1
|
Chiu A, Rutkowski JM, Zhang Q, Zhao F. Tissue-Engineered Therapeutics for Lymphatic Regeneration: Solutions for Myocardial Infarction and Secondary Lymphedema. Adv Healthc Mater 2025; 14:e2403551. [PMID: 39806804 PMCID: PMC11936459 DOI: 10.1002/adhm.202403551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Indexed: 01/16/2025]
Abstract
The lymphatic system, which regulates inflammation and fluid homeostasis, is damaged in various diseases including myocardial infarction (MI) and breast-cancer-related lymphedema (BCRL). Mounting evidence suggests that restoring tissue fluid drainage and clearing excess immune cells by regenerating damaged lymphatic vessels can aid in cardiac repair and lymphedema amelioration. Current treatments primarily address symptoms rather than underlying causes due to a lack of regenerative therapies, highlighting the importance of the lymphatic system as a promising novel therapeutic target. Here cutting-edge research on engineered lymphatic tissues, growth factor therapies, and cell-based approaches designed to enhance lymphangiogenesis and restore lymphatic function is explored. Special focus is placed on how therapies with potential for immediate lymphatic reconstruction, originally designed for treating BCRL, can be applied to MI to augment cardiac repair and reduce heart failure risk. The integration of these novel treatments can significantly improve patient outcomes by promoting lymphatic repair, preventing pathological remodeling, and offering new avenues for managing lymphatic-associated diseases.
Collapse
Affiliation(s)
- Alvis Chiu
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 5045 Emerging Technologies Building 3120 TAMU, College Station, TX 77843-3120
| | - Joseph M. Rutkowski
- Department of Medical Physiology, College of Medicine, Texas A&M University, Medical Research and Education Building, 8447 Riverside Pkwy, Bryan, TX 77807-3260
| | - Qixu Zhang
- Department of Plastic Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030
| | - Feng Zhao
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 5045 Emerging Technologies Building 3120 TAMU, College Station, TX 77843-3120
| |
Collapse
|
2
|
Jørgensen MG, Jensen CH, Hermann AP, Andersen DC, Toyserkani NM, Sheikh SP, Sørensen JA. No Clinical Efficacy of Adipose-Derived Regenerative Cells and Lipotransfer in Breast Cancer-Related Lymphedema: A Double-Blind Placebo-Controlled Phase II Trial. Plast Reconstr Surg 2024; 154:1172-1182. [PMID: 39591365 DOI: 10.1097/prs.0000000000011343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
BACKGROUND Breast cancer-related lymphedema (BCRL) is a debilitating sequela affecting up to 1 in 3 breast cancer survivors. Treatments are palliative and do not address the underlying lymphatic injury. Recent preclinical and nonrandomized studies have shown promising results using adipose-derived regenerative cells (ADRCs) and lipotransfer in alleviating BCRL through regeneration of lymphatic tissue. However, no randomized controlled trial has been performed in an attempt to eliminate a placebo effect. METHODS This randomized, double-blind, placebo-controlled trial included patients with no-option, persistent disabling unilateral BCRL. Patients were randomly assigned in a 1:1 ratio to receive either autologous ADRCs (4.20×10 7 ± 1.75×10 7 cells) and 30-cc lipotransfer or placebo (saline) to the axilla. The primary outcome was a change in BCRL volume 1 year after treatment. Secondary outcomes included changes in quality of life, indocyanine green lymphangiography stage, bioimpedance, and safety. RESULTS Eighty patients were included, of whom 39 were allocated to ADRCs and lipotransfer treatment and 41 to placebo treatment. Baseline characteristics were similar in the groups. One year after treatment, no objective improvements were observed in the treatment or placebo groups. In contrast, significant subjective improvements were noted for both the treatment and placebo groups. CONCLUSIONS This trial failed to confirm a benefit of ADRCs and lipotransfer in the treatment of BCRL. These nonconfirmatory results suggest that ADRC and lipotransfer should not be recommended for alleviating BCRL. However, the authors cannot exclude that repeated treatments or higher doses of ADRCs or lipotransfer could yield a clinical effect. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, I.
Collapse
Affiliation(s)
- Mads Gustaf Jørgensen
- From the Departments of Plastic and Reconstructive Surgery
- Open Patient Data Explorative Network (OPEN), Odense University Hospital
- Clinical Institute, University of Southern Denmark
| | | | | | | | | | - Søren Paludan Sheikh
- Clinical Biochemistry and Pharmacology
- Clinical Institute, University of Southern Denmark
| | - Jens Ahm Sørensen
- From the Departments of Plastic and Reconstructive Surgery
- Clinical Institute, University of Southern Denmark
| |
Collapse
|
3
|
Usach V, Casadei M, Piñero G, Vence M, Soto P, Cueto A, Brumovsky PR, Setton-Avruj CP. Late Bone Marrow Mononuclear Cell Transplantation in Rats with Sciatic Nerve Crush: Analysis of a Potential Therapeutic Time Window. Int J Mol Sci 2024; 25:12482. [PMID: 39684195 DOI: 10.3390/ijms252312482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 12/18/2024] Open
Abstract
After peripheral nerve injury, axon and myelin regeneration are key events for optimal clinical improvements. We have previously shown that early bone marrow mononuclear cell (BMMC) transplantation exerts beneficial effects on myelin regeneration. In the present study, we analyze whether there is a temporal window in which BMMCs migrate more efficiently to damaged nerves while still retaining their positive effects. Adult Wistar rats of both sexes, with sciatic nerve crush, were systemically transplanted with BMMC at different days post injury. Vehicle-treated, naïve, and sham rats were also included. Morphological, functional, and behavioral analyses were performed in nerves from each experimental group at different survival times. BMMC transplantation between 0 and 7 days after injury resulted in the largest number of nested cells within the injured sciatic nerve, which supports the therapeutic value of BMMC administration within the first week after injury. Most importantly, later BMMC administration 7 days after sciatic nerve crush was associated with neuropathic pain reversion, improved morphological appearance of the damaged nerves, and a tendency toward faster recovery in the sciatic functional index and electrophysiological parameters. Our results thus support the notion that even delayed BMMC treatment may represent a promising therapeutic strategy for peripheral nerve injuries.
Collapse
Affiliation(s)
- Vanina Usach
- Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1113AAD, Argentina
| | - Mailin Casadei
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Austral, Pilar B1629AHJ, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar B1629AHJ, Argentina
| | - Gonzalo Piñero
- Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1113AAD, Argentina
| | - Marianela Vence
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1113AAD, Argentina
| | - Paula Soto
- Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1113AAD, Argentina
| | - Alicia Cueto
- Servicio de Neurología, Hospital Español de Buenos Aires, Buenos Aires C1209, Argentina
| | - Pablo Rodolfo Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Austral, Pilar B1629AHJ, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar B1629AHJ, Argentina
| | - Clara Patricia Setton-Avruj
- Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1113AAD, Argentina
| |
Collapse
|
4
|
Andersen DC, Bjerre FA, Jørgensen MG, Sørensen JA, Jensen CH. Clinical outcome is unlinked to injection of adipose-derived regenerative cells in the axilla of breast cancer-related lymphedema patients. Stem Cell Res Ther 2024; 15:426. [PMID: 39543743 PMCID: PMC11566835 DOI: 10.1186/s13287-024-04037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Injection of autologous adipose-derived regenerative cells (ADRCs) combined with lipotransfer has been suggested to alleviate symptoms in diseases including breast cancer-related lymphedema (BCRL). We recently performed a randomized controlled trial injecting lipoaspirate with ADRCs into the axilla of BCRL patients, and here we aimed in the intervention group to define in an unbiased fashion whether ADRC injection was linked to the clinical outcome. METHODS 39 BCRL patients received lipotransfer assisted with autologous ADRCs (4.20 × 107 ± 1.75 × 107 cells) whereas 41 BCRL patients were included for placebo treatment. At 12 month follow-up, we assessed quality of life, lymphangiography, and bioimpedance enclosing 59 outcome parameters. Multifactorial analysis of clinical outcomes was used to define responders and non-responders to the intervention, and collected ADRCs from these patient groups were analyzed by single cell RNA sequencing (scRNAseq). RESULTS Unbiased multifactorial analysis ranked and defined the clinical outcomes (Sf36 physical change, L-Dex Lymph Change, ICG mdanderson change) with the highest effect on BCRL patients. The 10 patients with the highest- and lowest effect (five responders and five non-responders) were included in the study. No difference between non-responders and responders were observed for injected ADRC number/size/viability (p > 0.05). In scRNAseq, we did not find any major difference (p > 0.05) between groups in ADRC composition regarding adipose derived stem cells, endothelial-, smooth muscle-, T-, B-, mast cells as well as macrophages, which was verified by flow cytometry. Differential subcluster gene expression between groups were for 92.5% of genes, including those encoding secretory proteins, below the threshold of 1.5, and thus neglible. Together this suggested that the ADRC phenotype was indistinguishable between BCRL responders and non-responders to the intervention. CONCLUSION Our data suggest that the ADRC injection and ADRC phenotype or heterogeneity have no effect on the clinical outcomes on BCRL, and ADRC assisted lipotranfer for BCRL should therefore not be considered currently.
Collapse
Affiliation(s)
- Ditte Caroline Andersen
- Andersen-Group, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Frederik Adam Bjerre
- Andersen-Group, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Mads Gustaf Jørgensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Jens Ahm Sørensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Charlotte Harken Jensen
- Andersen-Group, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark.
- Clinical Institute, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
5
|
Arriola-Alvarez I, Jaunarena I, Izeta A, Lafuente H. Progenitor Cell Sources for 3D Bioprinting of Lymphatic Vessels and Potential Clinical Application. Tissue Eng Part A 2024; 30:353-366. [PMID: 37950710 DOI: 10.1089/ten.tea.2023.0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023] Open
Abstract
The lymphatic system maintains tissue fluid homeostasis and it is involved in the transport of nutrients and immunosurveillance. It also plays a pivotal role in both pathological and regenerative processes. Lymphatic development in the embryo occurs by polarization and proliferation of lymphatic endothelial cells from the lymph sacs, that is, lymphangiogenesis. Alternatively, lymphvasculogenesis further contributes to the formation of lymphatic vessels. In adult tissues, lymphatic formation rarely occurs under physiological conditions, being restricted to pathological processes. In lymphvasculogenesis, progenitor cells seem to be a source of lymphatic vessels. Indeed, mesenchymal stem cells, adipose stem cells, endothelial progenitor cells, and colony-forming endothelial cells are able to promote lymphatic regeneration by different mechanisms, such as direct differentiation and paracrine effects. In this review, we summarize what is known on the diverse stem/progenitor cell niches available for the lymphatic system, emphasizing the potential that these cells hold for lymphatic tissue engineering through 3D bioprinting and their translation to clinical application.
Collapse
Affiliation(s)
- Inazio Arriola-Alvarez
- Tissue Engineering Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
| | - Ibon Jaunarena
- Gynecology Oncology Unit, Donostia University Hospital, Donostia-San Sebastián, Spain
- Obstetrics and Gynaecology Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
- University of the Basque Country (UPV/EHU), Department of Medical Surgical Specialties, Leioa, Spain
| | - Ander Izeta
- Tissue Engineering Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
- Department of Biomedical Engineering and Sciences, Tecnun-University of Navarra, Donostia-San Sebastián, Spain
| | - Héctor Lafuente
- Tissue Engineering Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
| |
Collapse
|
6
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
7
|
Ogino R, Yokooji T, Hayashida M, Suda S, Yamakawa S, Hayashida K. Emerging Anti-Inflammatory Pharmacotherapy and Cell-Based Therapy for Lymphedema. Int J Mol Sci 2022; 23:ijms23147614. [PMID: 35886961 PMCID: PMC9322118 DOI: 10.3390/ijms23147614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Secondary lymphedema is a common complication of lymph node dissection or radiation therapy for cancer treatment. Conventional therapies such as compression sleeve therapy, complete decongestive physiotherapy, and surgical therapies decrease edema; however, they are not curative because they cannot modulate the pathophysiology of lymphedema. Recent advances reveal that the activation and accumulation of CD4+ T cells are key in the development of lymphedema. Based on this pathophysiology, the efficacy of pharmacotherapy (tacrolimus, anti-IL-4/IL-13 antibody, or fingolimod) and cell-based therapy for lymphedema has been demonstrated in animal models and pilot studies. In addition, mesenchymal stem/stromal cells (MSCs) have attracted attention as candidates for cell-based lymphedema therapy because they improve symptoms and decrease edema volume in the long term with no serious adverse effects in pilot studies. Furthermore, MSC transplantation promotes functional lymphatic regeneration and improves the microenvironment in animal models. In this review, we focus on inflammatory cells involved in the pathogenesis of lymphedema and discuss the efficacy and challenges of pharmacotherapy and cell-based therapies for lymphedema.
Collapse
Affiliation(s)
- Ryohei Ogino
- Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (R.O.); (T.Y.)
| | - Tomoharu Yokooji
- Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (R.O.); (T.Y.)
| | - Maiko Hayashida
- Department of Psychiatry, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan;
| | - Shota Suda
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
| | - Sho Yamakawa
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
| | - Kenji Hayashida
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
- Correspondence: ; Tel.: +81-853-20-2210
| |
Collapse
|
8
|
Bellisi M. Autologous peripheral blood mononuclear cells for the treatment of lower extremity lymphedema: a preliminary report. VEINS AND LYMPHATICS 2021. [DOI: 10.4081/vl.2021.10016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lymphedema is a chronic devastating disease characterized by the accumulation of fluid in the extremities, tissue progressive changes such as adipose tissue deposition and fibrosis. To restore the functionality and structural integrity of the damaged lymphatic vessels, autologous peripheral blood mononuclear cells (PBMNC) was implanted in 3 sessions, 4 weeks apart, in the affected limb. Each patient was followed for 6 months, monitoring changes in the limb volume. Lymphangiogenesis was evaluated by lymphoscintigraphy, and the monitoring of quality of life. A rapid reduction in the volume of the limbs was observed: 24.5% of volume reduction after the first implant, 18.5% after the second, and 15.3% at 6 months after the third (p<0.05 vs baseline).
Lymphoscintigraphy showed a hyper fixation of the tracer along the ipsilateral iliac axis not appreciable at baseline. Implants of autologous PBMNC in patients with primary lower limb lymphedema seems to be a feasible, effective therapy option.
Collapse
|
9
|
Lafuente H, Jaunarena I, Ansuategui E, Lekuona A, Izeta A. Cell therapy as a treatment of secondary lymphedema: a systematic review and meta-analysis. Stem Cell Res Ther 2021; 12:578. [PMID: 34801084 PMCID: PMC8605543 DOI: 10.1186/s13287-021-02632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/16/2021] [Indexed: 12/09/2022] Open
Abstract
Background Lymphedema, the accumulation of interstitial fluid caused by poor lymphatic drainage, is a progressive and permanent disease with no curative treatment. Several studies have evaluated cell-based therapies in secondary lymphedema, but no meta-analysis has been performed to assess their efficacy. Methods We conducted a systematic review and meta-analysis of all available preclinical and clinical studies, with assessment of their quality and risk of bias. Results A total of 20 articles using diverse cell types were selected for analysis, including six clinical trials and 14 pre-clinical studies in three species. The meta-analysis showed a positive effect of cell-based therapies on relevant disease outcomes (quantification of edema, density of lymphatic capillaries, evaluation of the lymphatic flow, and tissue fibrosis). No significant publication bias was observed. Conclusion Cell-based therapies have the potential to improve secondary lymphedema. The underlying mechanisms remain unclear. Due to relevant heterogeneity between studies, further randomized controlled and blinded studies are required to substantiate the use of these novel therapies in clinical practice.
Collapse
Affiliation(s)
- Hector Lafuente
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
| | - Ibon Jaunarena
- Gynecology Oncology Unit, Donostia University Hospital, 20014, San Sebastián, Spain.,Obstetrics and Gynaecology Group, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
| | - Eukene Ansuategui
- Clinical Epidemiology Group, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
| | - Arantza Lekuona
- Gynecology Oncology Unit, Donostia University Hospital, 20014, San Sebastián, Spain.,Obstetrics and Gynaecology Group, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
| | - Ander Izeta
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014, San Sebastián, Spain. .,School of Engineering, Tecnun-University of Navarra, 20009, San Sebastián, Spain.
| |
Collapse
|
10
|
Walker J, Tanna S, Roake J, Lyons O. A systematic review of pharmacologic and cell-based therapies for treatment of lymphedema (2010-2021). J Vasc Surg Venous Lymphat Disord 2021; 10:966-975.e1. [PMID: 34587525 DOI: 10.1016/j.jvsv.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lymphedema describes the accumulation of interstitial fluid that results from lymphatic failure. Lymphedema can be of primary or secondary origin and has been estimated to affect 200 million people worldwide. Secondary lymphedema is commonly due to damage to the lymphatic vessels after surgical procedures. Treatments include compression bandaging and exercise regimens. However, at present, no pharmacologic therapy has been approved. We performed a systematic review of randomized controlled trials (RCTs) that had investigated pharmacologic and cell-based therapies for secondary lymphedema. METHODS We searched the databases MEDLINE, Embase, and ClinicalTrials.gov from January 2010 to May 2021. Only RCTs that had investigated pharmacologic and/or cell-based therapies for secondary lymphedema were eligible for inclusion. Those studies that had examined only active filarial infection were excluded. Two of us (J.W., S.T.) independently screened the studies for eligibility. RESULTS We identified eight RCTs that met the inclusion criteria. Overall, the studies were of poor quality with a high risk of bias. Ketoprofen demonstrated promising improvements in skin thickness and tissue histopathologic scores. Some evidence was found to suggest that doxycycline might be beneficial for nonfilarial secondary lymphedema, and a single, small RCT demonstrated that selenium might also confer some benefit. Neither synbiotics nor platelet-rich plasma resulted in reduced lymphedema volumes or symptom severity. Also, although bone marrow-derived stem cells resulted in improved symptom scores, no significant volume reduction was detected. Although positive results were demonstrated in trials investigating benzopyrones, previous meta-analyses have cast doubt on their efficacy. No two studies assessed the same intervention; thus, we could not perform a meta-analysis. CONCLUSIONS Although the results from some studies appeared promising, the available evidence at present is insufficient for any pharmacologic or cell-based therapy for patients with secondary lymphedema. Furthermore, large, high-quality RCTs are required before treatment recommendations will be possible.
Collapse
Affiliation(s)
- James Walker
- Academic Department of Vascular Surgery, King's College London, St Thomas' Hospital, London, UK.
| | - Sameera Tanna
- Obetetrics and Gynaecology, The Hillingdon Hospitals NHS Foundation Trust, London, UK
| | - Justin Roake
- Department of Surgery, University of Otago, Christchurch, New Zealand; Department of Vascular Endovascular and Transplant Surgery, Christchurch Hospital, Canterbury District Health Board, Christchurch, New Zealand
| | - Oliver Lyons
- Academic Department of Vascular Surgery, King's College London, St Thomas' Hospital, London, UK; Department of Surgery, University of Otago, Christchurch, New Zealand; Department of Vascular Endovascular and Transplant Surgery, Christchurch Hospital, Canterbury District Health Board, Christchurch, New Zealand
| |
Collapse
|
11
|
Bryk M, Karnas E, Mlost J, Zuba-Surma E, Starowicz K. Mesenchymal stem cells and extracellular vesicles for the treatment of pain: Current status and perspectives. Br J Pharmacol 2021; 179:4281-4299. [PMID: 34028798 DOI: 10.1111/bph.15569] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent progenitor cells of mesodermal origin. Due to their capacity for self-renewal and differentiation into several cell types, MSCs have been extensively studied in experimental biology and regenerative medicine in recent years. Moreover, MSCs release extracellular vesicles (EVs), which might be partly responsible for their regenerative properties. MSCs regulate several processes in target cells via paracrine signalling, such as immunomodulation, anti-apoptotic signalling, tissue remodelling, angiogenesis and anti-fibrotic signalling. The aim of this review is to provide a detailed description of the functional properties of MSCs and EVs and their potential clinical applications, with a special focus on pain treatment. The analgesic, anti-inflammatory and regenerative properties of MSCs and EVs will be discussed for several diseases, such as neuropathic pain, osteoarthritis and spinal cord injury.
Collapse
Affiliation(s)
- Marta Bryk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jakub Mlost
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
12
|
Abstract
Tissue engineering has witnessed remarkable advancement in various fields of medicine and has the potential of revolutionizing the management of lymphedema. Combining approaches of biotechnology with the evolving understanding of lymphangiogenesis may offer promising treatment modalities for patients suffering from lymphedema. The strategies to lymphatic vessels tissue engineer can be grouped into four main categories: Delivery of chemokines, cytokines, and other growth factors to induce lymphangiogenesis; cell-based approach using lymphatic endothelial cells or stem-cells; scaffold-based tissue engineering; or a combination of these. This review will summarize the current approach to cancer-related lymphedema and advances in lymphatic tissue engineering strategies and the challenges facing the regeneration of lymphatic vasculature, particularly in an oncologic setting.
Collapse
Affiliation(s)
- Malke Asaad
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Summer E Hanson
- Section of Plastic and Reconstructive Surgery, Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| |
Collapse
|
13
|
Jørgensen MG, Toyserkani NM, Jensen CH, Andersen DC, Sheikh SP, Sørensen JA. Adipose-derived regenerative cells and lipotransfer in alleviating breast cancer-related lymphedema: An open-label phase I trial with 4 years of follow-up. Stem Cells Transl Med 2021; 10:844-854. [PMID: 33594819 PMCID: PMC8133335 DOI: 10.1002/sctm.20-0394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Patients with breast cancer‐related lymphedema (BCRL) have reduced quality of life and arm function. Current treatments are palliative, and treatments improving lymphedema are lacking. Preclinical studies have suggested that adipose‐derived regenerative cells (ADRCs) can alleviate lymphedema. We, therefore, aimed to assess whether ADRCs can alleviate lymphedema in clinical reality with long‐term follow‐up. We treated 10 patients with BCRL using ADRCs and a scar‐releasing lipotransfer to the axillary region, and all patients were followed 1, 3, 6, 12, and 48 months after treatment. The primary endpoint was change in arm volume. Secondary endpoints were safety, change in lymphedema symptoms, quality of life, lymphedema‐associated cellulitis, and conservative treatment use. There was no significant decrease in BCRL volume after treatment. However, self‐reported upper extremity disability and arm heaviness and tension improved. Six patients reduced their use of conservative BCRL treatment. Five patients felt that their BCRL had improved substantially, and four of these would redo the treatment. We did not observe any cases of locoregional breast cancer recurrence. In this phase I study with 4 years of follow‐up, axillary delivered ADRCs and lipotransfer were safe and feasible and improved BCRL symptoms and upper extremity function. Randomized controlled trials are needed to confirm the results of this study.
Collapse
Affiliation(s)
- Mads Gustaf Jørgensen
- Department of Plastic Surgery, Research Unit for Plastic Surgery, Odense University Hospital, Odense, Denmark.,Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Navid Mohamadpour Toyserkani
- Department of Plastic Surgery, Research Unit for Plastic Surgery, Odense University Hospital, Odense, Denmark.,Department of Plastic Surgery and Burns Treatment, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Harken Jensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Ditte Caroline Andersen
- Clinical Institute, University of Southern Denmark, Odense, Denmark.,Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Søren Paludan Sheikh
- Clinical Institute, University of Southern Denmark, Odense, Denmark.,Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Jens Ahm Sørensen
- Department of Plastic Surgery, Research Unit for Plastic Surgery, Odense University Hospital, Odense, Denmark.,Clinical Institute, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Chen K, Sinelnikov MY, Reshetov IV, Timashev P, Gu Y, Mu L, Lu P, Zhang Y. Therapeutic Potential of Mesenchymal Stem Cells for Postmastectomy Lymphedema: A Literature Review. Clin Transl Sci 2020; 14:54-61. [PMID: 33460321 PMCID: PMC7877822 DOI: 10.1111/cts.12864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
Upper limb lymphedema is one of the most common complications after breast cancer surgery and radiotherapy. Despite various physical therapy and surgical options available, the impaired lymph fluid drainage may be progressive due to lymphatic vascular insufficiency making treatment more difficulty. Stem cell therapy provides a promising alternative in the treatment of various chronic diseases. The wide applicability of cell therapy has been reviewed throughout literature. This review provides an overview of recent progress in the therapeutic effect of adult stem cells for primary and secondary lymphedema after breast surgery in preclinical studies and clinical cases. We start with a brief introduction about the pathophysiological mechanisms of postmastectomy lymphedema. Regarding existing treatments, we systematically summarize the benefits and limitations of recent progress. Because of their multidirectional differentiation potential and growth factor secretion, stem cell therapy shows promising results in the management of light to severe lymphedema. Increasing evidences have demonstrated a noticeable reduction in postmastectomy lymphedema and increased lymph-angiogenesis after specific stem cell therapy. Current data suggests that stem cell therapy in lymphedema treatment provides reversal of pathological reorganization associated with lymphedema progression. Finally, we propose potential strategies for overcoming the challenges in the development of multipotent progenitor cells for the treatment and prevention of lymphedema in clinical practice.
Collapse
Affiliation(s)
- Kuo Chen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Mikhail Y Sinelnikov
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Igor V Reshetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Petr Timashev
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yuanting Gu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Mu
- Peking University People's Hospital, Beijing, China
| | - Pengwei Lu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| |
Collapse
|
15
|
Ehyaeeghodraty V, Molavi B, Nikbakht M, Malek Mohammadi A, Mohammadi S, Ehyaeeghodraty N, Fallahi B, Mousavi SA, Vaezi M, Sefidbakht S. Effects of mobilized peripheral blood stem cells on treatment of primary lower extremity lymphedema. J Vasc Surg Venous Lymphat Disord 2019; 8:445-451. [PMID: 31859244 DOI: 10.1016/j.jvsv.2019.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Lymphedema is a chronic debilitating disease characterized by the accumulation of fluid in the extremities as a result of lymphatic system impairment. Current treatments fail to restore the functionality and structural integrity of the lymphatic vessels lost in this condition. In this study, autologous mobilized peripheral blood stem cell transplantation was used and its potential efficacy and safety were evaluated in treating this condition. METHODS Ten patients with primary lymphedema in the lower extremity received granulocyte-colony stimulating factor subcutaneously for 4 days, to stimulate stem cell mobilization, after which 200 to 250 mL of blood was drawn from each patient and used to collect stem cells. Mobilized stem cells were counted by flow cytometry with International Society of Hematotherapy and Graft Engineering method. In two sessions, 3 weeks apart, these stem cells were injected subcutaneously in the affected limb at approximately 80 points, along the lymphatic vessels. Each patient was followed for 6 months, during which changes in the limb volume and circumference were measured. Lymphangiogenesis was evaluated by biopsy, the lymphoscintigraphic transport index was calculated using Lymphoscintigraphy, and quality of life was surveyed. RESULTS In this study, patients received on average 9.5 ± 6.8 × 108 mononuclear cells (which divided into 2 × 106 CD34+ cells for each session) in two sessions. The volume of the lower limbs decreased in 60% of patients. One patient showed a slight increase in the volume of lower limbs and three showed no change. The average limb volume was 4469.41 ± 1760.71 cm3, which on average differed from the average initial limb volume by 232.88 ± 392.53 cm3. Quality of life was reported as slightly increased in 60% of patients. The lymphoscintigraphic transport index suggested improvement in 60% of the patients. Likewise, tissue samples showed a 60% increase in lymphatic vessels. CONCLUSIONS Subcutaneous injection of autologous hematopoietic stem cells harvested from peripheral blood into patients with primary lower limb lymphedema is feasible, potentially effective, and without serious adverse effects. However, a larger scale study with more patients is needed to validate our results. Last, to increase the effectiveness of this treatment, the optimal dose of cells injected and the requirement for additional growth factors need further study.
Collapse
Affiliation(s)
- Vida Ehyaeeghodraty
- Vascular Surgery Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Molavi
- Vascular Surgery Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikbakht
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Malek Mohammadi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Babak Fallahi
- Research Institute for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Asadollah Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Salma Sefidbakht
- Pathology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Chen CE, Chiang NJ, Perng CK, Ma H, Lin CH. Review of preclinical and clinical studies of using cell-based therapy for secondary lymphedema. J Surg Oncol 2019; 121:109-120. [PMID: 31385308 DOI: 10.1002/jso.25661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
Secondary lymphedema is associated with impaired lymph fluid drainage and remains incurable. Alternatively, cell-based therapy may pave the way for lymphedema treatment. We found 11 animal and seven human studies had been conducted from 2008 to 2018. Most studies showed great potential for this treatment modality. Emerging studies have focused on novel techniques, such as coupling cell therapy with lymph node transfer, or adding growth factors to cell therapy.
Collapse
Affiliation(s)
- Ching-En Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Nai-Jung Chiang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Department of Internal Medicine, Cheng Kung University Medical Center, Tainan, Taiwan
| | - Cherng-Kang Perng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsu Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Hsun Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|