1
|
Zeppieri M, Gagliano C, Spadea L, Salati C, Chukwuyem EC, Enaholo ES, D’Esposito F, Musa M. From Eye Care to Hair Growth: Bimatoprost. Pharmaceuticals (Basel) 2024; 17:561. [PMID: 38794131 PMCID: PMC11124470 DOI: 10.3390/ph17050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Bimatoprost has emerged as a significant medication in the field of medicine over the past several decades, with diverse applications in ophthalmology, dermatology, and beyond. Originally developed as an ocular hypotensive agent, it has proven highly effective in treating glaucoma and ocular hypertension. Its ability to reduce intraocular pressure has established it as a first-line treatment option, improving management and preventing vision loss. In dermatology, bimatoprost has shown promising results in the promotion of hair growth, particularly in the treatment of alopecia and hypotrichosis. Its mechanism of action, stimulating the hair cycle and prolonging the growth phase, has led to the development of bimatoprost-containing solutions for enhancing eyelash growth. AIM The aim of our review is to provide a brief description, overview, and studies in the current literature regarding the versatile clinical use of bimatoprost in recent years. This can help clinicians determine the most suitable individualized therapy to meet the needs of each patient. METHODS Our methods involve a comprehensive review of the latest advancements reported in the literature in bimatoprost formulations, which range from traditional eye drops to sustained-release implants. These innovations offer extended drug delivery, enhance patient compliance, and minimize side effects. RESULTS The vast literature published on PubMed has confirmed the clinical usefulness of bimatoprost in lowering intraocular pressure and in managing patients with glaucoma. Numerous studies have shown promising results in dermatology and esthetics in promoting hair growth, particularly in treating alopecia and hypotrichosis. Its mechanism of action involves stimulating the hair cycle and prolonging the growth phase, leading to the development of solutions that enhance eyelash growth. The global use of bimatoprost has expanded significantly, with applications growing beyond its initial indications. Ongoing research is exploring its potential in glaucoma surgery, neuroprotection, and cosmetic procedures. CONCLUSIONS Bimatoprost has shown immense potential for addressing a wide range of therapeutic needs through various formulations and advancements. Promising future perspectives include the exploration of novel delivery systems such as contact lenses and microneedles to further enhance drug efficacy and patient comfort. Ongoing research and future perspectives continue to shape its role in medicine, promising further advancements and improved patient outcomes.
Collapse
Affiliation(s)
- Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “ Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | | | | | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria;
| |
Collapse
|
2
|
Asendrych-Wicik K, Zarczuk J, Walaszek K, Ciach T, Markowicz-Piasecka M. Trends in development and quality assessment of pharmaceutical formulations - F2α analogues in the glaucoma treatment. Eur J Pharm Sci 2023; 180:106315. [PMID: 36367507 DOI: 10.1016/j.ejps.2022.106315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022]
Abstract
The ocular delivery route presents a number of challenges in terms of drug administration and bioavailability. The low bioavailability following topical ophthalmic administration shows that there is a clear need for in-depth research aimed at finding both more efficacious molecules and formulations precisely targeted at the site of action. Continuous technological development will eventually result in improved bioavailability, lower dosages, reduced toxicity, fewer adverse effects, and thus better patient compliance and treatment efficacy. Technological development, as well as increasingly stringent quality requirements, help stimulate analytical progress. This is also clearly evident in the case of medicinal products used in the treatment of glaucoma, which are the subject of this review. Impurity profiling of PGF2α analogues, either in the pure substance or in the finished formulation, is a crucial step in assessing their quality. The development of specific, accurate and precise stability-indicating analytical methods for determining the content and related substances seems to be an important issue in relation to this tasks. A total of 27 official and in-house analytical methods are presented that are used for the analysis of latanoprost, travoprost and bimatoprost. The conditions for chromatographic separation with UV or MS/MS detection and the available results obtained during method validation are described. In addition, several aspects are discussed, with particular emphasis on the instability of the analogues in aqueous solution and the phenomenon of isomerism, which affects a potentially large number of degradation products.
Collapse
Affiliation(s)
- Katarzyna Asendrych-Wicik
- Analytical Laboratory, Research and Development Department, Polfa Warszawa S.A., ul. Karolkowa 22/24, Warsaw 01-207, Poland; Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Łódź, ul. Muszyńskiego 1, Łódź 90-151, Poland
| | - Jakub Zarczuk
- Liquid Dosage Form Laboratory, Research and Development Department, Polfa Warszawa S.A., Karolkowa 22/24, Warsaw 01-207, Poland; BioMedical Engineering Laboratory Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Waryńskiego 1, Warsaw 00-645, Poland.
| | - Katarzyna Walaszek
- Technical Research and Development Quality Assurance, Polpharma Bioologics, ul. Spółdzielcza 4, Duchnice 05-850, Poland
| | - Tomasz Ciach
- BioMedical Engineering Laboratory Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Waryńskiego 1, Warsaw 00-645, Poland
| | - Magdalena Markowicz-Piasecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Łódź, ul. Muszyńskiego 1, Łódź 90-151, Poland
| |
Collapse
|
3
|
Kompella UB, Hartman RR, Patil MA. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Prog Retin Eye Res 2021; 82:100901. [PMID: 32891866 PMCID: PMC8317199 DOI: 10.1016/j.preteyeres.2020.100901] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Although once daily anti-glaucoma drug therapy is a current clinical reality, most therapies require multiple dosing and there is an unmet need to develop convenient, safe, and effective sustained release drug delivery systems for long-term treatment to improve patient adherence and outcomes. One of the first sustained release drug delivery systems was approved for the reduction of intraocular pressure in glaucoma patients. It is a polymeric reservoir-type insert delivery system, Ocusert™, placed under the eyelid and on the ocular surface for zero-order drug release over one week. The insert, marketed in two strengths, released pilocarpine on the eye surface. While many clinicians appreciated this drug product, it was eventually discontinued. No similar sustained release non-invasive drug delivery system has made it to the market to date for treating glaucoma. Drug delivery systems under development include punctal plugs, ring-type systems, contact lenses, implants, microspheres, nanospheres, gels, and other depot systems placed in the extraocular, periocular, or intraocular regions including intracameral, supraciliary, and intravitreal spaces. This article discusses the advantages and disadvantages of the various routes of administration and delivery systems for sustained glaucoma therapy. It also provides the reader with some examples and discussion of drug delivery systems that could potentially be applied for glaucoma treatment. Interestingly, one intracamerally injected implant, Durysta™, was approved recently for sustained intraocular pressure reduction. However, long-term acceptance of such devices has yet to be established. The ultimate success of the delivery system will depend on efficacy relative to eye drop dosing, safety, reimbursement options, and patient acceptance. Cautious development efforts are warranted considering prior failed approaches for sustained glaucoma drug delivery. Neuroprotective approaches for glaucoma therapy including cell, gene, protein, and drug-combination therapies, mostly administered intravitreally, are also rapidly progressing towards assessment in humans.
Collapse
Affiliation(s)
- Uday B Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Rachel R Hartman
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhoosudan A Patil
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
da Silva PHR, Cunha Júnior ADS, Pianetti GA, Fernandes C. Chromatographic bioanalysis of antiglaucoma drugs in ocular tissues. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1166:122388. [PMID: 33578274 DOI: 10.1016/j.jchromb.2020.122388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Glaucoma is a heterogeneous group of multifactorial optic neuropathies and the leading cause of irreversible blindness and visual impairment. Epidemiological data has estimated that in 2020 there will be more than 80 million individuals affected by the disease worldwide. Nowadays, intraocular pressure (IOP) lowering is carried out mainly by pharmacotherapy, with different drugs. The study of ocular pharmacokinetics of antiglaucoma drugs, crucial for better understanding of ocular distribution, bioavailability, and pharmacodynamic parameters, can benefit the development of antiglaucoma drugs or formulations. Bioanalysis of drugs in ocular matrices is still underestimated, since it is challenging and rarely performed. Therefore, this review summarized the chromatographic methods employed for the quantification of several antiglaucoma drugs in different ocular matrices, discussing bioanalytical steps, such as sample preparation, separation, and detection. Animals and matrices as well as the challenges faced in ocular bioanalysis were also discussed. Ocular bioanalysis has been performed mainly in rabbits, the most adequate animal model for ocular studies. The matrix most used is aqueous humor, because it is cleaner and easier to sample. Sample preparation was carried out primarily employing classic techniques, such as liquid-liquid extraction, protein precipitation, and solid-phase extraction, with conventional solvents and sorbents. Chromatographic separation was achieved predominantly by reversed-phase liquid chromatography. Ultraviolet spectrophotometry and tandem mass spectrometry prevailed for detection, although other techniques, such as fluorimetry, have also been used. It was evidenced that more efforts must be directed towards miniaturized, eco-friendly, and non-terminal sampling for sample preparation. In its turn, ultra high-performance liquid chromatography and mass spectrometry should gain prominence in ocular bioanalysis for separation and detection, respectively, since it combines high separation capacity with selectivity and sensitivity, in addition to being an environmental friendly approach.
Collapse
Affiliation(s)
- Pedro Henrique Reis da Silva
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Armando da Silva Cunha Júnior
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Gerson Antônio Pianetti
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Christian Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Tabak S, Schreiber-Avissar S, Beit-Yannai E. Influence of Anti-Glaucoma Drugs on Uptake of Extracellular Vesicles by Trabecular Meshwork Cells. Int J Nanomedicine 2021; 16:1067-1081. [PMID: 33603369 PMCID: PMC7886088 DOI: 10.2147/ijn.s283164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/07/2020] [Indexed: 01/08/2023] Open
Abstract
Background Extracellular vesicles (EVs) are capable of manipulating cellular functions for the maintenance of biological homeostasis and disease progression, such as in glaucoma disease. These nano-particles carry a net negative surface charge under physiological conditions that can contribute to EVs:EVs interaction and their uptake by target cells. Purpose To investigate the effect of glaucoma drugs on EVs physicochemical characters and the implications for their uptake by trabecular meshwork (TM) cells. Methods TM or non-pigmented ciliary epithelium (NPCE) cells derived EVs were incubated with commercial anti-glaucoma formulation, Timolol maleate, Brinzolamide or Benzalkonium Cl and their size and zeta potential (ZP) and physical interactions of EVs derived from NPCE cells and TM cells were evaluated. The contribution of EVs interactions to up-take by TM cells was examined using fluorescence-activated cell sorting. Results EVs size and ZP were affected by the ionic strength of the buffer rather than EVs type. Commercial glaucoma eye drops, including β-blocker, α-2-agonist and prostaglandin analogs, reduced NPCE EVs ZP, whereas exposure of EVs to carbonic anhydrase inhibitor caused an increase in the ZP. A correlation was found between increased ZP values and increased NPCE EVs uptake by TM cells. We were able to show that Benzalkonium chloride stands behind this ZP effect and not Timolol or Brinzolamide. Conclusion Altogether, our findings demonstrate that EVs size, surface membrane charge, and ionic strength of the surrounding have an impact on EVs:EVs interactions, which affect the uptake of NPCE EVs by TM cells.
Collapse
Affiliation(s)
- Saray Tabak
- Clinical Biochemistry and Pharmacology Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sofia Schreiber-Avissar
- Clinical Biochemistry and Pharmacology Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Elie Beit-Yannai
- Clinical Biochemistry and Pharmacology Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
6
|
Sharif NA. Discovery to Launch of Anti-allergy (Emadine; Patanol/Pataday/Pazeo) and Anti-glaucoma (Travatan; Simbrinza) Ocular Drugs, and Generation of Novel Pharmacological Tools Such as AL-8810. ACS Pharmacol Transl Sci 2020; 3:1391-1421. [PMID: 33344909 DOI: 10.1021/acsptsci.0c00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The eye and eyesight are exquistly designed and are precious, and yet we often take them for granted. Good vision is critical for our long-term survival and for humanity's enduring progress. Unfortunately, since ocular diseases do not culminate in life-and-death scenarios, awareness of the plight of millions of people suffering from such eye ailments is not publicized as other diseases. However, losing eyesight or falling victim to visual impairment is a frightening outlook for most people. Glaucoma, a collection of chronic optic neuropathies, of which the most prevalent form, primary open-angle glaucoma (POAG), is the second leading cause of irreversible blindness. POAG currently afflicts >70 million people worldwide and is an insidious, progressive, silent thief of sight that is asymptomatic. On the other hand, allergic conjunctivitis (AC), and the associated rhinitis ("hay-fever"), frequently victimizes a huge number of people worldwide, especially during seasonal changes. While not life-threatening, sufferers of AC soon learn the value of drugs to treat their signs and symptoms of AC as they desire rapid relief to overcome the ocular itching/pain, redness, and tearing AC causes. Herein, I will describe the collective efforts of many researchers whose industrious, diligent, and dedicated team work resulted in the discovery, biochemical/pharmacological characterization, development and eventual launch of drugs to treat AC (e.g., olopatadine [Patanol/Pataday/Pazeo] and emedastine [Emedine]), and for treating ocular hypertension and POAG (e.g., travoprost [Travatan ] and Simbrinza). This represents a personal perspective.
Collapse
Affiliation(s)
- Najam A Sharif
- Department of Pharmacology & Neuroscience University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
7
|
Weinreb RN, Robinson MR, Dibas M, Stamer WD. Matrix Metalloproteinases and Glaucoma Treatment. J Ocul Pharmacol Ther 2020; 36:208-228. [PMID: 32233938 PMCID: PMC7232675 DOI: 10.1089/jop.2019.0146] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/17/2020] [Indexed: 01/19/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that degrade extracellular matrix (ECM) components such as collagen and have important roles in multiple biological processes, including development and tissue remodeling, both in health and disease. The activity of MMPs is influenced by the expression of MMPs and tissue inhibitors of metalloproteinase (TIMPs). In the eye, MMP-mediated ECM turnover in the juxtacanalicular region of the trabecular meshwork (TM) reduces outflow resistance in the conventional outflow pathway and helps maintain intraocular pressure (IOP) homeostasis. An imbalance in the MMP/TIMP ratio may be involved in the elevated IOP often associated with glaucoma. The prostaglandin analog/prostamide (PGA) class of topical ocular hypotensive medications used in glaucoma treatment reduces IOP by increasing outflow through both conventional and unconventional (uveoscleral) outflow pathways. Evidence from in vivo and in vitro studies using animal models and anterior segment explant and cell cultures indicates that the mechanism of IOP lowering by PGAs involves increased MMP expression in the TM and ciliary body, leading to tissue remodeling that enhances conventional and unconventional outflow. PGA effects on MMP expression are dependent on the identity and concentration of the PGA. An intracameral sustained-release PGA implant (Bimatoprost SR) in development for glaucoma treatment can reduce IOP for many months after expected intraocular drug bioavailability. We hypothesize that the higher concentrations of bimatoprost achieved in ocular outflow tissues with the implant produce greater MMP upregulation and more extensive, sustained MMP-mediated target tissue remodeling, providing an extended duration of effect.
Collapse
Affiliation(s)
- Robert N. Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California
| | | | | | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina
| |
Collapse
|
8
|
Abstract
Prostanoids (prostaglandins, prostacyclin and thromboxane) belong to the oxylipin family of biologically active lipids generated from arachidonic acid (AA). Protanoids control numerous physiological and pathological processes. Cyclooxygenase (COX) is a rate-limiting enzyme involved in the conversion of AA into prostanoids. There are two COX isozymes: the constitutive COX-1 and the inducible COX-2. COX-1 and COX-2 have similar structures, catalytic activities, and subcellular localizations but differ in patterns of expression and biological functions. Non-selective COX-1/2 or traditional, non-steroidal anti-inflammatory drugs (tNSAIDs) target both COX isoforms and are widely used to relieve pain, fever and inflammation. However, the use of NSAIDs is associated with various side effects, particularly in the gastrointestinal tract. NSAIDs selective for COX-2 inhibition (coxibs) were purposefully designed to spare gastrointestinal toxicity, but predisposed patients to increased cardiovascular risks. These health complications from NSAIDs prompted interest in the downstream effectors of the COX enzymes as novel drug targets. This chapter describes various safety issues with tNSAIDs and coxibs, and discusses the current development of novel classes of drugs targeting the prostanoid pathway, including nitrogen oxide- and hydrogen sulfide-releasing NSAIDs, inhibitors of prostanoid synthases, dual inhibitors, and prostanoid receptor agonists and antagonists.
Collapse
|
9
|
Zezula M, Ruszczak M, Maruszak W, Zagrodzka J, Chodynski M, Dams I. Development and validation of the stability indicating RP-UHPLC method for the determination of the chemical purity and assay of bimatoprost. J Pharm Biomed Anal 2019; 174:348-359. [DOI: 10.1016/j.jpba.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
|
10
|
Impagnatiello F, Bastia E, Almirante N, Brambilla S, Duquesroix B, Kothe AC, Bergamini MVW. Prostaglandin analogues and nitric oxide contribution in the treatment of ocular hypertension and glaucoma. Br J Pharmacol 2019; 176:1079-1089. [PMID: 29669171 PMCID: PMC6451067 DOI: 10.1111/bph.14328] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
In patients with ocular hypertension or glaucoma, all treatments aim to lower intraocular pressure (IOP) by modulating aqueous humour (AH) production and/or uveoscleral and trabecular meshwork/Schlemm's canal AH drainage. PG analogues are considered to be the 'gold standard' treatment and are the most frequently used IOP-lowering agents. Recent data support an important role for NO in regulating IOP. Thus, novel PG analogues carrying a NO-donating moiety were recently advanced. Latanoprostene bunod (LBN) and NCX 470, NO-donating derivatives of latanoprost and bimatoprost, respectively, are examples of such compounds. LBN ophthalmic solution, 0.024% (Vyzulta™), showed greater IOP-lowering efficacy compared with that of Xalatan® (latanoprost ophthalmic solution, 0.005%) or 0.5% timolol maleate in clinical settings. NCX 470 was found to be more effective than bimatoprost in animal models of ocular hypertension and glaucoma. Selective EP2 receptor agonists (i.e. taprenepag isopropyl, omidenepag isopropyl and aganepag isopropyl) and non-selective prostanoid receptor agonists (i.e. ONO-9054, sepetaprost isopropyl) that concomitantly stimulate FP and EP3 receptors have also been shown to hold promise as effective IOP-lowering agents. LINKED ARTICLES: This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael V W Bergamini
- Nicox Ophthalmics, Inc.Fort WorthTXUSA
- Nicox Ophthalmics, Inc.Research Triangle ParkNCUSA
| |
Collapse
|
11
|
Pietrowska K, Dmuchowska DA, Krasnicki P, Mariak Z, Kretowski A, Ciborowski M. Analysis of pharmaceuticals and small molecules in aqueous humor. J Pharm Biomed Anal 2018; 159:23-36. [PMID: 29980016 DOI: 10.1016/j.jpba.2018.06.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 01/02/2023]
Abstract
Aqueous humor (AH) is a transparent fluid found in the anterior chamber of the eye. The circulating AH nourishes the cornea and lens and removes the metabolic waste moving through the ocular chambers and drains from the eye to the venous blood. Analysis of drugs in AH is necessary to evaluate their pharmacokinetics parameters, which may be crucial to avoid potential adverse effects. Analysis of endogenous components of AH may help to understand its physiology as well as changes evoked by pathological situation. This review describes analytical methods used for determination of pharmaceuticals and small endogenous molecules in AH, focusing on sample preparation procedures and analytical techniques. Studies on human and animal samples are included. After inspection and filtering of records found in PubMed about 100 research papers were selected to review. In these articles AH samples of human and rabbit origin were studied most often. Sample evaporation and reconstitution in smaller solvent volume was the most popular method for analyte pre-concentration. Acetonitrile, methanol or mixture of both solvents were used most often for protein precipitation.
Collapse
Affiliation(s)
- Karolina Pietrowska
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Diana Anna Dmuchowska
- Department of Ophthalmology, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Pawel Krasnicki
- Department of Ophthalmology, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Zofia Mariak
- Department of Ophthalmology, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| |
Collapse
|
12
|
Sharif NA, Klimko PG. Prostaglandin FP receptor antagonists: discovery, pharmacological characterization and therapeutic utility. Br J Pharmacol 2018; 176:1059-1078. [PMID: 29679483 DOI: 10.1111/bph.14335] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
In contrast to the availability of potent and selective antagonists of several prostaglandin receptor types (including DP1 , DP2 , EP and TP receptors), there has been a paucity of well-characterized, selective FP receptor antagonists. The earliest ones included dimethyl amide and dimethyl amine derivatives of PGF2α , but these have failed to gain prominence. The fluorinated PGF2α analogues, AL-8810 and AL-3138, were subsequently discovered as competitive and non-competitive FP receptor antagonists respectively. Non-prostanoid structures, such as the thiazolidinone AS604872, the D-amino acid-based oligopeptide PDC31 and its peptidomimic analogue PDC113.824 came next, but the latter two are allosteric inhibitors of FP receptor signalling. AL-8810 has a sub-micromolar in vitro potency and ≥2 log unit selectivity against most other PG receptors when tested in several cell- and tissue-based functional assays. Additionally, AL-8810 has demonstrated therapeutic efficacy as an FP receptor antagonist in animal models of stroke, traumatic brain injury, multiple sclerosis, allodynia and endometriosis. Consequently, it appears that AL-8810 has become the FP receptor antagonist of choice. LINKED ARTICLES: This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc.
Collapse
Affiliation(s)
| | - Peter G Klimko
- Novartis Pharmaceuticals Corporation, Fort Worth, TX, 76134, USA
| |
Collapse
|
13
|
Franca JR, Batista LD, Ribeiro TG, Fernandes C, Castilho RO, Faraco AAG. Development and Validation of a High Performance Liquid Chromatographic Method for Determination of Bimatoprost in Chitosan-Based Ocular Inserts. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.947533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Craven ER, Alzuhairy SA. Bimatoprost: a unique compound that in its nonhydrolyzed form is a prostamide and hydrolyzed form has prostaglandin receptor activity, for glaucoma and cosmetic indications. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.2014.917959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Edwards G, Aribindi K, Guerra Y, Lee RK, Bhattacharya SK. Phospholipid profiles of control and glaucomatous human aqueous humor. Biochimie 2014; 101:232-47. [PMID: 24561385 PMCID: PMC3995849 DOI: 10.1016/j.biochi.2014.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
To compare phospholipid (phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidylinositol) profiles of human control and glaucomatous aqueous humor (AQH). AQH samples were procured during surgery from human POAG and control subjects (n = 15 each). Samples were used following institutional review board approved protocols and adhering to the tenets of the Declaration of Helsinki. Lipid extraction was performed using a modification of the Bligh and Dyer method, protein concentrations were determined using the Bradford's method, and select samples were confirmed with Densitometry of PHAST gels. Lipids were identified and subjected to ratiometric quantification using a TSQ Quantum Access Max triple quadrupole mass spectrometer utilizing precursor ion scan (PIS) or neutral ion loss scan (NLS) using appropriate class specific lipid standards in a two step quantification process. The comparative profiles of phosphatidylcholines, phosphatidylserines, phosphatidylethanolamines and phosphatidylinositols between control and glaucomatous AQH showed several species common between them. A number of unique lipids in all four phospholipid classes were also identified in control eyes that were absent in glaucomatous eyes and vice versa. A number of phospholipids were found to be uniquely present in control, but absent in glaucomatous AQH and vice versa. Compared with a previous study of control and POAG red blood cells, a number of these phospholipids are absent locally (AQH).
Collapse
Affiliation(s)
- Genea Edwards
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Katyayini Aribindi
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Yenifer Guerra
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
16
|
Fuchshofer R, Kuespert S, Junglas B, Tamm ER. The prostaglandin f2α analog fluprostenol attenuates the fibrotic effects of connective tissue growth factor on human trabecular meshwork cells. J Ocul Pharmacol Ther 2014; 30:237-45. [PMID: 24576038 DOI: 10.1089/jop.2013.0205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED Abstract Purpose: The trabecular meshwork (TM) outflow pathways of the aqueous humor show an increase in extracellular matrix in patients with primary open-angle glaucoma (POAG). The increase in TM extracellular matrix appears to be caused by transforming growth factor-β signaling and its downstream mediator connective-tissue growth factor (CTGF). Here we studied whether treatment with the prostaglandin F2α analog fluprostenol modulates the CTGF-mediated increase of the TM extracellular matrix. METHODS Human TM cells from 3 different donors were treated with CTGF (50 ng/mL) and/or fluprostenol (10(-6) M and 10(-7) M) and were analyzed by real-time reverse transcription polymerase chain reaction and Western blotting. Cell supernatants of the treated cells were analyzed by zymography. RESULTS Treatment with CTGF induced the expression and synthesis of CTGF, fibronectin, collagen type IV and VI, while treatment with fluprostenol alone had no effects. The effects of CTGF were blocked by 1-h pretreatment with fluprostenol in a dose-dependent manner. Treatment with fluprostenol or combined fluprostenol/CTGF induced the activity of matrix metalloproteinase 2 (MMP2) in TM cells, whereas treatment with CTGF alone had no effects on MMP2 activity. CONCLUSIONS Fluprostenol blocks the fibrotic effects of CTGF on human TM cells and increases the activity of MMP2. Both effects have the distinct potential to attenuate a CTGF-mediated increase in TM extracellular matrix in patients with POAG and any effects on TM outflow resistance that may result from that.
Collapse
Affiliation(s)
- Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg , Regensburg, Germany
| | | | | | | |
Collapse
|
17
|
Shafiee A, Bowman LM, Hou E, Hosseini K. Ocular pharmacokinetics of bimatoprost formulated in DuraSite compared to bimatoprost 0.03% ophthalmic solution in pigmented rabbit eyes. Clin Ophthalmol 2013; 7:1549-56. [PMID: 23940414 PMCID: PMC3737010 DOI: 10.2147/opth.s48766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To compare the aqueous humor (AH) and iris-ciliary body (ICB) concentration of bimatoprost in rabbit eyes treated with ISV-215 (0.03% bimatoprost formulated in DuraSite) with the marketed product bimatoprost 0.03% ophthalmic solution. METHODS The left eye of rabbits received a single topical instillation of either ISV-215 (n = 32 eyes) or bimatoprost 0.03% (n = 32 eyes). At predetermined time points, levels of bimatoprost and bimatoprost acid in the AH and the ICB were quantified by HPLC-MS/MS. RESULTS Both bimatoprost and bimatoprost acid were detected in the AH and the ICB within 15 minutes of dosing. Bimatoprost acid concentrations in both compartments were markedly higher than bimatoprost. There was a statistically significant (P < 0.01) increase in the concentration of the prodrug in the AH and its acid form in the ICB in animals treated with ISV-215 compared to bimatoprost 0.03%. In the ISV-215-treated rabbit eyes, the highest concentrations of bimatoprost and bimatoprost acid were in the ICB and AH, respectively, while in the bimatoprost 0.03%-treated eyes, no differences in the drug content of the selected ocular tissues were observed. CONCLUSIONS Bimatoprost 0.03% formulated in DuraSite has superior ocular distribution and area under the curve compared to bimatoprost 0.03% in rabbit eyes. This improvement in the pharmacokinetic parameters of ISV-215 may provide us with a better platform to optimize a bimatoprost formulation that offers the same degree of efficacy in lowering intraocular pressure and improved therapeutic index in glaucomatous patients by lessening the ocular side effects associated with long-term use of topical prostaglandin F2α analogs.
Collapse
|
18
|
Aribindi K, Guerra Y, Lee RK, Bhattacharya SK. Comparative phospholipid profiles of control and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci 2013; 54:3037-44. [PMID: 23557733 DOI: 10.1167/iovs.12-10517] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We compared phospholipid (phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, and phosphatidylinositol) profiles of control and glaucomatous trabecular meshwork (TM) derived from human donors. METHODS Control TM and most primary open angle glaucoma (POAG) TM were collected from cadaver donors. A select subset of POAG surgical TM samples also were collected for analyses. Lipid extraction was performed using a modification of the Bligh and Dyer method, protein concentrations were determined using the Bradford method, and for select samples confirmed with densitometry of PHAST gels. Lipids were identified and subjected to ratiometric quantification using a TSQ quantum Access Max triple quadrupole mass spectrometer with precursor ion scan (PIS) or neutral ion loss scan (NLS), using appropriate class specific lipid standards. RESULTS The comparative profiles of phosphatidylcholine, phosphatidylserine, phosphoethanolamine, and phosphatidylinositol between control and glaucomatous TM showed several species common between them. A number of unique lipids in all four phospholipid classes also were identified in control TM that were absent in glaucoma TM and vice versa. CONCLUSIONS A number of phospholipids were found to be uniquely present in control but absent in glaucomatous TM and vice versa. Compared to a previous study of control and POAG blood, a number of these phospholipids are absent locally (TM), as well as systemically (in blood).
Collapse
Affiliation(s)
- Katyayini Aribindi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
19
|
Switching prostaglandin analogues and 24-hour IOP fluctuations. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2013; 88:130-3. [PMID: 23597641 DOI: 10.1016/j.oftal.2012.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 04/25/2012] [Accepted: 06/22/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To evaluate the fluctuations in 24h mean intraocular pressure (IOP) when switching prostaglandin analogues in patients with glaucoma. METHODS Fourteen patients with primary open angle glaucoma were evaluated with monthly 24-hour IOP curves, using a monthly switching pattern of prostaglandin analogues and brinzolamide during 3 years of follow-up. RESULTS Average IOP and average fluctuation (peak to through difference) were significantly higher with brinzolamide than with any of the analogues. There was no significant difference in either parameter with the different prostaglandin analogues, regardless of the order in which they were evaluated, or even if a month on brinzolamide was intercalated between the analogues. CONCLUSIONS Brinzolamide was less effective than prostaglandin analogues in reducing 24-hour mean IOP and its fluctuations. Switching analogues had no significant effect on mean IOP or mean IOP fluctuations.
Collapse
|
20
|
Barot M, Bagui M, Gokulgandhi MR, Mitra AK. Prodrug strategies in ocular drug delivery. Med Chem 2012; 8:753-68. [PMID: 22530907 DOI: 10.2174/157340612801216283] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 03/07/2012] [Accepted: 03/22/2012] [Indexed: 11/22/2022]
Abstract
Poor bioavailability of topically instilled drug is the major concern in the field of ocular drug delivery. Efflux transporters, static and dynamic ocular barriers often possess rate limiting factors for ocular drug therapy. Different formulation strategies like suspension, ointment, gels, nanoparticles, implants, dendrimers and liposomes have been employed in order to improve drug permeation and retention by evading rate limiting factors at the site of absorption. Chemical modification such as prodrug targeting various nutrient transporters (amino acids, peptide and vitamin) has evolved a great deal of interest to improve ocular drug delivery. In this review, we have discussed various prodrug strategies which have been widely applied for enhancing therapeutic efficacy of ophthalmic drugs. The purpose of this review is to provide an update on the utilization of prodrug concept in ocular drug delivery. In addition, this review will highlight ongoing academic and industrial research and development in terms of ocular prodrug design and delivery.
Collapse
Affiliation(s)
- Megha Barot
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | |
Collapse
|
21
|
Ichhpujani P, Katz LJ, Hollo G, Shields CL, Shields JA, Marr B, Eagle R, Alvim H, Wizov SS, Acheampong A, Chen J, Wheeler LA. Comparison of human ocular distribution of bimatoprost and latanoprost. J Ocul Pharmacol Ther 2011; 28:134-45. [PMID: 22136089 DOI: 10.1089/jop.2011.0097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE This study investigated the ocular distribution of bimatoprost, latanoprost, and their acid hydrolysis products in the aqueous humor, cornea, sclera, iris, and ciliary body of patients treated with a single topical dose of 0.03% bimatoprost or 0.005% latanoprost for understanding concentration-activity relationships. METHODS Thirty-one patients undergoing enucleation for an intraocular tumor not affecting the anterior part of the globe were randomized to treatment with bimatoprost or latanoprost at 1, 3, 6 or 12 h prior to surgery. Concentrations of bimatoprost, bimatoprost acid, latanoprost, and latanoprost acid in the human aqueous and ocular tissues were measured using liquid chromatography tandem mass spectrometry. RESULTS Following topical administration, intact bimatoprost was distributed in human eyes with a rank order of cornea/sclera >iris/ciliary body >aqueous humor. Bimatoprost acid was also detected in these tissues, where its low levels in the cornea relative to that of latanoprost acid indicated that bimatoprost hydrolysis was limited. Latanoprost behaved as a prodrug that entered eyes predominantly via the corneal route. Levels of latanoprost acid were distributed as cornea >>aqueous humor>iris>sclera>ciliary body. CONCLUSIONS Our study provided experimental evidence that levels of bimatoprost in relevant ocular tissues, and not only aqueous humor, are needed to understand the mechanisms by which bimatoprost lowers intraocular pressure (IOP) in human subjects. The data suggest that bimatoprost reached the target tissues favoring the conjunctival/scleral absorption route. Findings of intact bimatoprost in the target ciliary body indicated its direct involvement in reducing IOP. However, bimatoprost acid may have only a limited contribution on the basis that bimatoprost has greater/similar IOP-lowering efficacy than latanoprost, yet bimatoprost acid levels were a fraction of latanoprost acid levels in the aqueous humor and cornea and only sporadically detectable in the ciliary body. In this report, human ocular tissues were examined concurrently with aqueous humor for the in vivo distribution of bimatoprost, bimatoprost acid, latanoprost, and latanoprost acid.
Collapse
Affiliation(s)
- Parul Ichhpujani
- Anne V. Goldberg Glaucoma Service, Willis Eye Institute, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fukano Y, Kawazu K, Akaishi T, Bezwada P, Pellinen P. Metabolism and Ocular Tissue Distribution of an Antiglaucoma Prostanoid, Tafluprost, After Ocular Instillation to Monkeys. J Ocul Pharmacol Ther 2011; 27:251-9. [DOI: 10.1089/jop.2010.0178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yasufumi Fukano
- Research and Development Center, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Japan
| | - Kouichi Kawazu
- Research and Development Center, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Japan
| | - Takahiro Akaishi
- Research and Development Center, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Japan
| | - Padma Bezwada
- Pharmaceutical and Preclinical Department, Santen Inc., Napa, California
| | | |
Collapse
|