1
|
Kim SA, Gelvosa MN, Cheon H, Jeon JY. The effects of postoperative treadmill exercise on rats with secondary lymphedema. PLoS One 2023; 18:e0285384. [PMID: 37220160 DOI: 10.1371/journal.pone.0285384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/20/2023] [Indexed: 05/25/2023] Open
Abstract
Cancer-related lymphedema (LE) is often caused by radiotherapy and surgery such as lymph node dissection (LND). Previous studies have reported that exercise is beneficial to relieve LE, but the changes in the lymphatic system following exercise are still unclear. This study aimed to examine the changes in lymphatic drainage pathways over the exercise period and beneficial effects of exercise in rats with LE. Twelve rats were randomly allocated into exercise and control groups (EG and CG; n = 6 each). To obtain LE, inguinal and popliteal LND followed by 20 Gy irradiation was performed. Treadmill exercise was 30 minutes/day, 5 days/week over the four-week period. Consecutive indocyanine green (ICG) lymphography images were collected and classified into five patterns: i) linear; ii) splash; iii) stardust; iv) diffuse, and v) none. Ankle thickness was measured weekly. Histopathological evaluation was performed to examine the skin thickness, collagen area fraction (%) and lymphatic vessel density in harvested tissue. ICG lymphography exhibited more linear and splash patterns in the EG at week 3. The difference of swelling between both groups was significantly different at week 4 (p = 0.016). Histopathologic data revealed a thinner epidermis (p = 0.041) and dermis (p = 0.002), lower collagen area fraction (%, p = 0.002), and higher lymph vessel density (p = 0.002) in the EG than the CG. In conclusion, we found that postoperative exercise can facilitate improvement in lymphatic fluid retention in the lymphedema rat model, resulting in improvement of pathological conditions in the lymphatic system.
Collapse
Affiliation(s)
- Sang Ah Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Biomedical Science, Graduate school of University of Ulsan College of Medicine, Seoul, Korea
| | - Ma Nessa Gelvosa
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hwayeong Cheon
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Jae Yong Jeon
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Perazzolo S, Shireman LM, Shen DD, Ho RJY. Physiologically Based Pharmacokinetic Modeling of 3 HIV Drugs in Combination and the Role of Lymphatic System after Subcutaneous Dosing. Part 1: Model for the Free-Drug Mixture. J Pharm Sci 2022; 111:529-541. [PMID: 34673093 PMCID: PMC9272351 DOI: 10.1016/j.xphs.2021.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 02/03/2023]
Abstract
Drug-combination nanoparticles (DcNP) allow the formulation of multiple HIV drugs in one injectable. In nonhuman primates (NHP), all drugs in DcNP have demonstrated long-acting pharmacokinetics (PK) in the blood and lymph nodes, rendering it suitable for a Targeted Long-acting Antiretroviral Therapy (TLC-ART). To support the translation of TLC-ART into the clinic, the objective is to present a physiologically based PK (PBPK) model tool to control mechanisms affecting the rather complex DcNP-drug PK. Two species contribute simultaneously to the drug PK: drugs that dissociate from DcNP (Part 1) and drugs retained in DcNP (Part 2, presented separately). Here, we describe the PBPK modeling of the nanoparticle-free drugs. The free-drug model was built on subcutaneous injections of suspended lopinavir, ritonavir, and tenofovir in NHP, and validated by external experiments. A novelty was the design of a lymphatic network as part of a whole-body PBPK system which included major lymphatic regions: the cervical, axillary, hilar, mesenteric, and inguinal nodes. This detailed/regionalized description of the lymphatic system and mononuclear cells represents an unprecedented level of prediction that renders the free-drug model extendible to other small-drug molecules targeting the lymphatic system at both the regional and cellular levels.
Collapse
Affiliation(s)
- Simone Perazzolo
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA.
| | - Laura M Shireman
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Danny D Shen
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Varkhede N, Bommana R, Schöneich C, Forrest ML. Proteolysis and Oxidation of Therapeutic Proteins After Intradermal or Subcutaneous Administration. J Pharm Sci 2020; 109:191-205. [PMID: 31408633 PMCID: PMC6937400 DOI: 10.1016/j.xphs.2019.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
Abstract
The intradermal (ID) and subcutaneous (SC) routes are commonly used for therapeutic proteins (TPs) and vaccines; however, the bioavailability of TPs is typically less than small molecule drugs given via the same routes. Proteolytic enzymes in the dermal, SC, and lymphatic tissues may be responsible for the loss of TPs. In addition, the TPs may be exposed to reactive oxygen species generated in the SC tissue and the lymphatic system in response to injection-related trauma and impurities within the formulation. The reactive oxygen species can oxidize TPs to alter their efficacy and immunogenicity potential. Mechanistic understandings of the dominant proteolysis and oxidative routes are useful in the drug discovery process, formulation development, and to assess the potential for immunogenicity and altered pharmacokinetics (PK). Furthermore, in vitro tools representing the ID or SC and lymphatic system can be used to evaluate the extent of proteolysis of the TPs after the injection and before systemic entry. The in vitro clearance data may be included in physiologically based pharmacokinetic models for improved PK predictions. In this review, we have summarized various physiological factors responsible for proteolysis and oxidation of TPs after ID and SC administration.
Collapse
Affiliation(s)
- Ninad Varkhede
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047; Department of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM), Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Rupesh Bommana
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047; MedImmune, Gaithersburg, Maryland 20878
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047.
| |
Collapse
|
4
|
|
5
|
Patterns of expression of factor VIII and von Willebrand factor by endothelial cell subsets in vivo. Blood 2016; 128:104-9. [PMID: 27207787 DOI: 10.1182/blood-2015-12-684688] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Circulating factor VIII (FVIII) is derived from liver and from extrahepatic sources probably of endothelial origin, but the vascular sites of FVIII production remain unclear. Among organs profiled, only liver and lymph nodes (LNs) show abundant expression of F8 messenger RNA (mRNA). Transcriptomic profiling of subsets of stromal cells, including endothelial cells (ECs) from mouse LNs and other tissues, showed that F8 mRNA is expressed by lymphatic ECs (LECs) but not by capillary ECs (capECs), fibroblastic reticular cells, or hematopoietic cells. Among blood ECs profiled, F8 expression was seen only in fenestrated ECs (liver sinusoidal and renal glomerular ECs) and some high endothelial venules. In contrast, von Willebrand factor mRNA was expressed in capECs but not in LECs; it was coexpressed with F8 mRNA in postcapillary high endothelial venules. Purified LECs and liver sinusoidal ECs but not capECs from LNs secrete active FVIII in culture, and human and mouse lymph contained substantial FVIII C activity. Our results revealed localized vascular expression of FVIII and von Willebrand factor and identified LECs as a major cellular source of FVIII in extrahepatic tissues.
Collapse
|
6
|
The Role of Lymphstasis in Atherogenesis Revisited. Ann Thorac Surg 2016; 101:2029. [DOI: 10.1016/j.athoracsur.2015.09.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/04/2015] [Accepted: 09/21/2015] [Indexed: 11/22/2022]
|
7
|
Zena LA, da Silva GSF, Gargaglioni LH, Bícego KC. Baroreflex regulation affects ventilation in the Cururu toad Rhinella schneideri. J Exp Biol 2016; 219:3605-3615. [DOI: 10.1242/jeb.144774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
Anurans regulate short-term oscillations in blood pressure through changes in heart rate (fH), vascular resistance and lymph hearts frequency. Lung ventilation in anurans is linked to blood volume homeostasis by facilitating lymph return to the cardiovascular system. We hypothesized that the arterial baroreflex modulates pulmonary ventilation in the Cururu toad Rhinella schneideri, and that this relationship is temperature-dependent. Pharmacologically induced hypotension (sodium nitroprusside) and hypertension (phenylephrine) increased ventilation (25°C: 248.7±25.7; 35°C: 351.5±50.2 ml kg−1 min−1) and decreased ventilation (25°C: 9.0±6.6; 35°C: 50.7±15.6 ml kg−1 min−1), respectively, relative to control values from Ringer's injection (25°C: 78.1±17.0; 35°C: 137.7±15.5 ml kg−1 min−1). The sensitivity of the ventilatory response to blood pressure changes was higher during hypotension than hypertension (25°C: -97.6±17.1 vs. -23.6±6.0 breaths min−1 kPa−1; 35°C: -141.0±29.5 vs. -28.7±6.4 breaths min−1 kPa−1, respectively), while temperature had no effect on those sensitivities. Hyperoxia (30%; 25°C) diminished ventilation, but did not abolish the ventilatory response to hypotension, indicating a response independent of peripheral chemoreceptors. Although there are previous data showing increased fH baroreflex sensitivity from 15 to 30°C in this species, further increases in temperature (35°C) diminished fH baroreflex gain (40.5±5.62 vs. 21.6±4.64 % kPa−1). Therefore, besides a pulmonary ventilation role in matching O2 delivery to demand at higher temperatures in anurans, it also plays a role in blood pressure regulation, independent of temperature, possibly owing to an interaction between baroreflex and respiratory areas in the brain, as previously suggested for mammals.
Collapse
Affiliation(s)
- Lucas A. Zena
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, São Paulo, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), 14884-900, Jaboticabal, São Paulo, Brazil
| | - Glauber S. F. da Silva
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, São Paulo, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), 14884-900, Jaboticabal, São Paulo, Brazil
| | - Luciane H. Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, São Paulo, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), 14884-900, Jaboticabal, São Paulo, Brazil
| | - Kênia C. Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900, Jaboticabal, São Paulo, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), 14884-900, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
8
|
|
9
|
Hodge LM, Downey HF. Lymphatic pump treatment enhances the lymphatic and immune systems. Exp Biol Med (Maywood) 2011; 236:1109-15. [DOI: 10.1258/ebm.2011.011057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The osteopathic medical profession has long advocated the use of osteopathic lymphatic pump treatments (LPT) to improve lymphatic circulation, reduce edema and combat infectious disease. However, until recently, there was no scientific evidence that LPT enhances function of the lymphatic and immune systems. This review discusses the physiological functions of the lymphatic system, the ability of LPT to increase lymph flow under normal and experimental conditions, the clinical benefits of LPT, current research models for the study of LPT and the potential mechanisms by which LPT enhances lymphatic and immune function.
Collapse
Affiliation(s)
- Lisa M Hodge
- Osteopathic Research Center
- Department of Molecular Biology
| | - H Fred Downey
- Osteopathic Research Center
- Department of Integrative Physiology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|
10
|
|