1
|
Luo T, He Y, Jiang L, Yang L, Hou X, Shen G, Cui Q, Yu J, Ke J, Chen S, Zhang Z. Flavor perception and biological activities of bitter compounds in food. Food Chem 2025; 477:143532. [PMID: 40057996 DOI: 10.1016/j.foodchem.2025.143532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Bitter compounds in food produce a distinct bitter taste that significantly influences overall flavor and quality, while also possessing valuable biological activities. Therefore, a systematic review summarizing recent research advances on bitter compounds is necessary for a better understanding of them. This review discusses the sources of bitter substances in food, the mechanism of bitterness perception, their biological activities and key issues for future research. Bitter compounds in food mainly include polyphenols, alkaloids, terpenoids, bitter peptides and Maillard reaction products. Bitter substances bind to specific sites on bitter taste receptors (TAS2Rs), activating G protein-mediated downstream signaling pathways that lead to the perception of bitterness. Additionally, many bitter compounds possess biological activities, such as regulating food intake and exhibiting anti-cancer, anti-inflammatory and antioxidant activities. This review highlights the potential to exploit the bioactivity of bitter compounds to enhance the nutritional value and functionality of food.
Collapse
Affiliation(s)
- Tingting Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yanni He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Lanxin Jiang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Li Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Qiang Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jie Yu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jingxuan Ke
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, China.
| | - Shanbo Chen
- Sichuan Academy of Forestry, Chengdu, Sichuan 610081, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
2
|
Xiao X, Huang S, Yang Z, Zhu Y, Zhu L, Zhao Y, Bai J, Kim KH. Momordica charantia Bioactive Components: Hypoglycemic and Hypolipidemic Benefits Through Gut Health Modulation. J Med Food 2024; 27:589-600. [PMID: 38770678 DOI: 10.1089/jmf.2024.k.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Momordica charantia (MC), a member of the Cucurbitaceae family, is well known for its pharmacological activities that exhibit hypoglycemic and hypolipidemic properties. These properties are largely because of its abundant bioactive compounds and phytochemicals. Over the years, numerous studies have confirmed the regulatory effects of MC extract on glycolipid metabolism. However, there is a lack of comprehensive reviews on newly discovered MC-related components, such as insulin receptor-binding protein-19, adMc1, and MC protein-30 and triterpenoids 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al, and the role of MC in gut microbiota and bitter taste receptors. This review offers an up-to-date overview of the recently reported chemical compositions of MC, including polysaccharides, saponins, polyphenolics, peptides, and their beneficial effects. It also provides the latest updates on the role of MC in the regulation of gut microbiota and bitter taste receptor signaling pathways. As a result, this review will serve as a theoretical basis for potential applications in the creation or modification of MC-based nutrient supplements.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shiting Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zihan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Liu J, Guo Y, Sun J, Lei Y, Guo M, Wang L. Extraction methods, multiple biological activities, and related mechanisms of Momordica charantia polysaccharide: A review. Int J Biol Macromol 2024; 263:130473. [PMID: 38423437 DOI: 10.1016/j.ijbiomac.2024.130473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Momordica Charantia Polysaccharide (MCP) is a key bioactive compound derived from bitter melon fruit. This review summarizes the advancements in MCP research, including extraction techniques, biological activities, and mechanisms. MCP can be extracted using various methods, and has demonstrated hypoglycemic, antioxidant, anti-inflammatory, and immunoregulatory effects. Research suggests that MCP may regulate metabolic enzymes, oxidative stress reactions, and inflammatory pathways. The review highlights the potential applications of MCP in areas such as anti-diabetes, antioxidant, anti-inflammatory, and immunoregulatory research. Future research should focus on elucidating the molecular mechanisms of MCP and optimizing extraction methods. This review provides a foundation for further research and utilization of MCP.
Collapse
Affiliation(s)
- Jinshen Liu
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China.
| | - Yuying Guo
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Jie Sun
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Yuxin Lei
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Mingyi Guo
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Linhong Wang
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China.
| |
Collapse
|
4
|
Laczkó-Zöld E, Csupor-Löffler B, Kolcsár EB, Ferenci T, Nan M, Tóth B, Csupor D. The metabolic effect of Momordica charantia cannot be determined based on the available clinical evidence: a systematic review and meta-analysis of randomized clinical trials. Front Nutr 2024; 10:1200801. [PMID: 38274207 PMCID: PMC10808600 DOI: 10.3389/fnut.2023.1200801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Several studies have shown that Momordica charantia L. (Cucurbitaceae, bitter melon) has beneficial effects on metabolic syndrome (MetS) parameters and exerts antidiabetic, anti-hyperlipidemic, and anti-obesity activities. Since the findings of these studies are contradictory, the goal of this systematic review and meta-analysis was to assess the efficacy of bitter melon in the treatment of metabolic syndrome, with special emphasis on the anti-diabetic effect. Embase, Cochrane, PubMed, and Web of Science databases were searched for randomized controlled human trials (RCTs). The meta-analysis was reported according to the PRISMA statement. The primary outcomes of the review are body weight, BMI, fasting blood glucose, glycated hemoglobin A1c, systolic blood pressure, diastolic blood pressure, serum triglyceride, HDL, LDL, and total cholesterol levels. Nine studies were included in the meta-analysis with 414 patients in total and 4-16 weeks of follow-up. In case of the meta-analysis of change scores, no significant effect could be observed for bitter melon treatment over placebo on fasting blood glucose level (MD = -0.03; 95% CI: -0.38 to 0.31; I2 = 34%), HbA1c level (MD = -0.12; 95% CI: -0.35 to 0.11; I2 = 56%), HDL (MD = -0.04; 95% CI: -0.17 to 0.09; I2 = 66%), LDL (MD = -0.10; 95% CI: -0.28 to 0.08; I2 = 37%), total cholesterol (MD = -0.04; 95% CI: -0.17 to 0.09; I2 = 66%,), body weight (MD = -1.00; 95% CI: -2.59-0.59; I2 = 97%), BMI (MD = -0.42; 95% CI: -0.99-0.14; I2 = 95%), systolic blood pressure (MD = 1.01; 95% CI: -1.07-3.09; I2 = 0%) and diastolic blood pressure levels (MD = 0.24; 95% CI: -1.04-1.53; I2 = 0%). Momordica treatment was not associated with a notable change in ALT, AST, and creatinine levels compared to the placebo, which supports the safety of this plant. However, the power was overall low and the meta-analyzed studies were also too short to reliably detect long-term metabolic effects. This highlights the need for additional research into this plant in carefully planned clinical trials of longer duration.
Collapse
Affiliation(s)
- Eszter Laczkó-Zöld
- Department of Pharmacognosy and Phytotherapy, "George Emil Palade" University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Boglárka Csupor-Löffler
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Edina-Blanka Kolcsár
- Department of Pharmacognosy and Phytotherapy, "George Emil Palade" University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Tamás Ferenci
- Physiological Controls Research Center, Óbuda University, Budapest, Hungary
- Department of Statistics, Corvinus University of Budapest, Budapest, Hungary
| | - Monica Nan
- Pharmacy Department, Encompass Health Rehabilitation Hospital of Round Rock, Round Rock, TX, United States
| | - Barbara Tóth
- Institute of Clinical Pharmacy, University of Szeged, Szeged, Hungary
| | - Dezső Csupor
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szeged, Hungary
- Institute of Pharmacognosy, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Zhang Y, Lu P, Jin H, Cui J, Miao C, He L, Yu J, Ding X, Zhang H. Integrated Secondary Metabolomic and Antioxidant Ability Analysis Reveals the Accumulation Patterns of Metabolites in Momordica charantia L. of Different Cultivars. Int J Mol Sci 2023; 24:14495. [PMID: 37833943 PMCID: PMC10572697 DOI: 10.3390/ijms241914495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Bitter gourd (Momordica charantia L.) contains rich bioactive ingredients and secondary metabolites; hence, it has been used as medicine and food product. This study systematically quantified the nutrient contents, the total content of phenolic acids (TPC), flavonoids (TFC), and triterpenoids (TTC) in seven different cultivars of bitter gourd. This study also estimated the organic acid content and antioxidative capacity of different cultivars of bitter gourd. Although the TPC, TFC, TTC, organic acid content, and antioxidative activity differed significantly among different cultivars of bitter gourd, significant correlations were also observed in the obtained data. In the metabolomics analysis, 370 secondary metabolites were identified in seven cultivars of bitter gourd; flavonoids and phenolic acids were significantly more. Differentially accumulated metabolites identified in this study were mainly associated with secondary metabolic pathways, including pathways of flavonoid, flavonol, isoflavonoid, flavone, folate, and phenylpropanoid biosyntheses. A number of metabolites (n = 27) were significantly correlated (positive or negative) with antioxidative capacity (r ≥ 0.7 and p < 0.05). The outcomes suggest that bitter gourd contains a plethora of bioactive compounds; hence, bitter gourd may potentially be applied in developing novel molecules of medicinal importance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (P.L.); (H.J.); (J.C.); (C.M.); (L.H.); (J.Y.)
| | - Hongmei Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (P.L.); (H.J.); (J.C.); (C.M.); (L.H.); (J.Y.)
| |
Collapse
|
6
|
Cortez-Navarrete M, Pérez-Rubio KG, Escobedo-Gutiérrez MDJ. Role of Fenugreek, Cinnamon, Curcuma longa, Berberine and Momordica charantia in Type 2 Diabetes Mellitus Treatment: A Review. Pharmaceuticals (Basel) 2023; 16:ph16040515. [PMID: 37111272 PMCID: PMC10145167 DOI: 10.3390/ph16040515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease that has become a major global health concern. Given the efficacy of antidiabetic drugs, pharmacological therapy is considered the first-line treatment of T2DM; however, due to their potential side effects and high costs, new and cost-effective treatments with minimal side effects are needed. Medicinal plants have been used for centuries as part of traditional medicine to treat T2DM. Among these, fenugreek, cinnamon, Curcuma longa, berberine, and Momordica charantia have demonstrated different degrees of hypoglycemic activity in clinical studies and animal models. Therefore, the aim of this review is to synthesize the mechanisms of action of five medicinal plants, as well as the experimental and clinical evidence of their hypoglycemic activity from the published literature.
Collapse
Affiliation(s)
- Marisol Cortez-Navarrete
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Jalisco, Mexico
| | - Karina G. Pérez-Rubio
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Jalisco, Mexico
| | - Miriam de J. Escobedo-Gutiérrez
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
7
|
Xu B, Li Z, Zeng T, Zhan J, Wang S, Ho CT, Li S. Bioactives of Momordica charantia as Potential Anti-Diabetic/Hypoglycemic Agents. Molecules 2022; 27:2175. [PMID: 35408574 PMCID: PMC9000558 DOI: 10.3390/molecules27072175] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Momordica charantia L., a member of the Curcubitaceae family, has traditionally been used as herbal medicine and as a vegetable. Functional ingredients of M. charantia play important roles in body health and human nutrition, which can be used directly or indirectly in treating or preventing hyperglycemia-related chronic diseases in humans. The hypoglycemic effects of M. charantia have been known for years. In this paper, the research progress of M. charantia phytobioactives and their hypoglycemic effects and related mechanisms, especially relating to diabetes mellitus, has been reviewed. Moreover, the clinical application of M. charantia in treating diabetes mellitus is also discussed, hoping to broaden the application of M. charantia as functional food.
Collapse
Affiliation(s)
- Bilin Xu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Zhiliang Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Ting Zeng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Jianfeng Zhan
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Shuzhen Wang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Shiming Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| |
Collapse
|