1
|
Al-Trad EI, Chew CH, Che Hamzah AM, Suhaili Z, Rahman NIA, Ismail S, Puah SM, Chua KH, Kwong SM, Yeo CC. The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia. Antibiotics (Basel) 2023; 12:antibiotics12040733. [PMID: 37107095 PMCID: PMC10135026 DOI: 10.3390/antibiotics12040733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a priority nosocomial pathogen with plasmids playing a crucial role in its genetic adaptability, particularly in the acquisition and spread of antimicrobial resistance. In this study, the genome sequences of 79 MSRA clinical isolates from Terengganu, Malaysia, (obtained between 2016 and 2020) along with an additional 15 Malaysian MRSA genomes from GenBank were analyzed for their plasmid content. The majority (90%, 85/94) of the Malaysian MRSA isolates harbored 1-4 plasmids each. In total, 189 plasmid sequences were identified ranging in size from 2.3 kb to ca. 58 kb, spanning all seven distinctive plasmid replication initiator (replicase) types. Resistance genes (either to antimicrobials, heavy metals, and/or biocides) were found in 74% (140/189) of these plasmids. Small plasmids (<5 kb) were predominant (63.5%, 120/189) with a RepL replicase plasmid harboring the ermC gene that confers resistance to macrolides, lincosamides, and streptogramin B (MLSB) identified in 63 MRSA isolates. A low carriage of conjugative plasmids was observed (n = 2), but the majority (64.5%, 122/189) of the non-conjugative plasmids have mobilizable potential. The results obtained enabled us to gain a rare view of the plasmidomic landscape of Malaysian MRSA isolates and reinforces their importance in the evolution of this pathogen.
Collapse
Affiliation(s)
- Esra'a I Al-Trad
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | | | - Zarizal Suhaili
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut 22200, Malaysia
| | - Nor Iza A Rahman
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Salwani Ismail
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Stephen M Kwong
- Infectious Diseases & Microbiology, School of Medicine, Western Sydney University, Campbelltown 2560, Australia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| |
Collapse
|
2
|
Leal M, Morais C, Ramos B, Pomba C, Abrantes P, Costa SS, Couto I. Exploring Efflux as a Mechanism of Reduced Susceptibility towards Biocides and Fluoroquinolones in Staphylococcus pseudintermedius. Animals (Basel) 2023; 13:1270. [PMID: 37048526 PMCID: PMC10093712 DOI: 10.3390/ani13071270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Staphylococcus pseudintermedius is the main bacterial cause of skin and soft tissue infections (SSTIs) in companion animals, particularly dogs. The emergence of methicillin-resistant S. pseudintermedius (MRSP) strains, frequently with multidrug resistance phenotypes is a public health concern. This study aimed to evaluate efflux, a resistance mechanism still poorly characterized in S. pseudintermedius, as a contributor to biocide and fluoroquinolone resistance. Susceptibility to the efflux pump substrates ethidium bromide (EtBr), tetraphenylphosphonium bromide (TPP) and ciprofloxacin (CIP) was evaluated by minimum inhibitory concentration (MIC) determination for 155 SSTIs-related S. pseudintermedius in companion animals. EtBr and TPP MIC distributions were analyzed to estimate cut-off (COWT) values. The effect of the efflux inhibitors (EIs) thioridazine and verapamil was assessed upon MICs and fluorometric EtBr accumulation assays, performed with/without glucose and/or EIs. This approach detected a non-wild type population towards TPP with increased efflux, showed to be strain-specific and glucose-dependent. Resistance to fluoroquinolones was mainly linked to target gene mutations, yet a contribution of efflux on CIP resistance levels could not be ruled out. In sum, this study highlights the relevance of efflux-mediated resistance in clinical S. pseudintermedius, particularly to biocides, and provides a methodological basis for further studies on the efflux activity on this important pathogen of companion animals.
Collapse
Affiliation(s)
- Marta Leal
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Catarina Morais
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Bárbara Ramos
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Constança Pomba
- CIISA, Centre of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
- GeneVet, Laboratório de Diagnóstico Molecular Veterinário, Rua Quinta da Nora Loja 3B, 2790-140 Carnaxide, Portugal
| | - Patrícia Abrantes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Sofia Santos Costa
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Isabel Couto
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| |
Collapse
|
3
|
Staphylococcus aureus Causing Skin and Soft Tissue Infections in Companion Animals: Antimicrobial Resistance Profiles and Clonal Lineages. Antibiotics (Basel) 2022; 11:antibiotics11050599. [PMID: 35625243 PMCID: PMC9137735 DOI: 10.3390/antibiotics11050599] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus is a relevant agent of skin and soft tissue infections (SSTIs) in animals. Fifty-five S. aureus comprising all SSTI-related isolates in companion animals, collected between 1999 and 2018 (Lab 1) or 2017 and 2018 (Lab 2), were characterized regarding susceptibility to antibiotics and heavy metals and carriage of antimicrobial resistance determinants. Clonal lineages were established by PFGE, MLST and agr typing. Over half of the isolates (56.4%, 31/55) were methicillin-resistant S. aureus (MRSA), and 14.5% showed a multidrug resistance (MDR) phenotype. Resistance was most frequently observed for beta-lactams (81.8%, related to blaZ and/or mecA), fluoroquinolones (56.4%) and macrolides/lincosamides (14.5%, related to erm(A) or erm(C)). The distributions of heavy-metal MICs allowed the detection of non-wild-type populations associated with several resistance genes. The collection showed genetic diversity, with prevalence of clonal lineage ST22-agrI (45.5%, 25/55), comprising only MRSA isolates, and several less frequently detected clones, including ST5-agrII (14.6%, 8/55), ST398-agrI (9.1%, 5/55) and ST72-agrI (7.3%, 4/55). This work highlights the high frequency of SSTI-related MRSA strains that reflect the clonal lineages circulating both in companion animals and humans in Portugal, reinforcing the need for a One Health approach when studying staphylococci causing infections in companion animals.
Collapse
|
4
|
Amirsoleimani A, Brion G, Francois P. Co-Carriage of Metal and Antibiotic Resistance Genes in Sewage Associated Staphylococci. Genes (Basel) 2021; 12:genes12101473. [PMID: 34680871 PMCID: PMC8535820 DOI: 10.3390/genes12101473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Controlling spread of resistance genes from wastewater to aquatic systems requires more knowledge on how resistance genes are acquired and transmitted. Whole genomic sequences from sewage-associated staphylococcus isolates (20 S. aureus, 2 Staphylococcus warneri, and 2 Staphylococcus delphini) were analyzed for the presence of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs). Plasmid sequences were identified in each isolate to investigate co-carriage of ARGs and MRGs within. BLASTN analysis showed that 67% of the isolates carried more than one ARG. The carriage of multiple plasmids was observed more in CC5 than CC8 S. aureus strains. Plasmid exchange was observed in all staphylococcus species except the two S. delphini isolates that carried multiple MRGs, no ARGs, and no plasmids. 85% of S. aureus isolates carried the blaZ gene, 76% co-carried blaZ with cadD and cadX, with 62% of these isolates carrying blaZ, cadD, and cadX on the same plasmid. The co-carriage of ARGs and MRGs in S. warneri isolates, and carriage of MRGs in S. delphini, without plasmids suggests non-conjugative transmission routes for gene acquisition. More studies are required that focus on the transduction and transformation routes of transmission to prevent interspecies exchange of ARGs and MRGs in sewage-associated systems.
Collapse
Affiliation(s)
- Atena Amirsoleimani
- Department of Civil Engineering, University of Kentucky, Lexington, KY 40506, USA;
- Correspondence: ; Tel.: +1-(859)257-4467
| | - Gail Brion
- Department of Civil Engineering, University of Kentucky, Lexington, KY 40506, USA;
| | - Patrice Francois
- Genomic Research Laboratory, Infectious Diseases Department, University Medical Center, 364-8501 Geneva, Switzerland;
| |
Collapse
|
5
|
Characterization of antibiotic resistance and virulence genes of ocular methicillin-resistant Staphylococcus aureus strains through complete genome analysis. Exp Eye Res 2021; 212:108764. [PMID: 34508729 DOI: 10.1016/j.exer.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022]
Abstract
Virulence-factor encoding genes (VFGs) and antimicrobial resistance genes (ARGs) of ocular Methicillin-Resistant Staphylococcus aureus (MRSA), are the reason behind the common cause of severe and untreatable ocular infection and are largely unknown. The unavailability of the complete genome sequence of ocular MRSA strains hinders the unambiguous determination of ARGs and VRGs role in disease pathogenesis and their genomic location. To fulfill this critical need, we achieved the high-quality complete genome of four ocular MRSA strains (AMRF3 - AMRF6) by combining MinION nanopore sequencing technology, followed by polishing with Illumina sequence reads. We obtained a single chromosome and a plasmid in each strain. Sequence typing revealed that AMRF3 and AMRF5 strains harbored ST772, whereas AMRF4 and AMRF6 harbored ST 2066. All plasmids carried heavy metal cadmium resistance genes cadC and cadD, while cadA was detected only in the plasmid pSaa6159 of AMRF4 and AMRF6 strains. Further, pSaa6159 contains a complete Tn552 transposon with beta-lactamase genes, blaI, blaR1, and blaZ. Interestingly, pSaa6159 in AMRF6 carried five copies of Tn552 transposon. Several exotoxins and enterotoxins were identified across ocular MRSA strains and ST2066 strains found to be not carried any enterotoxins; this finding suggests that these two strains are exotoxigenic. Besides, ST2066 strains carried serine proteases (splA, splB, splD, splE and spIF) and exotoxin (seb and set 21) for their virulence, while ST772 carried antimicrobial resistance genes (blaZ, dfrG, msrA, mphC and fosB) and enterotoxin sec for virulence, suggesting sequence type-specific resistance and virulence. Also, we identified many VFGs and ARGs, that provided multi-drug resistance, enterotoxigenic, exotoxigenic, biofilm-forming, host tissue adhesion and immune response evasion in ocular MRSA strains. Thus, our study provides a better insight into the genomes of ocular MRSA strains that would provide more effective treatment strategies for ocular MRSA infection.
Collapse
|
6
|
Costa SS, Ferreira C, Ribeiro R, Feßler AT, Schink AK, Kadlec K, Kaspar H, Amaro A, Albuquerque T, Abrantes P, Morais C, Pomba C, Schwarz S, Couto I. Proposal of Epidemiological Cutoff Values for Apramycin 15 μg and Florfenicol 30 μg Disks Applicable to Staphylococcus aureus. Microb Drug Resist 2021; 27:1555-1559. [PMID: 33956523 DOI: 10.1089/mdr.2020.0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Apramycin and florfenicol are two antimicrobial agents exclusively used in veterinary medicine. Resistance determinants to these antimicrobial agents have been described in several staphylococci, yet no inhibition zone-based epidemiological cutoff (ECOFF) values are available to detect populations harboring resistance mechanisms. In this study, we propose disk diffusion inhibition zone ECOFF values of Staphylococcus aureus for apramycin and florfenicol. The susceptibility to apramycin and florfenicol was evaluated by disk diffusion of five S. aureus collections, comprising 352 isolates of animal (n = 265) and human (n = 87) origin. The aggregated distributions of inhibition zone diameters were analyzed by the normalized resistance interpretation method to obtain normalized wild-type (WT) population distributions and corresponding ECOFF values. The putative WT populations of S. aureus were characterized by an inhibition zone ≥15 mm (ECOFF = 15 mm) for apramycin and ≥21 mm for florfenicol (ECOFF = 21 mm). Five nonwild-type (NWT) isolates were detected for apramycin, all without inhibition zone and harboring the apmA gene, whereas five NWT isolates were identified for florfenicol, all carrying the fexA gene. The proposed ECOFF values for apramycin and florfenicol may be a valuable tool in future antimicrobial resistance monitoring and surveillance studies to identify S. aureus NWT populations toward these antimicrobial agents.
Collapse
Affiliation(s)
- Sofia Santos Costa
- Global Health and Tropical Medicine (GHTM), Unit of Medical Microbiology, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | - Carolina Ferreira
- Global Health and Tropical Medicine (GHTM), Unit of Medical Microbiology, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | - Rute Ribeiro
- Global Health and Tropical Medicine (GHTM), Unit of Medical Microbiology, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anne-Kathrin Schink
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Kristina Kadlec
- Dairy Herd Consulting and Research Company (MBFG), Wunstorf, Germany
| | - Heike Kaspar
- Unit Monitoring of Resistance to Antibiotics, Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Ana Amaro
- National Institute of Agrarian and Veterinary Research (INIAV, IP), National Reference Laboratory for Animal Health, Laboratory of Bacteriology and Mycology, Oeiras, Portugal
| | - Teresa Albuquerque
- National Institute of Agrarian and Veterinary Research (INIAV, IP), National Reference Laboratory for Animal Health, Laboratory of Bacteriology and Mycology, Oeiras, Portugal
| | - Patrícia Abrantes
- Global Health and Tropical Medicine (GHTM), Unit of Medical Microbiology, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | - Catarina Morais
- Global Health and Tropical Medicine (GHTM), Unit of Medical Microbiology, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | - Constança Pomba
- Laboratório de Diagnóstico Molecular Veterinário, GeneVet, Lisbon, Portugal.,Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Isabel Couto
- Global Health and Tropical Medicine (GHTM), Unit of Medical Microbiology, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| |
Collapse
|
7
|
Ferreira C, Costa SS, Serrano M, Oliveira K, Trigueiro G, Pomba C, Couto I. Clonal Lineages, Antimicrobial Resistance, and PVL Carriage of Staphylococcus aureus Associated to Skin and Soft-Tissue Infections from Ambulatory Patients in Portugal. Antibiotics (Basel) 2021; 10:antibiotics10040345. [PMID: 33804851 PMCID: PMC8063795 DOI: 10.3390/antibiotics10040345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a leading cause of skin and soft-tissue infections (SSTIs) in the community. In this study, we characterized a collection of 34 S. aureus from SSTIs in ambulatory patients in Portugal and analyzed the presence of Panton–Valentine leucocidin (PVL)-encoding genes and antibiotic-resistance profile, which was correlated with genetic determinants, plasmid carriage, and clonal lineage. Nearly half of the isolates (15, 44.1%) were methicillin-resistant Staphylococcus aureus (MRSA) and/or multidrug resistant (MDR). We also detected resistance to penicillin (33/34, 97.1%), fluoroquinolones (17/34, 50.0%), macrolides and lincosamides (15/34, 44.1%), aminoglycosides (6/34, 17.6%), and fusidic acid (2/34, 5.9%), associated with several combinations of resistance determinants (blaZ, erm(A), erm(C), msr(A), mph(C), aacA-aphD, aadD, aph(3′)-IIIa, fusC), or mutations in target genes (fusA, grlA/gyrA). The collection presented a high genetic diversity (Simpson’s index of 0.92) with prevalence of clonal lineages CC5, CC22, and CC8, which included the MRSA and also most MDR isolates (CC5 and CC22). PVL-encoding genes were found in seven isolates (20.6%), three methicillin-susceptible Staphylococcus aureus (MSSA) (ST152-agrI and ST30-agrIII), and four MRSA (ST8-agrI). Plasmid profiling revealed seventeen distinct plasmid profiles. This work highlights the high frequency of antimicrobial resistance and PVL carriage in SSTIs-related S. aureus outside of the hospital environment.
Collapse
Affiliation(s)
- Carolina Ferreira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (C.F.); (S.S.C.); (M.S.); (K.O.)
| | - Sofia Santos Costa
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (C.F.); (S.S.C.); (M.S.); (K.O.)
| | - Maria Serrano
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (C.F.); (S.S.C.); (M.S.); (K.O.)
| | - Ketlyn Oliveira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (C.F.); (S.S.C.); (M.S.); (K.O.)
| | - Graça Trigueiro
- Laboratório de Análises Clínicas Dr. Joaquim Chaves, Av. General Norton de Matos, 71 R/C, 1495-148 Algés, Portugal;
| | - Constança Pomba
- CIISA, Centre of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
- GeneVet, Laboratório de Diagnóstico Molecular Veterinário, Rua Quinta da Nora Loja 3B, 2790-140 Carnaxide, Portugal
| | - Isabel Couto
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (C.F.); (S.S.C.); (M.S.); (K.O.)
- Correspondence: ; Tel.: +351-21-3652652; Fax: +351-21-3632105
| |
Collapse
|
8
|
Anti-staphylococcal activity and mode of action of thioridazine photoproducts. Sci Rep 2020; 10:18043. [PMID: 33093568 PMCID: PMC7582912 DOI: 10.1038/s41598-020-74752-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance became an increasing risk for population health threatening our ability to fight infectious diseases. The objective of this study was to evaluate the activity of laser irradiated thioridazine (TZ) against clinically-relevant bacteria in view to fight antibiotic resistance. TZ in ultrapure water solutions was irradiated (1–240 min) with 266 nm pulsed laser radiation. Irradiated solutions were characterized by UV–Vis and FTIR absorption spectroscopy, thin layer chromatography, laser-induced fluorescence, and dynamic surface tension measurements. Molecular docking studies were made to evaluate the molecular mechanisms of photoproducts action against Staphylococcus aureus and MRSA. More general, solutions were evaluated for their antimicrobial and efflux inhibitory activity against a panel of bacteria of clinical relevance. We observed an enhanced antimicrobial activity of TZ photoproducts against Gram-positive bacteria. This was higher than ciprofloxacin effects for methicillin- and ciprofloxacin-resistant Staphylococcus aureus. Molecular docking showed the Penicillin-binding proteins PBP3 and PBP2a inhibition by sulforidazine as a possible mechanism of action against Staphylococcus aureus and MRSA strains, respectively. Irradiated TZ reveals possible advantages in the treatment of infectious diseases produced by antibiotic-resistant Gram-positive bacteria. TZ repurposing and its photoproducts, obtained by laser irradiation, show accelerated and low-costs of development if compared to chemical synthesis.
Collapse
|
9
|
Biocide susceptibility testing of bacteria: Development of a broth microdilution method. Vet Microbiol 2020; 248:108791. [PMID: 32827921 DOI: 10.1016/j.vetmic.2020.108791] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/24/2022]
Abstract
Biocide susceptibility testing (BST) of bacteria lacks standardised methods. Based on a recently established broth macrodilution BST method, a broth microdilution method for BST was developed. To establish the respective protocol, four reference strains Staphylococcus aureus ATCC® 6538, Enterococcus hirae ATCC® 10541, Escherichia coli ATCC® 10536 and Pseudomonas aeruginosa ATCC® 15442 were investigated for their minimal inhibitory concentrations (MICs) towards quaternary ammonium compounds (benzalkonium chloride), cationic compounds (chlorhexidine), aldehydes (glutardialdehyde) and alcohols (isopropanol) using tryptic soy broth. All combinations of (i) inoculum preparation according to the German Veterinary Medical Society (DVG) or the Clinical and Laboratory Standards Institute (CLSI) with some modifications, (ii) use of 1st subculture (SC) and 2nd SC, (iii) direct colony suspension (DCS) with/without glass beads, and (iv) incubation at 37 °C for 24 h, 48 h, and 72 h were compared using seven independent replications. Overall, the reproducibility was high for all abovementioned strain/biocide/parameter combinations. In total, 86.9 % - 100 % of the results were within ± one dilution step of the mode value. The proposed method for a standardised BST protocol comprises (i) two different inoculum densities, (ii) the use of a fresh overnight culture (1st SC or 2nd SC), (iii) the preparation of the inoculum suspension by either of the two methods using DCS with or without glass beads, and (iv) the incubation at 37 °C for 24 h. This broth microdilution method will help to harmonize BST of bacterial pathogens in routine diagnostics.
Collapse
|
10
|
Cremers N, Belas A, Santos Costa S, Couto I, de Rooster H, Pomba C. In vitro antimicrobial efficacy of two medical grade honey formulations against common high-risk meticillin-resistant staphylococci and Pseudomonas spp. pathogens. Vet Dermatol 2019; 31:90-96. [PMID: 31808237 DOI: 10.1111/vde.12811] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a problem in human and animal healthcare. Honey may be used for its wound healing properties and antimicrobial effects. OBJECTIVE To investigate the antimicrobial activity of two commercially available medical grade honeys (MGHs) against Staphylococcus spp. and Pseudomonas spp. isolates. METHODS AND MATERIALS Two formulations, MGH1 (40% w/v honey) and MGH2 (80% w/v Manuka honey), were tested in vitro for minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) against 11 Staphylococcus and 11 Pseudomonas isolates at low [1.5 × 104 colony forming units (cfu)/well] and high (1.5 × 106 cfu/well) concentrations of inoculum, representing systemic and cutaneous bacterial loads during infection, respectively. RESULTS MGH2 showed a lower MIC against staphylococci than MGH1, although this was not statistically significant. MGH1 had stronger bactericidal effects against staphylococci than MGH2, although this effect was statistically significant only at the higher bacterial concentration (P < 0.01). For Pseudomonas spp., MGH1 had significantly higher antimicrobial activity (both MIC and MBC) than MGH2 against all isolates tested and at both bacterial concentrations (P < 0.05). CONCLUSIONS AND CLINICAL IMPORTANCE Both MGHs were effective in vitro against common cutaneous pathogens including meticillin-resistant staphylococci and Pseudomonas species. The higher efficacy of the MGH1 formulation against Pseudomonas and its consistent effects against staphylococci, while containing only half of the amount of honey compared to MGH2, invites further investigation of the mechanisms and clinical applications of MGH1.
Collapse
Affiliation(s)
- Niels Cremers
- Triticum Exploitatie BV, Sleperweg 44, 6222NK, Maastricht, the Netherlands
| | - Adriana Belas
- CIISA- Centre of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Sofia Santos Costa
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Isabel Couto
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Constança Pomba
- CIISA- Centre of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.,Genevet, Laboratório de Diagnóstico Molecular Veterinário, Rua Margarida Palla 5A, 1495-143, Algés, Portugal
| |
Collapse
|
11
|
Costa SS, Sobkowiak B, Parreira R, Edgeworth JD, Viveiros M, Clark TG, Couto I. Genetic Diversity of norA, Coding for a Main Efflux Pump of Staphylococcus aureus. Front Genet 2019; 9:710. [PMID: 30687388 PMCID: PMC6333699 DOI: 10.3389/fgene.2018.00710] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
NorA is the best studied efflux system of Staphylococcus aureus and therefore frequently used as a model for investigating efflux-mediated resistance in this pathogen. NorA activity is associated with resistance to fluoroquinolones, several antiseptics and disinfectants and several reports have pointed out the role of efflux systems, including NorA, as a first-line response to antimicrobials in S. aureus. Genetic diversity studies of the gene norA have described three alleles; norAI, norAII and norAIII. However, the epidemiology of these alleles and their impact on NorA activity remains unclear. Additionally, increasing studies do not account for norA variability when establishing relations between resistance phenotypes and norA presence or reported absence, which actually corresponds, as we now demonstrate, to different norA alleles. In the present study we assessed the variability of the norA gene present in the genome of over 1,000 S. aureus isolates, corresponding to 112 S. aureus strains with whole genome sequences publicly available; 917 MRSA strains sourced from a London-based study and nine MRSA isolates collected in a major Hospital in Lisbon, Portugal. Our analyses show that norA is part of the core genome of S. aureus. It also suggests that occurrence of norA variants reflects the population structure of this major pathogen. Overall, this work highlights the ubiquitous nature of norA in S. aureus which must be taken into account when studying the role played by this important determinant on S. aureus resistance to antimicrobials.
Collapse
Affiliation(s)
- Sofia Santos Costa
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Benjamin Sobkowiak
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ricardo Parreira
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jonathan D. Edgeworth
- Department of Infectious Diseases, Centre for Clinical Infection and Diagnostics Research, Guy’s and St Thomas’ NHS Foundation Trust, King’s College London, London, United Kingdom
| | - Miguel Viveiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Isabel Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Development and evaluation of a broth macrodilution method to determine the biocide susceptibility of bacteria. Vet Microbiol 2018; 223:59-64. [DOI: 10.1016/j.vetmic.2018.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 01/26/2023]
|