1
|
Lawal I, Rohilla P, Rodriguez E, Pham P, Marston J. Delivery of viscous drops and jets to eyeball replicas. Int J Pharm 2025; 674:125400. [PMID: 40054678 DOI: 10.1016/j.ijpharm.2025.125400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/18/2025]
Abstract
Front-of-the-eye (FOTE) droplet-based drug delivery presents a challenging fluid dynamics phenomenon, where many patients either miss their target or blink prematurely, leading to significant drug wastage and poor bioavailability. In this study, we investigate the influence of fluid properties and impact speed on the impact-spreading process on eyeball replica substrates in the context of both drops and jets to identify optimal parameters for maximum spreading, which has implications for bioavailability. Additionally, we investigate the role of the micro-scale protective tear film by coating the substrates with artificial tears. Our findings reveal that the presence of a tear film enhances the spreading of eye drops, and the spreading dynamics of various Newtonian and non-Newtonian fluids on both dry and wet substrates can be described by a universal scaling law.
Collapse
Affiliation(s)
- Idera Lawal
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Pankaj Rohilla
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Eliana Rodriguez
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Phuong Pham
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Jeremy Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America.
| |
Collapse
|
2
|
Sarkar T, Gogoi NR, Jana BK, Mazumder B. Formulation Advances in Posterior Segment Ocular Drug Delivery. J Ocul Pharmacol Ther 2025; 41:101-130. [PMID: 39842469 DOI: 10.1089/jop.2024.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Posterior segment ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and retinal vein occlusion, are leading causes of vision impairment and blindness worldwide. Effective management of these conditions remains a formidable challenge due to the unique anatomical and physiological barriers of the eye, including the blood-retinal barrier and rapid drug clearance mechanisms. To address these hurdles, nanostructured drug delivery systems are proposed to overcome ocular barriers, target the retina, and enhance permeation while ensuring controlled release. Traditional therapeutic approaches, such as intravitreal injections, pose significant drawbacks, including patient discomfort, poor compliance, and potential complications. Therefore, understanding the physiology and clearance mechanism of eye could aid in the design of novel formulations that could be noninvasive and deliver drugs to reach the target site is pivotal for effective treatment strategies. This review focuses on recent advances in formulation strategies for posterior segment ocular drug delivery, highlighting their potential to overcome these limitations. Furthermore, the potential of nanocarrier systems such as in-situ gel, niosomes, hydrogels, dendrimers, liposomes, nanoparticles, and nanoemulsions for drug delivery more effectively and selectively is explored, and supplemented with illustrative examples, figures, and tables. This review aims to provide insights into the current state of posterior segment drug delivery, emphasizing the need for interdisciplinary approaches to develop patient-centric, minimally invasive, and effective therapeutic solutions.
Collapse
Affiliation(s)
- Tumpa Sarkar
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
3
|
Tafti MF, Fayyaz Z, Aghamollaei H, Jadidi K, Faghihi S. Drug delivery strategies to improve the treatment of corneal disorders. Heliyon 2025; 11:e41881. [PMID: 39897787 PMCID: PMC11783021 DOI: 10.1016/j.heliyon.2025.e41881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Anterior eye disorders including dry eye syndrome, keratitis, chemical burns, and trauma have varying prevalence rates in the world. Classical dosage forms based-topical ophthalmic drugs are popular treatments for managing corneal diseases. However, current dosage forms of ocular drugs can be associated with major challenges such as the short retention time in the presence of ocular barriers. Developing alternative therapeutic methods is required to overcome drug bioavailability from ocular barriers. Nanocarriers are major platforms and promising candidates for the administration of ophthalmic drugs in an adjustable manner. This paper briefly introduces the advantages, disadvantages, and characteristics of delivery systems for the treatment of corneal diseases. Additionally, advanced technologies such as 3D printing are being considered to fabricate ocular drug carriers and determine drug dosages for personalized treatment. This comprehensive review is gathered through multiple databases such as Google Scholar, PubMed, and Web of Science. It explores information around "ocular drug delivery systems'', "nano-based drug delivery systems'', "engineered nanocarriers'', and "advanced technologies to fabricate personalized drug delivery systems''.
Collapse
Affiliation(s)
- Mahsa Fallah Tafti
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Zeinab Fayyaz
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| |
Collapse
|
4
|
Khan MS, Murthy A, Ahmed T. Advancements in Ocular Modelling and Simulations: Key Considerations and Case Studies. AAPS PharmSciTech 2024; 26:14. [PMID: 39690355 DOI: 10.1208/s12249-024-03001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
This review paper discusses the key aspects of ocular biopharmaceutics, with emphasis on the crucial role played by ocular compartmental modelling and simulation in deciphering physiological conditions related to various eye diseases. It describes eye's intricate structure and function and the need for precise and targeted drug delivery systems to address prevalent eye conditions. The review categorizes and discusses various formulations employed in ocular drug delivery, delineating their respective advantages and limitations. Additionally, it probes the challenges inherent in diverse routes of drug administration for ocular therapies and provides insights into the complexities of achieving optimal drug concentrations at the target site within the eye. The central theme of this work is the ocular compartmental modelling and simulations. Hence, this works discusses on the nuanced understanding of physiological conditions within the eye, drug distribution, drug release kinetics, and key considerations for ocular compartmental modelling and simulations. By combining information from various sources, this review aims to serve as a comprehensive reference for researchers, clinicians, and pharmaceutical developers. It covers the multifaceted landscape of ocular biopharmaceutics and the transformative impact of modelling and simulation in optimizing ocular drug delivery strategies.
Collapse
Affiliation(s)
- Mohammed Shareef Khan
- Biopharmaceutics - Biopharmaceutics and Bioequivalence, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad, India.
| | - Aditya Murthy
- Biopharmaceutics - Biopharmaceutics and Bioequivalence, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad, India
| | - Tausif Ahmed
- Biopharmaceutics and Bioanalytical - Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad, India
| |
Collapse
|
5
|
Cooper RC, Wang J, Yang H. Injectable Dendrimer Hydrogel Delivers Melphalan in Both Conjugated and Free Forms for Retinoblastoma. Biomacromolecules 2024; 25:5928-5937. [PMID: 39189328 PMCID: PMC11443594 DOI: 10.1021/acs.biomac.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report the successful synthesis of an injectable dendrimer hydrogel (DH) carrying melphalan, a clinical drug for retinoblastoma treatment, in both conjugated and free forms. Polyamidoamine (PAMAM) dendrimer generation 5 (G5) is surface-modified with an acid-sensitive acetal-dibenzocyclooctyne linker and then undergoes azide-alkyne cycloaddition with melphalan-PEG-N3 conjugate to form G5-acetal-melphalan. During the DH gelation between G5-acetal-melphalan and PEG-diacrylate, free melphalan is added, resulting in a hydrogel (G5-acetal-melphalan-DH/melphalan) that carries the drug in both conjugated and free forms. Melphalan is slowly released from G5-acetal-melphalan-DH/melphalan, with the conjugated melphalan released more quickly at pH 5.3 due to acid-triggered acetal bond cleavage. The formulation's in vitro safety and efficacy were established on human corneal epithelia (HCE-2) and retinoblastoma cells (Y79). In an in vivo Y79 tumor xenograft model of retinoblastoma, intratumorally injected G5-melphalan-DH formulation prolonged tumor suppression. This injectable, multimodal, pH-responsive formulation shows promise for intravitreal injection to treat retinoblastoma.
Collapse
Affiliation(s)
- Remy C. Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
6
|
Hu T, Zhou T, Goit RK, Tam KC, Chan YK, Lam WC, Lo ACY. Bioactive Glial-Derived Neurotrophic Factor from a Safe Injectable Collagen-Alginate Composite Gel Rescues Retinal Photoreceptors from Retinal Degeneration in Rabbits. Mar Drugs 2024; 22:394. [PMID: 39330275 PMCID: PMC11433152 DOI: 10.3390/md22090394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
The management of vision-threatening retinal diseases remains challenging due to the lack of an effective drug delivery system. Encapsulated cell therapy (ECT) offers a promising approach for the continuous delivery of therapeutic agents without the need for immunosuppressants. In this context, an injectable and terminable collagen-alginate composite (CAC) ECT gel, designed with a Tet-on pro-caspase-8 system, was developed as a safe intraocular drug delivery platform for the sustained release of glial-cell-line-derived neurotrophic factor (GDNF) to treat retinal degenerative diseases. This study examined the potential clinical application of the CAC ECT gel, focusing on its safety, performance, and termination through doxycycline (Dox) administration in the eyes of healthy New Zealand White rabbits, as well as its therapeutic efficacy in rabbits with sodium-iodate (SI)-induced retinal degeneration. The findings indicated that the CAC ECT gel can be safely implanted without harming the retina or lens, displaying resistance to degradation, facilitating cell attachment, and secreting bioactive GDNF. Furthermore, the GDNF levels could be modulated by the number of implants. Moreover, Dox administration was effective in terminating gel function without causing retinal damage. Notably, rabbits with retinal degeneration treated with the gels exhibited significant functional recovery in both a-wave and b-wave amplitudes and showed remarkable efficacy in reducing photoreceptor apoptosis. Given its biocompatibility, mechanical stability, controlled drug release, terminability, and therapeutic effectiveness, our CAC ECT gel presents a promising therapeutic strategy for various retinal diseases in a clinical setting, eliminating the need for immunosuppressants.
Collapse
Affiliation(s)
- Tingyu Hu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Ting Zhou
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Rajesh Kumar Goit
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
- Jules Stein Eye Institute, Los Angeles, CA 90095, USA
| | - Ka Cheung Tam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Wai-Ching Lam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| |
Collapse
|
7
|
Biswas A, Kumar S, Choudhury AD, Bisen AC, Sanap SN, Agrawal S, Mishra A, Verma SK, Kumar M, Bhatta RS. Polymers and their engineered analogues for ocular drug delivery: Enhancing therapeutic precision. Biopolymers 2024; 115:e23578. [PMID: 38577865 DOI: 10.1002/bip.23578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Ocular drug delivery is constrained by anatomical and physiological barriers, necessitating innovative solutions for effective therapy. Natural polymers like hyaluronic acid, chitosan, and gelatin, alongside synthetic counterparts such as PLGA and PEG, have gained prominence for their biocompatibility and controlled release profiles. Recent strides in polymer conjugation strategies have enabled targeted delivery through ligand integration, facilitating tissue specificity and cellular uptake. This versatility accommodates combined drug delivery, addressing diverse anterior (e.g., glaucoma, dry eye) and posterior segment (e.g., macular degeneration, diabetic retinopathy) afflictions. The review encompasses an in-depth exploration of each natural and synthetic polymer, detailing their individual advantages and disadvantages for ocular drug delivery. By transcending ocular barriers and refining therapeutic precision, these innovations promise to reshape the management of anterior and posterior segment eye diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
8
|
Zhang D, He J, Hua SY, Li Y, Zhou M. Reactive Oxygen Species-Responsive Dual Anti-Inflammatory and Antioxidative Nanoparticles for Anterior Uveitis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38656895 DOI: 10.1021/acsami.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Anterior uveitis (AU) is an immune-mediated inflammatory disease that results in iritis, cyclitis, glaucoma, cataracts, and even a loss of vision. The frequent and long-term administration of corticosteroid drugs is limited in the clinic owing to the side effects and patient noncompliance with the drugs. Therefore, specifically delivering drugs to inflammatory anterior segment tissues and reducing the topical application dosage of the drug are still a challenge. Here, we developed dual dexamethasone (Dex) and curcumin (Cur)-loaded reactive oxygen species (ROS)-responsive nanoparticles (CPDC NPs) to treat anterior uveitis. The CPDC NPs demonstrated both anti-inflammatory and antioxidative effects, owing to their therapeutic characteristics of dexamethasone and curcumin, respectively. The CPDC NPs could effectively release dexamethasone and curcumin in the oxidizing physiological environment of the inflammation tissue. The CPDC NPs can effectively internalize by activated macrophage cells, subsequently suppressing the proinflammatory factor expression. Moreover, the CPDC NPs can inhibit ROS and inflammation via nuclear transcription factor E2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway activation. In an endotoxin-induced uveitis rabbit model, the CPDC NPs show a therapeutic effect that is better than that of either free drugs or commercial eye drops. Importantly, the CPDC NPs with a lower dexamethasone dosage could reduce the side effects significantly. Taken together, we believe that the dual-drug-loaded ROS-responsive NPs could effectively target and inhibit inflammation and have the potential for anterior uveitis treatment in clinical practice.
Collapse
Affiliation(s)
- Dike Zhang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Department of Ophthalmology, Jining Medical University Affiliated Hospital, Jining 272000, China
| | - Jian He
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Shi Yuan Hua
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Yonghua Li
- Department of Ophthalmology, Jining Medical University Affiliated Hospital, Jining 272000, China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
9
|
Padaga SG, Bhatt H, Ch S, Paul M, Itoo AM, Ghosh B, Roy S, Biswas S. Glycol Chitosan-Poly(lactic acid) Conjugate Nanoparticles Encapsulating Ciprofloxacin: A Mucoadhesive, Antiquorum-Sensing, and Biofilm-Disrupting Treatment Modality for Bacterial Keratitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18360-18385. [PMID: 38573741 DOI: 10.1021/acsami.3c18061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Bacterial keratitis (BK) causes visual morbidity/blindness if not treated effectively. Here, ciprofloxacin (CIP)-loaded nanoparticles (NPs) using glycol chitosan (GC) and poly(lactic acid) (PLA) conjugate at three different ratios (CIP@GC(PLA) NPs (1:1,5,15)) were fabricated. CIP@GC(PLA) NPs (1:1) were more effective than other tested ratios, indicating the importance of optimal hydrophobic/hydrophilic balance for corneal penetration and preventing bacterial invasion. The CIP@GC(PLA) (NPs) (1:1) realized the highest association with human corneal epithelial cells, which were nonirritant to the hen's egg-chorioallantoic membrane test (HET-CAM test) and demonstrated significant antibacterial response in the in vitro minimum inhibitory, bactericidal, live-dead cells, zone of inhibition, and biofilm inhibition assays against the keratitis-inducing pathogen Pseudomonas aeruginosa. The antiquorum sensing activity of GC has been explored for the first time. The NPs disrupted the bacterial quorum sensing by inhibiting the production of virulence factors, including acyl homoserine lactones, pyocyanin, and motility, and caused significant downregulation of quorum sensing associated genes. In the in vivo studies, CIP@GC(PLA) NPs (1:1) displayed ocular retention in vivo (∼6 h) and decreased the opacity and the bacterial load effectively. Overall, the CIP@GC(PLA) NP (1:1) is a biofilm-disrupting antiquorum sensing treatment regimen with clinical translation potential in BK.
Collapse
Affiliation(s)
- Sri Ganga Padaga
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Himanshu Bhatt
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, Kallam Anji Reddy Campus, L. V. Prasad Eye Institute, Hyderabad, Telangana 500034, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| |
Collapse
|
10
|
Qin Z, Li B, Deng Q, Wen Y, Feng S, Duan C, Zhao B, Li H, Gao Y, Ban J. Polymer Nanoparticles with 2-HP-β-Cyclodextrin for Enhanced Retention of Uptake into HCE-T Cells. Molecules 2024; 29:658. [PMID: 38338402 PMCID: PMC10856407 DOI: 10.3390/molecules29030658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Triamcinolone acetonide (TA), a medium-potency synthetic glucocorticoid, is primarily employed to treat posterior ocular diseases using vitreous injection. This study aimed to design novel ocular nanoformulation drug delivery systems using PLGA carriers to overcome the ocular drug delivery barrier and facilitate effective delivery into the ocular tissues after topical administration. The surface of the PLGA nanodelivery system was made hydrophilic (2-HP-β-CD) through an emulsified solvent volatilization method, followed by system characterization. The mechanism of cellular uptake across the corneal epithelial cell barrier used rhodamine B (Rh-B) to prepare fluorescent probes for delivery systems. The triamcinolone acetonide (TA)-loaded nanodelivery system was validated by in vitro release behavior, isolated corneal permeability, and in vivo atrial hydrodynamics. The results indicated that the fluorescent probes, viz., the Rh-B-(2-HP-β-CD)/PLGA NPs and the drug-loaded TA-(2-HP-β-CD)/PLGA NPs, were within 200 nm in size. Moreover, the system was homogeneous and stable. The in vitro transport mechanism across the epithelial barrier showed that the uptake of nanoparticles was time-dependent and that NPs were actively transported across the epithelial barrier. The in vitro release behavior of the TA-loaded nanodelivery systems revealed that (2-HP-β-CD)/PLGA nanoparticles could prolong the drug release time to up to three times longer than the suspensions. The isolated corneal permeability demonstrated that TA-(2-HP-β-CD)/PLGA NPs could extend the precorneal retention time and boost corneal permeability. Thus, they increased the cumulative release per unit area 7.99-fold at 8 h compared to the suspension. The pharmacokinetics within the aqueous humor showed that (2-HP-β-CD)/PLGA nanoparticles could elevate the bioavailability of the drug, and its Cmax was 51.91 times higher than that of the triamcinolone acetonide aqueous solution. Therefore, (2-HP-β-CD)/PLGA NPs can potentially elevate transmembrane uptake, promote corneal permeability, and improve the bioavailability of drugs inside the aqueous humor. This study provides a foundation for future research on transocular barrier nanoformulations for non-invasive drug delivery.
Collapse
Affiliation(s)
- Zhenmiao Qin
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Baohua Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Q.D.); (Y.W.)
| | - Qiyi Deng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Q.D.); (Y.W.)
| | - Yifeng Wen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Q.D.); (Y.W.)
| | - Shiquan Feng
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Chengcheng Duan
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Beicheng Zhao
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Hailong Li
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Yanan Gao
- Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (Z.Q.); (S.F.); (C.D.); (B.Z.); (H.L.)
| | - Junfeng Ban
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.L.); (Q.D.); (Y.W.)
| |
Collapse
|
11
|
Ashique S, Mishra N, Mohanto S, Gowda BJ, Kumar S, Raikar AS, Masand P, Garg A, Goswami P, Kahwa I. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks. Heliyon 2024; 10:e23810. [PMID: 38226207 PMCID: PMC10788286 DOI: 10.1016/j.heliyon.2023.e23810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Ocular drug delivery presents a unique set of challenges owing to the complex anatomy and physiology of the eye. Processed excipients have emerged as crucial components in overcoming these challenges and improving the efficacy and safety of ocular drug delivery systems. This comprehensive overview examines the opportunities that processed excipients offer in enhancing drug delivery to the eye. By analyzing the current landscape, this review highlights the successful applications of processed excipients, such as micro- and nano-formulations, sustained-release systems, and targeted delivery strategies. Furthermore, this article delves into the bottlenecks that have impeded the widespread adoption of these excipients, including formulation stability, biocompatibility, regulatory constraints, and cost-effectiveness. Through a critical evaluation of existing research and industry practices, this review aims to provide insights into the potential avenues for innovation and development in ocular drug delivery, with a focus on addressing the existing challenges associated with processed excipients. This synthesis contributes to a deeper understanding of the promising role of processed excipients in improving ocular drug delivery systems and encourages further research and development in this rapidly evolving field.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - B.H. Jaswanth Gowda
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology, School of Pharmacy, Meerut 250103, UP, India
| | - Amisha S. Raikar
- Department of Pharmaceutics, PES Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403401, India
| | - Priya Masand
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, (MIET), NH-58, Delhi-Roorkee Highway, Meerut, Uttar Pradesh 250005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Priyanka Goswami
- Department of Pharmacognosy, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India
- Maharashtra Educational Society's H.K. College of Pharmacy, Mumbai: 400102.India
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Pharm-Bio Technology and Traditional Medicine Centre, Mbarara University of Science and Technology, P. O Box 1410, Mbarara, Uganda
| |
Collapse
|
12
|
Mandal S, Vishvakarma P, Bhumika K. Developments in Emerging Topical Drug Delivery Systems for Ocular Disorders. Curr Drug Res Rev 2024; 16:251-267. [PMID: 38158868 DOI: 10.2174/0125899775266634231213044704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
According to the current information, using nano gels in the eyes have therapeutic benefits. Industry growth in the pharmaceutical and healthcare sectors has been filled by nanotechnology. Traditional ocular preparations have a short retention duration and restricted drug bioavailability because of the eye's architectural and physiological barriers, a big issue for physicians, patients, and chemists. In contrast, nano gels can encapsulate drugs within threedimensional cross-linked polymeric networks. Because of their distinctive structural designs and preparation methods, they can deliver loaded medications in a controlled and sustained manner, enhancing patient compliance and therapeutic efficacy. Due to their excellent drugloading capacity and biocompatibility, nano-gels outperform other nano-carriers. This study focuses on using nano gels to treat eye diseases and provides a brief overview of their creation and response to stimuli. Our understanding of topical drug administration will be advanced using nano gel developments to treat common ocular diseases such as glaucoma, cataracts, dry eye syndrome, bacterial keratitis, and linked medication-loaded contact lenses and natural active ingredients.
Collapse
Affiliation(s)
- Suraj Mandal
- Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India
| | - Prabhakar Vishvakarma
- Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India
| | - Km Bhumika
- Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India
| |
Collapse
|
13
|
Kunikane E, Orii Y, Inoue A, Inatani M. Patient Factors Influencing Intraocular Penetration of Brimonidine-Related Eye Drops in Adults: A Post Hoc Pooled Analysis. Ophthalmol Ther 2023; 12:3083-3098. [PMID: 37676633 PMCID: PMC10640521 DOI: 10.1007/s40123-023-00794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
INTRODUCTION The factors related to the ocular penetration of drugs after the administration of eye drops in humans have not been examined in detail. Therefore, this study assessed the influence of patient factors on the intraocular penetration of eye drops. METHODS A pooled analysis was performed on the data of 42 participants from three studies to evaluate the ocular pharmacokinetics in humans after the topical application of brimonidine-related eye drops. The patients were scheduled for vitrectomy and received brimonidine-related eye drops (0.1% brimonidine tartrate ophthalmic solution, 0.1% brimonidine tartrate and 0.5% timolol fixed-combination ophthalmic solution, or 0.1% brimonidine tartrate and 1% brinzolamide fixed-combination suspension) twice daily for 1 week. We analyzed the effects of patient factors (sex, the presence or absence of lens, age, corneal thickness, corneal endothelial cell density, tear secretion, eye axial length, height, weight and body mass index [BMI]) on brimonidine, timolol and brinzolamide concentrations in the aqueous and vitreous humor after topical application. RESULTS The drug concentrations in the aqueous and vitreous humor were not significantly different, regardless of sex or the presence or absence of lens. Age correlated positively with brimonidine (r = 0.3948, p = 0.012) and brinzolamide (r = 0.6809, p = 0.030) concentrations in the aqueous humor; the correlation with timolol showed a trend towards significance (r = 0.6425, p = 0.086). Corneal thickness, corneal endothelial cell density, tear secretion, eye axial length, height and BMI did not correlate with the drug concentrations in the aqueous or vitreous humor. Timolol concentration in the vitreous humor was negatively correlated with weight (r = - 0.8333, p = 0.010). CONCLUSION The findings of this study emphasize the necessity of considering individual differences in ocular pharmacokinetics during drug therapy (formulation design of the eye drops and dose regimen).
Collapse
Affiliation(s)
| | - Yusuke Orii
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Akiko Inoue
- Senju Pharmaceutical Co., Ltd., Osaka, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
14
|
Khan MS, Ravi PR, Dhavan DS. Design, optimization, in vitro and in vivo evaluation of triamcinolone acetonide nanocrystals loaded in situ gel for topical ocular delivery. Colloids Surf B Biointerfaces 2023; 231:113539. [PMID: 37742362 DOI: 10.1016/j.colsurfb.2023.113539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
Triamcinolone acetonide (TAA), a long-acting synthetic glucocorticoid, is commonly used for the management of posterior uveitis (PU) because of its anti-inflammatory and immunosuppressive characteristics. The commercially available formulation is in the suspension form advised for intravitreal injection, which has a number of serious problems. In the present research work, we prepared TAA nanocrystals (TAA-NCs) using the principles of design of experiments (DoE). The optimized TAA-NCs had a particle size of 243.0 ± 6.5 nm and a yield (%) of 89.4 ± 4.3%. The optimized TAA-NCs were suspended in a dual-responsive in situ gelling system, which has been previously reported by our team. The TAA-NCs loaded in situ gel (TAA-NC-ISG) formulations were evaluated for rheology, stability, in vitro and in vivo characteristics. The ocular pharmacokinetic investigations revealed that TAA-NCs loaded in situ gel achieved higher concentrations (Cmax of TAA-NC-ISG = 854.9 ng/mL) of the drug in vitreous humor and sustained (MRT0-∞ of TAA-NC-ISG = 11.2 h) the drug concentrations for longer duration compared to aqueous suspension of TAA-NCs (TAA-NC-Susp) and aqueous suspension of TAA with 20% hydroxypropyl β-cyclodextrin(TAA-HP-β-CD-Susp) reported in our previous work. This higher exposure of TAA by TAA-NC-ISG is due to the combined effect of the nanometric size of the TAA nanocrystals and the in situ gelling properties of the formulation.
Collapse
Affiliation(s)
- Mohammed Shareef Khan
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal (District), Hyderabad 500078, India
| | - Punna Rao Ravi
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal (District), Hyderabad 500078, India.
| | - Divya Shrikant Dhavan
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal (District), Hyderabad 500078, India
| |
Collapse
|
15
|
Biswas A, Choudhury AD, Bisen AC, Agrawal S, Sanap SN, Verma SK, Mishra A, Kumar S, Bhatta RS. Trends in Formulation Approaches for Sustained Drug Delivery to the Posterior Segment of the Eye. AAPS PharmSciTech 2023; 24:217. [PMID: 37891392 DOI: 10.1208/s12249-023-02673-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The eye, an intricate organ comprising physical and physiological barriers, poses a significant challenge for ophthalmic physicians seeking to treat serious ocular diseases affecting the posterior segment, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Despite extensive efforts, the delivery of therapeutic drugs to the rear part of the eye remains an unresolved issue. This comprehensive review delves into conventional and innovative formulation strategies for drug delivery to the posterior segment of the eye. By utilizing alternative nanoformulation approaches such as liposomes, nanoparticles, and microneedle patches, researchers and clinicians can overcome the limitations of conventional eye drops and achieve more effective drug delivery to the posterior segment of the eye. These innovative strategies offer improved drug penetration, prolonged residence time, and controlled release, enhancing therapeutic outcomes for ocular diseases. Moreover, this article explores recently approved delivery systems that leverage diverse polymer technologies, such as chitosan and hyaluronic acid, to regulate drug-controlled release over an extended period. By offering a comprehensive understanding of the available formulation strategies, this review aims to empower researchers and clinicians in their pursuit of developing highly effective treatments for posterior-segment ocular diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
16
|
Shi J, Yang J, Xu H, Luo Q, Sun J, Zhang Y, Liang Z, Zhao N, Zhang J. Preparation of a Sunitinib loaded microemulsion for ocular delivery and evaluation for the treatment of corneal neovascularization in vitro and in vivo. Front Pharmacol 2023; 14:1157084. [PMID: 37497104 PMCID: PMC10366539 DOI: 10.3389/fphar.2023.1157084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background: Corneal neovascularization (CNV) is a pathological condition that can disrupt corneal transparency, thus harming visual acuity. However, there is no effective drug to treat CNV. Sunitinib (STB), a small-molecule multiple receptor tyrosine kinase inhibitor, was shown to have an effect on CNV. The purpose of this study was to develop an STB microemulsion (STB-ME) eye drop to inhibit CNV by topical application. Methods: We successfully prepared an STB-ME by the phase inversion emulsification method, and the physicochemical properties of STB-MEs were investigated. The short-term storage stability, cytotoxicity to human corneal epithelial cells, drug release, ocular irritation, ocular pharmacokinetics and the inhibitory effect on CNV were evaluated in vitro and in vivo. Results: The optimal formulation of STB-ME is composed of oleic acid, CRH 40, Transcutol P, water and sodium hyaluronate (SH). It is a uniform spherical particle with a mean droplet size of 18.74 ± 0.09 nm and a polydispersity index of 0.196 ± 0.004. In the in vitro drug release results, STB-ME showed sustained release and was best fitted by a Korsmeyer-Peppas model (R 2 = 0.9960). The results of the ocular pharmacokinetics in rabbits showed that the formulation containing SH increased the bioavailability in the cornea (2.47-fold) and conjunctiva (2.14-fold). STB-ME (0.05% and 0.1%), administered topically, suppressed alkali burn-induced CNV in mice more effectively than saline, and high-dose (0.1%) STB-ME had similar efficacy to dexamethasone (0.025%). Conclusion: This study provides a promising formulation of STB-ME for the inhibition of CNV by topical administration, which has the excellent characteristics of effectiveness, sustained release and high ocular bioavailability.
Collapse
Affiliation(s)
- Jieran Shi
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qing Luo
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jun Sun
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yali Zhang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
17
|
Pan M, Ren Z, Ma X, Chen L, Lv G, Liu X, Li S, Li X, Wang J. A Biomimetic Peptide-drug Supramolecular Hydrogel as Eyedrops Enables Controlled Release of Ophthalmic Drugs. Acta Biomater 2023:S1742-7061(23)00361-6. [PMID: 37392932 DOI: 10.1016/j.actbio.2023.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
The rapid clearance of instilled drugs from the ocular surface due to tear flushing and excretion results in low drug bioavailability, necessitating the development of new drug delivery routes. Here, we generated an antibiotic hydrogel eye drop that can extend the pre-corneal retention of a drug after topical instillation to address the risk of side effects (e.g., irritation and inhibition of enzymes), resulting from frequent and high-dosage administrations of antibiotics used to obtain the desired therapeutic drug concentration. The covalent conjugation of small peptides to antibiotics (e.g., chloramphenicol) first endows the self-assembly ability of peptide-drug conjugate to generate supramolecular hydrogels. Moreover, the further addition of calcium ions, which are also widely present in endogenous tears, tunes the elasticity of supramolecular hydrogels, making them ideal for ocular drug delivery. The in vitro assay revealed that the supramolecular hydrogels exhibited potent inhibitory activities against both gram-negative (e.g., Escherichia coli) and gram-positive (e.g., Staphylococcus aureus) bacteria, whereas they were innocuous toward human corneal epithelial cells. Moreover, the in vivo experiment showed that the supramolecular hydrogels remarkably increased pre-corneal retention without ocular irritation, thereby showing appreciable therapeutic efficacy for treating bacterial keratitis. This work, as a biomimetic design of antibiotic eye drops in the ocular microenvironment, addresses the current issues of ocular drug delivery in the clinic and further provides approaches to improve the bioavailability of drugs, which may eventually open new directions to resolve the difficulty of ocular drug delivery. STATEMENT OF SIGNIFICANCE: Herein, we present a biomimetic design for antibiotic hydrogel eye drops mediated by calcium ions (Ca2+) in the ocular microenvironment, which can extend the pre-corneal retention of antibiotics after topical instillation. The mediation of Ca2+ which is widely present in endogenous tears, tunes the elasticity of hydrogels, making them ideal for ocular drug delivery. Since increasing the ocular retention of antibiotic eye drops enhances its action and reduces its adverse effects, this work may lead to an approach of peptide-drug-based supramolecular hydrogel for ocular drug delivery in clinics to combat ocular bacterial infections.
Collapse
Affiliation(s)
- Minmengqi Pan
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Zhibin Ren
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Xiaohui Ma
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Lei Chen
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Guanghao Lv
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Xiaoying Liu
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Shan Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Jiaqing Wang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| |
Collapse
|
18
|
Jin L, Li X, Chen X, Chen X, Liu Y, Xu H, Wang Q, Tang Z. A study on puerarin in situ gel eye drops: Formulation optimization and pharmacokinetics on rabbits by microdialysis. Int J Pharm 2023:123176. [PMID: 37364779 DOI: 10.1016/j.ijpharm.2023.123176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Puerarin (PUE), an isoflavonoid isolated from Pueraria lobata (Willd) Ohwi root, is a β-adrenergic receptor inhibitor used in treating glaucoma. The concentration range of gellan gum was determined based on the formulation viscosity and gelling capacity. PVP-K30 and gellan gum were used as variables, with the viscosity of formulation: STF = 40: 21, the 4 h permeation rate of rabbit isolated sclera, and 2 h in vitro release rate as response values. The JMP software was used to optimize the results, presenting that gellan gum was the main factor influencing viscosity. The in vitro release and permeation rate were primarily influenced by PVP-K30. The optimal prescription was 0.45% gellan gum and 6.0% PVP-K30. The in vitro release and permeation characteristics of puerarin in situ gel (PUE-ISG) were investigated using PUE solution as a control. The dialysis bag method results indicated that the release of the solution group leveled off after 4 h, while the PUE-ISG group had been continuously releasing. However, the cumulative release rates of the two were no longer significantly different at 10 h. The cumulative permeation rates of the ISG and solution groups were not significantly different (P > 0.05) in the rabbit isolated sclera. The apparent permeability Papp and steady-state flux Jss of PUE-ISG were 0.950 ± 0.059 cm·h-1 and 9.504 ± 0.587 mg·cm-2·h-1, respectively. A sensitive and stable HPLC-MS/MS analytical method for quantifying aqueous humor concentrations of PUE was validated. A microdialysis technique was successfully used in the aqueous humor pharmacokinetics study to sample aqueous humor from rabbit eye continuously. The results revealed that PUE-ISG significantly increased the drug concentration in the aqueous humor, with Cmax and AUC(0-t) 3.77 and 4.40 times higher than those of the solution group, respectively. Tmax was also significantly prolonged, indicating good prospects for clinical application. The developed PUE-ISG preparation has the characteristics of rapid drug release and sustained permeation, and increase the drug concentration in aqueous humor, with all inactive ingredients remaining within the maximum allowable limits recommended by the FDA guideline.
Collapse
Affiliation(s)
- Lu Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiumin Li
- Dezhou Food and Drug Inspection Center, Dezhou, Shandong, China
| | - Xu Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinghao Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ye Liu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haonan Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, PR China.
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, PR China.
| |
Collapse
|
19
|
Amrutkar CS, Patil SB. Nanocarriers for ocular drug delivery: Recent advances and future opportunities. Indian J Ophthalmol 2023; 71:2355-2366. [PMID: 37322644 PMCID: PMC10418032 DOI: 10.4103/ijo.ijo_1893_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/27/2022] [Accepted: 04/06/2023] [Indexed: 06/17/2023] Open
Abstract
Topical route of administration is very important and the most commonly used method of drug delivery for treatment of ocular diseases. However, due to unique anatomical and physiological barriers of eye, it is difficult to achieve the therapeutic concentration in the targeted tissue within the eye. To overcome the effect of these barriers in absorption and to provide targeted and sustained drug delivery, various advances have been made in developing safe and efficient drug delivery systems. Various formulation strategies for ocular drug delivery are used, like basic formulation techniques for improving availability of drugs, viscosity enhancers, and use of mucoadhesives for drug retention and penetration enhancers to promote drug transport to the eye. In this review, we present a summary of the current literature to understand the anatomical and physiological limitations in achieving adequate ocular bioavailability and targeted drug delivery of topically applied drugs and use of new techniques in formulating dosage forms in overcoming these limitations. The recent and future advances in nanocarrier-mediated drug delivery may have the potential to provide patient-friendly and noninvasive techniques for the treatment of diseases related to the anterior and posterior segments of the eye.
Collapse
Affiliation(s)
- Chetan S Amrutkar
- Department of Pharmaceutics, SNJB’s Shriman Sureshdada Jain College of Pharmacy, Nashik, Maharashtra, India
| | - Sanjay B Patil
- Department of Pharmaceutics, SNJB’s Shriman Sureshdada Jain College of Pharmacy, Nashik, Maharashtra, India
| |
Collapse
|
20
|
Wu Y, Tao Q, Xie J, Lu L, Xie X, Zhang Y, Jin Y. Advances in Nanogels for Topical Drug Delivery in Ocular Diseases. Gels 2023; 9:gels9040292. [PMID: 37102904 PMCID: PMC10137933 DOI: 10.3390/gels9040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Nanotechnology has accelerated the development of the pharmaceutical and medical technology fields, and nanogels for ocular applications have proven to be a promising therapeutic strategy. Traditional ocular preparations are restricted by the anatomical and physiological barriers of the eye, resulting in a short retention time and low drug bioavailability, which is a significant challenge for physicians, patients, and pharmacists. Nanogels, however, have the ability to encapsulate drugs within three-dimensional crosslinked polymeric networks and, through specific structural designs and distinct methods of preparation, achieve the controlled and sustained delivery of loaded drugs, increasing patient compliance and therapeutic efficiency. In addition, nanogels have higher drug-loading capacity and biocompatibility than other nanocarriers. In this review, the main focus is on the applications of nanogels for ocular diseases, whose preparations and stimuli-responsive behaviors are briefly described. The current comprehension of topical drug delivery will be improved by focusing on the advances of nanogels in typical ocular diseases, including glaucoma, cataracts, dry eye syndrome, and bacterial keratitis, as well as related drug-loaded contact lenses and natural active substances.
Collapse
Affiliation(s)
- Yongkang Wu
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Qing Tao
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Jing Xie
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Lili Lu
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Xiuli Xie
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Yang Zhang
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Yong Jin
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| |
Collapse
|
21
|
Bigdeli A, Makhmalzadeh BS, Feghhi M, SoleimaniBiatiani E. Cationic liposomes as promising vehicles for timolol/brimonidine combination ocular delivery in glaucoma: formulation development and in vitro/in vivo evaluation. Drug Deliv Transl Res 2023; 13:1035-1047. [PMID: 36477776 DOI: 10.1007/s13346-022-01266-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
Glaucoma is a chronic eye disease in which the pressure inside the eye increases and leads to damage to the optic nerve, and eventually causes blindness. In this disease, it is often necessary to use a multi-drug treatment system. There is a fixed combination of timolol maleate and brimonidine tartrate among the combination drugs in glaucoma treatment. Liposomes are one of the most important targeted drug delivery systems to eye tissue, which leads to improved drug permeability and durability in ocular tissue. In this study, thin layer hydration was used to make liposomal formulations containing timolol maleate (TM) and brimonidine tartrate (BT). After the necessary evaluations, one of the eight initial formulations was selected as an optimization formulation. Then, characteristics such as drug loading percentage, particle size, pH, zeta potential, and drug release were performed on the optimized formulation. The study of reducing intraocular pressure was performed on the optimized formulation. This study in total was performed on 18 rabbits in three groups. Hydroxypropyl methylcellulose (HPMC) polymer was injected into the anterior chamber to experimental induce glaucoma. The selected formulation was within the acceptable range of ocular products in terms of physical properties. HPMC polymer injection successfully induced glaucoma in the animal model, resulting in a 79% increase in intraocular pressure. The results showed that the liposomal formulation significantly reduced the intraocular pressure compared to the simple formulation of the aqueous solution, and both formulations were able to significantly reduce the intraocular pressure compared to the control group (P < 0.001). The results also showed that liposomal formulation has a therapeutic effect in reducing intraocular pressure. It seems that the selected liposomal formulation made by thin layer hydration can act as a suitable drug carrier to increase the effectiveness of the fixed combination of timolol maleate and brimonidine tartrate and be proposed as a new drug formulation for targeted and controlled drug delivery in the treatment of glaucoma.
Collapse
Affiliation(s)
- Ali Bigdeli
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Ahvaz Jundishapur University of Medical Sciences, Golestan avenue, Ahvaz, Iran
| | - Behzad Sharif Makhmalzadeh
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Ahvaz Jundishapur University of Medical Sciences, Golestan avenue, Ahvaz, Iran.
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mostafa Feghhi
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Emad SoleimaniBiatiani
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Ghanavi M, Khoshandam A, Aslzad S, Fathi M, Barzegari A, Dalir Abdolahinia E, Adibkia K, Barar J, Omidi Y. Injectable thermosensitive PEG-g-chitosan hydrogel for ocular delivery of vancomycin and prednisolone. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
23
|
Cong YY, Fan B, Zhang ZY, Li GY. Implantable sustained-release drug delivery systems: a revolution for ocular therapeutics. Int Ophthalmol 2023:10.1007/s10792-023-02637-x. [PMID: 36715956 DOI: 10.1007/s10792-023-02637-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
PURPOSE Due to the inimitable anatomical structure of the eyeball and various physiological barriers, conventional ocular local administration is often complicated by apparent shortcomings, such as limited bioavailability and short drug retention. Thus, developing methods for sustainable, safe and efficient drug delivery to ocular target sites has long been an urgent need. This study briefly summarizes the barriers to ocular drug administration and various ocular drug delivery routes and highlights recent progress in ocular implantable sustained-release drug delivery systems (DDSs) to provide literature evidence for developing novel ocular implants for sustained drug delivery. METHODS We conducted a comprehensive search of studies on ocular implantable sustained-release DDSs in PubMed and Web of Science using the following keywords: ocular, implantable and drug delivery system. More than 400 papers were extracted. Publications focused on sustained and controlled drug release were primarily considered. Experimental articles involving DDSs that cannot be implanted into the eye through surgeries and cannot be inserted into ocular tissues in solid form were excluded. Approximately 143 publications were reviewed to summarize the most current information on the subject. RESULTS In recent years, numerous ocular sustained-release DDSs using lipids, nanoparticles and hydrogels as carriers have emerged. With unique properties and systematic design, ocular implantable sustained-release DDSs are able to continuously maintain drug release, effectively sustain the therapeutic concentration in target tissues, and substantially enhance the therapeutic efficacy. Nevertheless, few ocular implantable sustained-release DDSs have been available in clinical use. CONCLUSIONS Ocular implantable sustained-release DDSs have become a new focus in the field of ocular drug development through unique designs and improvements in the materials of drug carriers, administration methods and dosage forms. With more ocular implantable sustained-release DDSs being commercialized, ocular therapeutics may be revolutionized.
Collapse
Affiliation(s)
- Yun-Yi Cong
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Bin Fan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Zi-Yuan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
24
|
Engineering Advanced Drug Delivery Systems for Dry Eye: A Review. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010053. [PMID: 36671625 PMCID: PMC9854618 DOI: 10.3390/bioengineering10010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023]
Abstract
Dry eye disease (DED) is a widespread and frequently reported multifactorial ocular disease that not only causes ocular discomfort but also damages the cornea and conjunctiva. At present, topical administration is the most common treatment modality for DED. Due to the existence of multiple biological barriers, instilled drugs generally exhibit short action times and poor penetration on the ocular surface. To resolve these issues, several advanced drug delivery systems have been proposed. This review discusses new dosage forms of drugs for the treatment of DED in terms of their characteristics and advantages. Innovative formulations that are currently available in the market and under clinical investigation are elaborated. Meanwhile, their deficiencies are discussed. It is envisioned that the flourishing of advanced drug delivery systems will lead to improved management of DED in the near future.
Collapse
|
25
|
Hu J, Li H, Zhao Y, Ke Y, Rupenthal ID, Liu H, Ye J, Han X, Yang F, Li W, Lin H, Hou D. Critical Evaluation of Multifunctional Betaxolol Hydrochloride Nanoformulations for Effective Sustained Intraocular Pressure Reduction. Int J Nanomedicine 2022; 17:5915-5931. [PMID: 36506343 PMCID: PMC9729687 DOI: 10.2147/ijn.s382968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Glaucoma is a chronic disease that requires long-term adherence to treatment. Topical application of conventional eye drops results in substantial drug loss due to rapid tear turnover, with poor drug bioavailability being a major challenge for efficient glaucoma treatment. We aimed to prepare the anti-glaucoma drug betaxolol hydrochloride (BH) as a novel nano-delivery system that prolonged the retention time at the ocular surface and improved bioavailability. Methods We constructed multifunctional nanoparticles (MMt-BH-HA/CS-ED NPs) by ion cross-linking-solvent evaporation method. The particle size, zeta potential, encapsulation efficiency and drug loading of MMt-BH-HA/CS-ED NPs were physicochemically characterized. The structure of the preparations was characterized by microscopic techniques of SEM, TEM, XPS, XRD, FTIR and TGA, and evaluated for their in vitro release performance as well as adhesion properties. Its safety was investigated using irritation assays of hemolysis experiment, Draize test and histopathology examination. Precorneal retention was examined by in vivo fluorescence tracer method and pharmacokinetics in tear fluid was studied. A model of high IOP successfully induced by injection of compound carbomer solution was used to assess the IOP-lowering efficacy of the formulation, and it was proposed that micro-interactions between the formulation and the tear film would be used to analyze the behavior at the ocular surface. Results The positively charged MMt-BH-HA/CS-ED NPs were successfully prepared with good two-step release properties, higher viscosity, and slower pre-corneal diffusion rate along with longer precorneal retention time compared to BH solution. The micro-interactions between nanoparticles and tear film converted the drug clearance from being controlled by fast aqueous layer turnover to slow mucin layer turnover, resulting in higher drug concentration on the ocular surface, providing more durable and stable IOP-lowering efficacy. Conclusion The novel multifunctional MMt-BH-HA/CS-ED NPs can effectively reduce IOP and are suitable for the treatment of chronic disease glaucoma.
Collapse
Affiliation(s)
- Jie Hu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Huihui Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yingshan Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yuancheng Ke
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Hanyu Liu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jinghua Ye
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xinyue Han
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Fan Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wei Li
- Guangzhou Institute for Drug Control, Guangzhou, Guangdong, People’s Republic of China
| | - Huaqing Lin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China,Correspondence: Huaqing Lin; Dongzhi Hou, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, People’s Republic of China, Tel +86 180 2631 2508, Fax +86 20 3935 2117, Email ;
| | - Dongzhi Hou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
26
|
Alimardani V, Sadat Abolmaali S, Yousefi G, Hossein Nowroozzadeh M, Mohammad Tamaddon A. In-situ nanomicelle forming microneedles of poly NIPAAm-b-poly glutamic acid for trans-scleral delivery of dexamethasone. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Renukuntla J, Palakurthi SS, Bolla PK, Clark BA, Boddu SHS, Manda P, Sockwell S, Charbe NB, Palakurthi S. Advances in in-vitro bioequivalence testing methods for complex ophthalmic generic products. Int J Pharm 2022; 627:122209. [PMID: 36162609 DOI: 10.1016/j.ijpharm.2022.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
The United States Food and Drug Administration (USFDA) demands that the generic industry prove topical ocular products' pharmaceutical and bioequivalence (BE). In contrast to generic oral drugs, topical ocular product BE testing has proved difficult. New generic versions are compared to an authorized drug product known as a Reference Listed Drug (RLD) to demonstrate their bioequivalence. If the excellent in-vitro results may support the presumption of equivalence in-vivo performance and the only clinically significant difference between the generic and RLD is in its physicochemical qualities and drug release rate, then in-vivo BE studies may be waived. Proving BE through dissolution tests is a golden standard for most conventional dosage forms. However, due to the limited number of biorelevant in-vitro drug release testing (IVRT) approaches capable of differentiating their performance based on product quality and physicochemical properties, the development of generic ophthalmic products has been slow and time-consuming. Often, BE of topical ophthalmic formulations cannot be proved using a single in-vitro test; therefore, an elaborated discussion on various IVRT methods performed to demonstrate bioequivalence of complex generis like ophthalmic emulsions, suspensions, ointments, and gels is necessary. This manuscript aims to review the status of biowaiver criteria for complex ophthalmic products concerning the product-specific FDA guidance to the generic industry.
Collapse
Affiliation(s)
- Jwala Renukuntla
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA
| | - Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Pradeep Kumar Bolla
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA; Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Bradley A Clark
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
| | - Prashanth Manda
- Department of Pharmaceutics, College of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Samuel Sockwell
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA.
| |
Collapse
|
28
|
Choudhari M, Nayak K, Nagai N, Nakazawa Y, Khunt D, Misra M. Role of mucoadhesive agent in ocular delivery of ganciclovir microemulsion: cytotoxicity evaluation in vitro and ex vivo. Int Ophthalmol 2022; 43:1153-1167. [PMID: 36156180 DOI: 10.1007/s10792-022-02514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of the present study was to investigate increase in delivery of drug upon formulation as mucoadhesive microemulsion system and further to investigate possibility of any cytotoxic effects using such formulation. MATERIAL AND METHODS Considering hydrophilic and small molecular nature of the drug, it was attempted to be formulated as microemulsion, by using pseudo ternary phase diagram method. Thus, three types of microemulsions were prepared; oil in water, water in oil type and chitosan-coated microemulsion. These microemulsions were characterized for several physicochemical properties like size, zeta potential, Polydispersity index, and compared for in vitro cell viability and ex vivo corneal irritation study. RESULTS All three microemulsions were quite stable, transparent and homogenous systems. They showed similar drug release pattern, but highest ex vivo goat corneal permeation was observed with Chitosan coated microemulsion when compared with ganciclovir solution. CONCLUSION All microemulsions were found to be non-irritant in in vitro cell viability assay and ex vivo corneal irritation study, indicating the potential of using such systems for delivery of drug to eye.
Collapse
Affiliation(s)
- Manisha Choudhari
- Department of Pharmaceutics, NIPER-Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Kritika Nayak
- Department of Pharmaceutics, NIPER-Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Yosuke Nakazawa
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Dignesh Khunt
- Department of Pharmaceutics, NIPER-Ahmedabad, Gandhinagar, Gujarat, 382355, India.,Department of Pharmaceutics, Graduate School of Pharmacy, Gujarat Technical University, Gandhinagar Campus, Gandhinagar, Gujarat, 382028, India
| | - Manju Misra
- Department of Pharmaceutics, NIPER-Ahmedabad, Gandhinagar, Gujarat, 382355, India. .,Department of Pharmaceutics, Graduate School of Pharmacy, Gujarat Technical University, Gandhinagar Campus, Gandhinagar, Gujarat, 382028, India.
| |
Collapse
|
29
|
Garkal A, Bangar P, Rajput A, Pingale P, Dhas N, Sami A, Mathur K, Joshi S, Dhuri S, Parikh D, Mutalik S, Mehta T. Long-acting formulation strategies for protein and peptide delivery in the treatment of PSED. J Control Release 2022; 350:538-568. [PMID: 36030993 DOI: 10.1016/j.jconrel.2022.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/17/2022]
Abstract
The invigoration of protein and peptides in serious eye disease includes age-related macular degeneration, choroidal neovascularization, retinal neovascularization, and diabetic retinopathy. The transportation of macromolecules like aptamers, recombinant proteins, and monoclonal antibodies to the posterior segment of the eye is challenging due to their high molecular weight, rapid degradation, and low solubility. Moreover, it requires frequent administration for prolonged therapy. The long-acting novel formulation strategies are helpful to overcome these issues and provide superior therapy. It avoids frequent administration, improves stability, high retention time, and avoids burst release. This review briefly enlightens posterior segments of eye diseases with their diagnosis techniques and treatments. This article mainly focuses on recent advanced approaches like intravitreal implants and injectables, electrospun injectables, 3D printed drug-loaded implants, nanostructure thin-film polymer devices encapsulated cell technology-based intravitreal implants, injectable and depots, microneedles, PDS with ranibizumab, polymer nanoparticles, inorganic nanoparticles, hydrogels and microparticles for delivering macromolecules in the eye for intended therapy. Furthermore, novel techniques like aptamer, small Interference RNA, and stem cell therapy were also discussed. It is predicted that these systems will make revolutionary changes in treating posterior segment eye diseases in future.
Collapse
Affiliation(s)
- Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Priyanka Bangar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Pune, Maharashtra 411038, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik, Maharashtra 422005, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Anam Sami
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Khushboo Mathur
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shubham Joshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Sonika Dhuri
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Dhaivat Parikh
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
30
|
Mucoadhesive Marine Polysaccharides. Mar Drugs 2022; 20:md20080522. [PMID: 36005525 PMCID: PMC9409912 DOI: 10.3390/md20080522] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Mucoadhesive polymers are of growing interest in the field of drug delivery due to their ability to interact with the body’s mucosa and increase the effectiveness of the drug. Excellent mucoadhesive performance is typically observed for polymers possessing charged groups or non-ionic functional groups capable of forming hydrogen bonds and electrostatic interactions with mucosal surfaces. Among mucoadhesive polymers, marine carbohydrate biopolymers have been attracting attention due to their biocompatibility and biodegradability, sample functional groups, strong water absorption and favorable physiochemical properties. Despite the large number of works devoted to mucoadhesive polymers, there are very few systematic studies on the influence of structural features of marine polysaccharides on mucoadhesive interactions. The purpose of this review is to characterize the mucoadhesive properties of marine carbohydrates with a focus on chitosan, carrageenan, alginate and their use in designing drug delivery systems. A wide variety of methods which have been used to characterize mucoadhesive properties of marine polysaccharides are presented in this review. Mucoadhesive drug delivery systems based on such polysaccharides are characterized by simplicity and ease of use in the form of tablets, gels and films through oral, buccal, transbuccal and local routes of administration.
Collapse
|
31
|
Wang Y, Wang C. Novel Eye Drop Delivery Systems: Advance on Formulation Design Strategies Targeting Anterior and Posterior Segments of the Eye. Pharmaceutics 2022; 14:pharmaceutics14061150. [PMID: 35745723 PMCID: PMC9229693 DOI: 10.3390/pharmaceutics14061150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Eye drops are the most common and convenient route of topical administration and the first choice of treatment for many ocular diseases. However, the ocular bioavailability of traditional eye drops (i.e., solutions, suspensions, and ointments) is very low because of ophthalmic physiology and barriers, which greatly limits their therapeutic effect. Over the past few decades, many novel eye drop delivery systems, such as prodrugs, cyclodextrins, in situ gels, and nanoparticles, have been developed to improve ophthalmic bioavailability. These novel eye drop delivery systems have good biocompatibility, adhesion, and propermeation properties and have shown superior performance and efficacy over traditional eye drops. Therefore, the purpose of this review was to systematically present the research progress on novel eye drop delivery systems and provide a reference for the development of dosage form, clinical application, and commercial transformation of eye drops.
Collapse
|
32
|
Kim SN, Min CH, Kim YK, Ha A, Park CG, Lee SH, Park KH, Choy YB. Iontophoretic ocular delivery of latanoprost-loaded nanoparticles via skin-attached electrodes. Acta Biomater 2022; 144:32-41. [PMID: 35292414 DOI: 10.1016/j.actbio.2022.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022]
Abstract
Prolonged drug efficacy to reduce the number of administrations is a key factor in the successful treatment of glaucoma through topical drug delivery to the eye. Therefore, we propose a new strategy for iontophoretic ocular delivery of drug-loaded nanoparticles. Considering safety and convenience, our strategy is involved with topical administration of the drug-loaded nanoparticles followed by their permeation into the eye tissues via noninvasive iontophoresis, using the skin-attached electrodes. Thus, those nanoparticles stayed longer in the eye, and during this period, the drug was released in a sustained manner, thereby prolonging drug exposure even with one-time treatment. The nanoparticles were made of poly(lactic-co-glycolic acid) (PLGA), which were loaded with a glaucoma drug, latanoprost. We varied the size of the nanoparticles at 100, 200, 300, and 500 nm and sought to find the optimum size under the fixed conditions for iontophoresis proposed in this work (4 mA; 30 min). Even with iontophoresis through the skin-attached electrodes, the nanoparticles were indeed deposited in the eye tissues, where with an increase in particle size, drug release was more sustained, but fewer particles could permeate into the eye tissues. Because of these two competing factors, iontophoretic delivery of the 300-nm particles exhibited the most prolonged drug efficacy in vivo for more than 7 days, and showed an approximately 23-fold increase in drug efficacy compared with that of Xalatan®, a commercially available eye drop of latanoprost developed for once-a-day administration every day. STATEMENT OF SIGNIFICANCE: To treat glaucoma, conventional eye drops are often prescribed; however, they often require multiple daily administrations due to rapid preocular clearance. To resolve this, we suggest a noninvasive iontophoretic ocular delivery of latanoprost-loaded PLGA nanoparticles using the skin-attached electrodes. Even with iontophoresis via the skin-attached electrodes, the nanoparticles can indeed be deposited into the eye tissues. However, with an increase in particle size, fewer particles can permeate into the eye tissues, although drug release is more sustained. Therefore, the particles with a size of 300 nm show the optimal in vivo delivery profile in this work, where the drug efficacy can be extended for more than 7 days with a single administration.
Collapse
Affiliation(s)
- Se-Na Kim
- Medical Research Center, Institute of Medical & Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Chang Hee Min
- Medical Research Center, Institute of Medical & Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Young Kook Kim
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ahnul Ha
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea; Department of Ophthalmology, Jeju National University Hospital, Jeju-si, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung Ho Lee
- Medical Research Center, Institute of Medical & Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ki Ho Park
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Bin Choy
- Medical Research Center, Institute of Medical & Biological Engineering, Seoul National University, Seoul, Republic of Korea; Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Recent Developments of Nanostructures for the Ocular Delivery of Natural Compounds. Front Chem 2022; 10:850757. [PMID: 35494641 PMCID: PMC9043530 DOI: 10.3389/fchem.2022.850757] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Ocular disorders comprising various diseases of the anterior and posterior segments are considered as the main reasons for blindness. Natural products have been identified as potential treatments for ocular diseases due to their anti-oxidative, antiangiogenic, and anti-inflammatory effects. Unfortunately, most of these beneficial compounds are characterised by low solubility which results in low bioavailability and rapid systemic clearance thus requiring frequent administration or requiring high doses, which hinders their therapeutic applications. Additionally, the therapeutic efficiency of ocular drug delivery as a popular route of drug administration for the treatment of ocular diseases is restricted by various anatomical and physiological barriers. Recently, nanotechnology-based strategies including polymeric nanoparticles, micelles, nanofibers, dendrimers, lipid nanoparticles, liposomes, and niosomes have emerged as promising approaches to overcome limitations and enhance ocular drug bioavailability by effective delivery to the target sites. This review provides an overview of nano-drug delivery systems of natural compounds such as thymoquinone, catechin, epigallocatechin gallate, curcumin, berberine, pilocarpine, genistein, resveratrol, quercetin, naringenin, lutein, kaempferol, baicalin, and tetrandrine for ocular applications. This approach involves increasing drug concentration in the carriers to enhance drug movement into and through the ocular barriers.
Collapse
Affiliation(s)
- Malihe Sadat Razavi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Antony D’Emanuele
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
34
|
Chen L, Deng J, Yu A, Hu Y, Jin B, Du P, Zhou J, Lei L, Wang Y, Vakal S, Li X. Drug-peptide supramolecular hydrogel boosting transcorneal permeability and pharmacological activity via ligand-receptor interaction. Bioact Mater 2022; 10:420-429. [PMID: 34901557 PMCID: PMC8636707 DOI: 10.1016/j.bioactmat.2021.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 01/25/2023] Open
Abstract
Boosting transcorneal permeability and pharmacological activity of drug poses a great challenge in the field of ocular drug delivery. In the present study, we propose a drug-peptide supramolecular hydrogel based on anti-inflammatory drug, dexamethasone (Dex), and Arg-Gly-Asp (RGD) motif for boosting transcorneal permeability and pharmacological activity via the ligand-receptor interaction. The drug-peptide (Dex-SA-RGD/RGE) supramolecular hydrogel comprised of uniform nanotube architecture formed spontaneously in phosphate buffered saline (PBS, pH = 7.4) without external stimuli. Upon storage at 4 °C, 25 °C, and 37 °C for 70 days, Dex-SA-RGD in hydrogel did not undergo significant hydrolysis, suggesting great long-term stability. In comparison to Dex-SA-RGE, Dex-SA-RGD exhibited a more potent in vitro anti-inflammatory efficacy in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages via the inhibition of nuclear factor кB (NF-κB) signal pathway. More importantly, using drug-peptide supramolecular hydrogel labeled with 7-nitro-2,1,3-benzoxadiazole (NBD), the Dex-SA-K(NBD)RGD showed increased performance in terms of integrin targeting and cellular uptake compared to Dex-SA-K(NBD)RGE, as revealed by cellular uptake assay. On topical instillation in rabbit's eye, the proposed Dex-SA-K(NBD)RGD could effectively enhance the transcorneal distribution and permeability with respect to the Dex-SA-K(NBD)RGE. Overall, our findings demonstrate the performance of the ligand-receptor interaction for boosting transcorneal permeability and pharmacological activity of drug.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China
| | - Jie Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, PR China
| | - Ailing Yu
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China
| | - Yuhan Hu
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China
| | - Bo Jin
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China
| | - Pengyuan Du
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China
| | - Jianhong Zhou
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China
| | - Lei Lei
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China
| | - Yuan Wang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, Turku, 20541, Finland
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, PR China
| |
Collapse
|
35
|
Lin PH, Jian HJ, Li YJ, Huang YF, Anand A, Huang CC, Lin HJ, Lai JY. Alleviation of dry eye syndrome with one dose of antioxidant, anti-inflammatory, and mucoadhesive lysine-carbonized nanogels. Acta Biomater 2022; 141:140-150. [PMID: 35081433 DOI: 10.1016/j.actbio.2022.01.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
Abstract
Most dry eye syndromes (DES) are caused by oxidative stress and an overactive inflammatory response, leading to tear deficiency and excessive tear evaporation. Conventional eye drops for DES treatment require high doses and frequent administration due to their insufficient precorneal residence time. To overcome these problems, in this study, we have developed carbonized nanogels (CNGs) via the straightforward pyrolysis of lysine hydrochloride (Lys) to provide a long-lasting eye drop formulation for topical DES therapy. This methodology thermally converts Lys-into nitrogen-doped crosslinked polymers with embedded nanographitic structures, which enable efficient free radical scavenging. The cationic and crosslinked polymeric features of the Lys-CNGs also prolong the precorneal retention time and improve ocular bioavailability. These Lys-CNGs exhibit high biocompatibility with corneal epithelial cells both in vitro and in vivo, indicating their safety as eye drops. In a DES rabbit model, a single dose of Lys-CNGs (50 µg mL-1) can effectively alleviate the signs of DES within 4 days, whereas multiple treatments of 10-fold higher concentration of cyclosporine A are needed to achieve similar therapeutic effects (one dose every 12 h; 500 µg mL-1). The topical administration of Lys-CNGs enable a reduced therapeutic dose and extended dosing interval, thereby demonstrating a superior therapeutic efficacy compared to the commercial cyclosporine A eye drops. These Lys-CNGs, which exhibit significant free radical scavenging, anti-inflammatory activity, high biocompatibility, and a remarkable ocular bioadhesive property, hold great potential as a long-lasting eye drop formulation for the treatment of dry eye disease. STATEMENT OF SIGNIFICANCE: Multifunctional nanobiomaterial-based eye drops can render an ideal pharmaceutical formulation for the treatment of a variety of ocular surface diseases. To our knowledge, this is the first report describing the development of carbonized nanogels as topically administered therapeutics for alleviating dry eye syndrome (DES). We present evidence that the thermal transformation of lysine hydrochloride into carbonized nanogels (Lys-CNGs) endows superior antioxidant, anti-inflammatory, and bioadhesive properties. While a single dose of Lys-CNGs (50 µg mL-1) is sufficient to relieve the symptoms of DES for 4 days, multiple treatments of 10-fold higher concentration of commercially available cyclosporine eye drops are needed to achieve similar therapeutic outcomes (one dose every 12 h; 500 µg mL-1), suggesting an effective and long-lasting ocular carbonized nanomedicine.
Collapse
|
36
|
Hu Y, Wang Y, Deng J, Ding X, Lin D, Shi H, Chen L, Lin D, Wang Y, Vakal S, Wang J, Li X. Enzyme-instructed self-assembly of peptide-drug conjugates in tear fluids for ocular drug delivery. J Control Release 2022; 344:261-271. [DOI: 10.1016/j.jconrel.2022.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/23/2022] [Accepted: 03/05/2022] [Indexed: 11/26/2022]
|
37
|
Akhter MH, Ahmad I, Alshahrani MY, Al-Harbi AI, Khalilullah H, Afzal O, Altamimi ASA, Najib Ullah SNM, Ojha A, Karim S. Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System. Gels 2022; 8:82. [PMID: 35200463 PMCID: PMC8871777 DOI: 10.3390/gels8020082] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Drug instillation via a topical route is preferred since it is desirable and convenient due to the noninvasive and easy drug access to different segments of the eye for the treatment of ocular ailments. The low dose, rapid onset of action, low or no toxicity to the local tissues, and constrained systemic outreach are more prevalent in this route. The majority of ophthalmic preparations in the market are available as conventional eye drops, which rendered <5% of a drug instilled in the eye. The poor drug availability in ocular tissue may be attributed to the physiological barriers associated with the cornea, conjunctiva, lachrymal drainage, tear turnover, blood-retinal barrier, enzymatic drug degradation, and reflex action, thus impeding deeper drug penetration in the ocular cavity, including the posterior segment. The static barriers in the eye are composed of the sclera, cornea, retina, and blood-retinal barrier, whereas the dynamic barriers, referred to as the conjunctival and choroidal blood flow, tear dilution, and lymphatic clearance, critically impact the bioavailability of drugs. To circumvent such barriers, the rational design of the ocular therapeutic system indeed required enriching the drug holding time and the deeper permeation of the drug, which overall improve the bioavailability of the drug in the ocular tissue. This review provides a brief insight into the structural components of the eye as well as the therapeutic challenges and current developments in the arena of the ocular therapeutic system, based on novel drug delivery systems such as nanomicelles, nanoparticles (NPs), nanosuspensions, liposomes, in situ gel, dendrimers, contact lenses, implants, and microneedles. These nanotechnology platforms generously evolved to overwhelm the troubles associated with the physiological barriers in the ocular route. The controlled-drug-formulation-based strategic approach has considerable potential to enrich drug concentration in a specific area of the eye.
Collapse
Affiliation(s)
- Md Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia; (I.A.); (M.Y.A.)
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia; (I.A.); (M.Y.A.)
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46477, Saudi Arabia;
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | | | - Abhijeet Ojha
- Six Sigma Institute of Technology and Science, College of Pharmacy, Rudrapur 263153, India;
| | - Shahid Karim
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
38
|
Lee J, Rhee YS. Ophthalmic dosage forms for drug delivery to posterior segment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-021-00554-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Nikolova D, Ruseva K, Tzachev C, Christov L, Vassileva E. Novel poly(sulfobetaine methacrylate) based carriers as potential ocular drug delivery systems for timolol maleate. POLYM INT 2022. [DOI: 10.1002/pi.6368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Denitsa Nikolova
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy University of Sofia, 1, James Bourchier blvd. 1164 Sofia Bulgaria
| | - Konstans Ruseva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy University of Sofia, 1, James Bourchier blvd. 1164 Sofia Bulgaria
| | - Christo Tzachev
- Laboratory of Pharmaceutical technology, Faculty of Chemistry and Pharmacy University of Sofia, 1, James Bourchier blvd. 1164 Sofia Bulgaria
| | - Lachezar Christov
- Laboratory on Water Soluble Polymer, Polyelectrolytes and Biopolymers, Faculty of Chemistry and Pharmacy University of Sofia, 1, James Bourchier blvd. 1164 Sofia Bulgaria
| | - Elena Vassileva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy University of Sofia, 1, James Bourchier blvd. 1164 Sofia Bulgaria
| |
Collapse
|
40
|
Kagkelaris K, Panayiotakopoulos G, Georgakopoulos CD. Nanotechnology-based formulations to amplify intraocular bioavailability. Ther Adv Ophthalmol 2022; 14:25158414221112356. [PMID: 35873277 PMCID: PMC9301101 DOI: 10.1177/25158414221112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Conventional drug delivery formulations, such as eye drops and ointments, are
mainly administered by topical instillation. The topical delivery of ophthalmic
drugs is a challenging endeavor despite the eye is easily accessible. Unique and
complex barriers, serving as protection against extrinsic harmful factors,
hamper therapeutic intraocular drug concentrations. Bioavailability for deeper
ocular tissues of the anterior segment of the eye is exceptionally low. As the
bioavailability of the active substance is the major hurdle to overcome, dosing
is increased, so the side effects do. Both provoke patient poor compliance,
confining the desired therapeutic outcome. The incidence and severity of adverse
reactions amplify evenly in the case of chronic treatments. Current research
focuses on the development of innovative delivery strategies to address low
ocular bioavailability and provide safe and convenient dosing schemes. The main
objective of this review is to explore and present the latest developments in
ocular drug delivery formulations for the treatment of the pathology of the
anterior segment of the eye. Nanotechnology-based formulations, that is, organic
nanoparticles (liposomes, niosomes/discosomes, dendrimers, nanoemulsions,
nanosuspensions, nanoparticles/nanospheres) and inorganic nanoparticles,
nanoparticle-laden therapeutic contact lenses, in situ gelling
systems, and ocular inserts, are summarized and presented accordingly.
Collapse
Affiliation(s)
- Konstantinos Kagkelaris
- Department of Ophthalmology, School of Medicine, University of Patras, 26500 Patras, Greece
- Department of General Pharmacology, School of Medicine, University of Patras, Patras, Greece
| | | | | |
Collapse
|
41
|
Shi H, Zhou J, Wang Y, Zhu Y, Lin D, Lei L, Vakal S, Wang J, Li X. A Rapid Corneal Healing Microneedle for Efficient Ocular Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104657. [PMID: 35083856 DOI: 10.1002/smll.202104657] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/03/2021] [Indexed: 05/24/2023]
Abstract
Fungal keratitis (FK) remains a serious clinical problem worldwide, so the ultimate goal of the treatment is to develop a minimally invasive, safe, and effective method for ocular drug delivery. Here, a minimally invasive delivery system is reported for treating FK by using a dissolving microneedle (MN)-array patch based on Poly(D,L-lactide) (PLA) and hyaluronic acid (HA). By altering the concentration of PLA, MN patches with excellent properties are modified and optimized. The 30% PLA-HA MN patches penetrate the corneal epithelial layer reversibly with no apparent ocular irritation as well as a short recovery time of less than 12 h, and increase the residence time by 2.5 h in the conjunctival sac, thereby offering higher drug bioavailability. Remarkably, the rabbit model of FK shows that the topical MN(+) patch medication exerts superior therapeutic effects compared with the conventional eye drop formulation, and also presents comparable therapeutic efficacy with that of the clinical mainstay strategy (i.e., intrastromal injection). Therefore, the MN patch, acting as an ocular drug delivery system with high efficacy and ability of rapid corneal healing, promises a cost-effective household solution for the treatment of FK, which may also lead to a new approach for treating FK in clinics.
Collapse
Affiliation(s)
- Hui Shi
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Jianhong Zhou
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Yuan Wang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Yutuo Zhu
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Deqing Lin
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Lei Lei
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, Turku, 20541, Finland
| | - Jiaqing Wang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China
| |
Collapse
|
42
|
Abstract
INTRODUCTION Retinal diseases are one of the main reasons for vision loss where all available drug treatments are based on invasive drug administration such as intravitreal injections. Despite huge efforts and some promising results in animal models, almost all delivery technologies tested have failed in human trials. There are however examples of clinically effective topical delivery systems such as fast dissolving aqueous eye drop suspensions. AREAS COVERED Six obstacles to topical drug delivery to the eye have been identified and discussed in some details. These obstacles consist of static membrane barriers to drug permeation into the eye, dynamic barriers such as the lacrimal drainage and physiochemical barriers such as low thermodynamic activity. It is explained how and why these obstacles hamper drug permeation and how different technologies, both those that are applied in marketed drug products and those that are under investigation, have addressed these obstacles. EXPERT OPINION The reason that most topical drug delivery systems have failed to deliver therapeutic drug concentrations to the retina is that they do not address physiochemical barriers such as the thermodynamic activity of the permeating drug molecules. Topical drug delivery to the retina has only been successful when the static, dynamic, and physiochemical barriers are addressed simultaneously.
Collapse
Affiliation(s)
- Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
43
|
Mehrandish S, Mohammadi G, Mirzaeei S. Preparation and functional evaluation of electrospun polymeric nanofibers as a new system for sustained topical ocular delivery of itraconazole. Pharm Dev Technol 2021; 27:25-39. [PMID: 34895024 DOI: 10.1080/10837450.2021.2018609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to the rapid clearance of external agents from the surface of the cornea, conventional ocular formulations usually require frequent and long duration of administration to achieve a therapeutic level of the drug on the cornea which can be conquered using prolonged-release nanofibrous inserts. In the present study, for the first time, polymeric nanofibers of itraconazole (ITZ), a potent triazole antifungal agent, were prepared as ocular inserts to enhance the topical ocular delivery of the drug. Three different nanofibers were prepared by electrospinning using polyvinyl alcohol-cellulose acetate and polycaprolactone-polyethylene glycol 12 000 polymeric blends. Nanofibers indicated uniform structures with the mean diameter ranging between 137 and 180 nm. Differential scanning calorimetry and Fourier-transform infrared spectroscopy confirmed the amorphous state of the drug in the formulations and the no drug-polymer interaction. Appropriate stability, suitable flexibility, and 2.2-3.9 MPa tensile strength were observed. Formulations indicated antifungal efficacy against Candida albicans and Aspergillus fumigatus and cell viability >70% at different concentrations. Results of bioassay against Candida albicans exhibited prolonged in vitro release of 50-70% of ITZ for almost 55 days. The results suggested that the nanofibers could be considered suitable for prolonged delivery of the ITZ as an antifungal requiring frequent and long duration of administration.
Collapse
Affiliation(s)
- Saba Mehrandish
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
44
|
Chauhan A, Khan T. Prodrugs - Current development and applications in ocular drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Wang C, Jiang X, Zeng Y, Terry RN, Li W. Rapidly separable microneedle patches for controlled release of therapeutics for long-acting therapies. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
46
|
Wang J, Li B, Huang D, Norat P, Grannonico M, Cooper RC, Gui Q, Chow WN, Liu X, Yang H. Nano-in-Nano Dendrimer Gel Particles for Efficient Topical Delivery of Antiglaucoma Drugs into the Eye. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 425:130498. [PMID: 34121919 PMCID: PMC8194049 DOI: 10.1016/j.cej.2021.130498] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Low bioavailability of topically applied drugs remains a significant challenge for long-term glaucoma therapy. To enhance drug delivery efficiency, we developed dendrimer gel particles that collectively exhibit structural benefits of dendrimer, hydrogel, and particles, using the inverse emulsion method coupled with the highly efficient aza-Michael addition reaction (IEaMA). This hierarchical approach would maximize the utility of the structural features of existing ocular drug delivery systems. We have tested the delivery efficiency and efficacy of two first-line antiglaucoma drugs, brimonidine tartrate (BT) and timolol maleate (TM), which were loaded into dendrimer gel particles of various sizes, i.e., nDHP (nano-in-nano dendrimer hydrogel particles, ~200 nm), μDHP3 (3 μm), and μDHP10 (9 μm). We found that nDHP was superior to μDHP3 and μDHP10 in terms of cytocompatibility, degradability, drug release kinetics, and corneal permeability. The nDHPs increased drug corneal permeability by 17-fold compared to plain drug solution and enabled zero-order prolonged drug release kinetics. The nDHP-based formulation demonstrated pronounced IOP-lowering effects in both single-dose test and 7-day chronic daily dosing test in both Brown Norway rats and glaucoma mice. Taken together, we have developed nano-in-nano dendrimer gel particles for precise dosing and enabling sustained and synergistic efficacy of antiglaucoma drugs, which could be clinically impactful for improving glaucoma treatment.
Collapse
Affiliation(s)
- Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Da Huang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pedro Norat
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Marta Grannonico
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Remy C. Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Qin Gui
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Woon Nam Chow
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department of Ophthalmology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
47
|
Cellulosic Polymers for Enhancing Drug Bioavailability in Ocular Drug Delivery Systems. Pharmaceuticals (Basel) 2021; 14:ph14111201. [PMID: 34832983 PMCID: PMC8621906 DOI: 10.3390/ph14111201] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
One of the major impediments to drug development is low aqueous solubility and thus poor bioavailability, which leads to insufficient clinical utility. Around 70–80% of drugs in the discovery pipeline are suffering from poor aqueous solubility and poor bioavailability, which is a major challenge when one has to develop an ocular drug delivery system. The outer lipid layer, pre-corneal, dynamic, and static ocular barriers limit drug availability to the targeted ocular tissues. Biopharmaceutical Classification System (BCS) class II drugs with adequate permeability and limited or no aqueous solubility have been extensively studied for various polymer-based solubility enhancement approaches. The hydrophilic nature of cellulosic polymers and their tunable properties make them the polymers of choice in various solubility-enhancement techniques. This review focuses on various cellulose derivatives, specifically, their role, current status and novel modified cellulosic polymers for enhancing the bioavailability of BCS class II drugs in ocular drug delivery systems.
Collapse
|
48
|
Yermak IM, Gorbach VI, Karnakov IA, Davydova VN, Pimenova EA, Chistyulin DА, Isakov VV, Glazunov VP. Carrageenan gel beads for echinochrome inclusion: Influence of structural features of carrageenan. Carbohydr Polym 2021; 272:118479. [PMID: 34420738 DOI: 10.1016/j.carbpol.2021.118479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022]
Abstract
Carrageenan (CRG) and carrageenan/chitosan (CH) gel beads (CRG/CH) were prepared as a release delivery system for echinochrome A (Ech). According to spectral data, the Ech was dispersed in the polymer matrix, interacted with CRG, was not oxidised, and remained stable after encapsulation in CRG beads. Carrageenan beads containing Ech were coated with CH by layering. The influence of the structural features of CRG on the formation of beads and the beads morphology, swelling behaviour, mucoadhesive properties and drug release were evaluated. The polysaccharide matrices with Ech showed different swelling characteristics depending on the pH of the medium and the structure of the CRG used. The slow drug release from polysaccharide matrixes was observed for κ- and κ/β-CRG beads, that contained 3,6-anhydro-α-d-galactopyranose units and had high molecular weight. The obtained results showed the prospects of using polysaccharide beads to include Ech.
Collapse
Affiliation(s)
- Irina M Yermak
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation.
| | - Vladimir I Gorbach
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Ivan A Karnakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Viktoria N Davydova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Evgeniya A Pimenova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far-Eastern Branch of the Russian Academy of Sciences, Palchevskogo ul. 17, 690041, Russian Federation
| | - Dmitry А Chistyulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Vladimir V Isakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| | - Valery P Glazunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp. 159, 690022 Vladivostok, Russian Federation
| |
Collapse
|
49
|
Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery. Int J Pharm 2021; 608:121090. [PMID: 34530102 DOI: 10.1016/j.ijpharm.2021.121090] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
The delivery of drugs that target ocular tissues is challenging due to the physiological barriers of the eye like tear dilution, nasolacrimal drainage, blinking, tear turnover rate and low residence time Drug-laden contact lenses can be a possible solution to overcome some of these challenges. Nanoparticles are being extensively studied as novel systems for loading drugs into therapeutic contact lenses. The versatile features of the organic and inorganic nanoparticles and their diverse physicochemical properties make it possible to load and sustain drug release from the contact lenses. Nevertheless, several issues remains to be solved before its clinical application and commercialization such as changes in contact lens swelling (water content), transmittance, protein adherence, surface roughness, tensile strength, ion and oxygen permeability and drug leaching during contact lens manufacture. However, clinical studies demonstrated the potential of therapeutic contact lenses to manage the scientific, commercial and regulatory challenges to make its place in the market. This review highlights the different methodologies used to fabricate nanoparticle-laden contact lenses and highlights the major advances and challenges to commercialization.
Collapse
|
50
|
Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, Sun Y, Manche EE, Ta CN, Flowers CW. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int J Pharm 2021; 607:120924. [PMID: 34324989 PMCID: PMC8579814 DOI: 10.1016/j.ijpharm.2021.120924] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023]
Abstract
Research in the development of ophthalmic drug formulations and innovative technologies over the past few decades has been directed at improving the penetration of medications delivered to the eye. Currently, approximately 90% of all ophthalmic drug formulations (e.g. liposomes, micelles) are applied as eye drops. The major challenge of topical eye drops is low bioavailability, need for frequent instillation due to the short half-life, poor drug solubility, and potential side effects. Recent research has been focused on improving topical drug delivery devices by increasing ocular residence time, overcoming physiological and anatomical barriers, and developing medical devices and drug formulations to increase the duration of action of the active drugs. Researchers have developed innovative technologies and formulations ranging from sub-micron to macroscopic size such as prodrugs, enhancers, mucus-penetrating particles (MPPs), therapeutic contact lenses, and collagen corneal shields. Another approach towards the development of effective topical drug delivery is embedding therapeutic formulations in microdevices designed for sustained release of the active drugs. The goal is to optimize the delivery of ophthalmic medications by achieving high drug concentration with prolonged duration of action that is convenient for patients to administer.
Collapse
Affiliation(s)
| | - Behnam Abdi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, CA, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Farhang Abbasi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Yang Sun
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Edward E Manche
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Christopher N Ta
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Charles W Flowers
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|