3-rh on infarct volume and brain water content but also reversed the expression level of p-Akt. CONCLUSION K-3-rh had obvious neuroprotective effects on brain I/R injury and neuronal apoptosis, and its mechanism may be related to activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Juan Sun
- Rehabilitation Department, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Jian Wang
- Rehabilitation Department, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Luoman Hu
- Rehabilitation Department, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Jinfeng Yan
- Rehabilitation Department, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| |
Collapse
|
10
|
Meng Y, Liu Y, Fang N, Guo Y. Hepatoprotective effects of Cassia semen ethanol extract on non-alcoholic fatty liver disease in experimental rat. PHARMACEUTICAL BIOLOGY 2019; 57:98-104. [PMID: 30757944 PMCID: PMC6374930 DOI: 10.1080/13880209.2019.1568509] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Cassia semen (Cs), a seed of Cassia obtusifolia L. (Leguminosae), is a popular functional beverage. Previous studies reported that Cs displayed antioxidant, antifungal and strong liver protective effects. OBJECTIVE This study evaluates the hepatoprotective effects of Cs on non-alcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS Seventy-two male Wistar rats raised with high-fat diet (HFD) were randomly allotted into model, metformin (0.2 g/kg) and Cs (0.5, 1, and 2 g/kg)-treated groups. Another 12 rats were raised with normal feed as control group; all the rats were orally administrated with drugs and vehicle for 6 weeks. Alanine transferase (ALT), aspartate transaminase (AST), triglycerides (TG), total cholesterol (TC), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-8 and low density lipoprotein receptor (LDL-R) mRNA levels were measured at the end of the experiment. RESULTS Twelve weeks of HFD administration significantly increased the levels of AST, ALT, TG, TC, TNF-α, IL-6, IL-8 and MDA, decreased SOD (199.42 vs. 137.70 U/mg protein) and GSH (9.76 vs. 4.55 mg/g protein) contents, compared to control group. Cs administration group significantly decreased the elevated biomarkers with the ED50 = 1.2 g/kg for NAFLD rats. Cs treatment also prevents the decreased expression of LDL-R mRNA, and improved the histopathological changes compared to model group. CONCLUSIONS The hepatoprotective effect of Cs on NAFLD may possibly be due to its antioxidant effect. Cs may become a potent hepatoprotective agent in clinical therapy in the future.
Collapse
Affiliation(s)
- Yuanyuan Meng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Shandong, Jinan, People's Republic of China
| | - Yong Liu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Shandong, Jinan, People's Republic of China
| | - Ningning Fang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Shandong, Jinan, People's Republic of China
| | - Yongmin Guo
- Department of Anesthesiology, Qilu Hospital of Shandong University, Shandong, Jinan, People's Republic of China
- CONTACT Yongmin Guo Department of Anesthesiology, Qilu Hospital of Shandong University, 107, Wenhua Xi Road, Shandong, Jinan250012, People's Republic of China
| |
Collapse
|