1
|
Rani R, Marinho Righetto G, Schäfer AB, Wenzel M. The Diverse Activities and Mechanisms of the Acylphloroglucinol Antibiotic Rhodomyrtone: Antibacterial Activity and Beyond. Antibiotics (Basel) 2024; 13:936. [PMID: 39452203 PMCID: PMC11504083 DOI: 10.3390/antibiotics13100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: The rose myrtle Rhodomyrtus tomentosa is a medicinal plant used in traditional Asian medicine. The active compound in R. tomentosa leaf extracts is rhodomyrtone, a chiral acylphloroglucinol. Rhodomyrtone exhibits an impressive breadth of activities, including antibacterial, antiviral, antiplasmodial, immunomodulatory, and anticancer properties. Its antibacterial properties have been extensively studied. Methods: We performed a comprehensive literature review on rhodomyrtone and summarized the current knowledge about this promising acylphloroglucinol antibiotic and its diverse functions in this review. Results: Rhodomyrtone shows nano to micromolar activities against a broad range of Gram-positive pathogens, including multidrug-resistant clinical isolates, and possesses a unique mechanism of action. It increases membrane fluidity and creates hyperfluid domains that attract membrane proteins prior to forming large membrane vesicles, effectively acting as a membrane protein trap. This mechanism affects a multitude of cellular processes, including cell division and cell wall synthesis. Additionally, rhodomyrtone reduces the expression of inflammatory cytokines, such as TNF-α, IL-17A, IL1β, and IL8. Generally showing low toxicity against mammalian cells, rhodomyrtone does inhibit the proliferation of cancer cell lines, such as epidermal carcinoma cells. The primary mechanism behind this activity appears to be the downregulation of adhesion kinases and growth factors. Furthermore, rhodomyrtone has shown antioxidant activity and displays cognitive effects, such as decreasing depressive symptoms in mice. Conclusions: Rhodomyrtone shows great promise as therapeutic agent, mostly for antibacterial but also for diverse other applications. Yet, bottlenecks such as resistance development and a better understanding of mammalian cell toxictiy demand careful assessment.
Collapse
Affiliation(s)
- Rupa Rani
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| | - Gabriela Marinho Righetto
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| | - Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| |
Collapse
|
2
|
Abass S, Parveen R, Irfan M, Malik Z, Husain SA, Ahmad S. Mechanism of antibacterial phytoconstituents: an updated review. Arch Microbiol 2024; 206:325. [PMID: 38913205 DOI: 10.1007/s00203-024-04035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies.
Collapse
Affiliation(s)
- Sageer Abass
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Rabea Parveen
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Irfan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zoya Malik
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
3
|
Issuriya A, Jatutasri K, Sanpinit S, Chusri S, Voravuthikunchai SP, Kaewmanee T, Phoopha S, Jetwanna KWN, Limsuwan S. Potential applications of Rhodomyrtus tomentosa leaf extract as natural anti-staphylococcal additive in food systems: Efficacy and in vivo safety evaluation. FOOD SCI TECHNOL INT 2024; 30:370-383. [PMID: 36959762 DOI: 10.1177/10820132231165667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
This work aimed to explore the potential use of Rhodomyrtus tomentosa ethanol leaf extract (RTEL) as an alternative food preservative agent for controlling the growth of Staphylococcus aureus. Antibacterial activities against food-isolated S. aureus were performed using disc diffusion and broth microdilution assays, followed by evaluating in vivo subacute oral toxicity of the extract. Salad dressing was used as a food model to study bactericidal properties and consumer acceptability. RTEL remarkably inhibited S. aureus with minimum inhibitory concentrations (MICs) ranging from 7.81-62.5 µg/mL. Repeated oral doses (5, 50, and 300 mg/kg RTEL) for 28 days did not affect any of the measured toxicity parameters. The no-observed-adverse-effect-level (NOAEL) of RTEL was noted as more than 300 mg/kg body weight/day. The utilization of RTEL (12.5 mg/mL) in the vinaigrette salad dressing did not affect the consumer acceptability of the product, remarkably killed the pathogen within 3-9 h of exposure. The results indicated that RTEL is safe and effective as a natural anti-staphylococcal controlling agent that could be utilized in food systems. Further work is required on the effects of enterotoxin production, an important virulence factor of S. aureus responsible for food-borne disease.
Collapse
Affiliation(s)
- Acharaporn Issuriya
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kawinsak Jatutasri
- Sirindhorn College of Public Health, Yala, Faculty of Public Health and Allied Health Sciences, Praboromarajchanok Institute, Thailand
| | - Sineenart Sanpinit
- School of Medicine, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Sasitorn Chusri
- Biomedical Technology Research Group for Vulnerable Populations, and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thammarat Kaewmanee
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
| | - Sathianpong Phoopha
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - Surasak Limsuwan
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
4
|
Wang TP, Yeh TH, Lo CC, Lin KH, Huang MH, Lo HR. Synergistic action of indole-3-carbinol with membrane-active agents against multidrug-resistant Gram-negative bacteria. Lett Appl Microbiol 2023; 76:ovad093. [PMID: 37580156 DOI: 10.1093/lambio/ovad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 07/12/2023] [Accepted: 08/12/2023] [Indexed: 08/16/2023]
Abstract
The purpose of this study was to evaluate the antimicrobial activity of indole-3-carbinol (I3C) with membrane-active agents, namely carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and ethylenediaminetetraacetic acid (EDTA) against multidrug-resistant (MDR) Gram-negative bacteria and bacterial persisters. The determination of minimal inhibitory concentration (MIC) showed that I3C was effective against Acinetobacter baumannii (3.13‒6.25 × 10-3 mol l-1), Klebsiella pneumoniae (8 × 10-3 mol l-1), Pseudomonas aeruginosa (6.25‒12.5 × 10-3 mol l-1), and Escherichia coli (6.25‒12.5 × 10-3 mol l-1). Our study demonstrated that EDTA synergistically enhanced the bactericidal activity of I3C against most MDR Gram-negative bacteria isolates and contributed to an 8- to 64-fold MIC reduction compared with that of I3C alone, yet CCCP only displayed synergy with I3C against P. aeruginosa and A. baumannii. The EDTA-I3C combination also significantly reduced the viable number of testing bacteria (P = 7.2E-05), effectively reduced bacterial persisters, and repressed bacterial growth compared with that the use of I3C alone. Our data demonstrate that use of EDTA as adjuvant molecules can effectively improve the antibacterial activity of I3C and may help to reduce the development of antimicrobial resistance.
Collapse
Affiliation(s)
- Tso-Ping Wang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Tzu-Hui Yeh
- Department of Pathology and Laboratory Medicine, Pingtung Veterans General Hospital, Pingtung 900053, Taiwan
| | - Chung-Cheng Lo
- Department of Internal Medicine, Pingtung Veterans General Hospital Longquan Branch, Pingtung 91245, Taiwan
| | - Kuan-Hua Lin
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| | - Mei-Han Huang
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| | - Horng-Ren Lo
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| |
Collapse
|
5
|
Rhodomyrtone Accumulates in Bacterial Cell Wall and Cell Membrane and Inhibits the Synthesis of Multiple Cellular Macromolecules in Epidemic Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10050543. [PMID: 34067029 PMCID: PMC8150934 DOI: 10.3390/antibiotics10050543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
As the burden of antibacterial resistance worsens and treatment options become narrower, rhodomyrtone—a novel natural antibiotic agent with a new antibacterial mechanism—could replace existing antibiotics for the treatment of infections caused by multi-drug resistant Gram-positive bacteria. In this study, rhodomyrtone was detected within the cell by means of an easy an inexpensive method. The antibacterial effects of rhodomyrtone were investigated on epidemic methicillin-resistant Staphylococcus aureus. Thin-layer chromatography demonstrated the entrapment and accumulation of rhodomyrtone within the bacterial cell wall and cell membrane. The incorporation of radiolabelled precursors revealed that rhodomyrtone inhibited the synthesis of macromolecules including DNA, RNA, proteins, the cell wall, and lipids. Following the treatment with rhodomyrtone at MIC (0.5–1 µg/mL), the synthesis of all macromolecules was significantly inhibited (p ≤ 0.05) after 4 h. Inhibition of macromolecule synthesis was demonstrated after 30 min at a higher concentration of rhodomyrtone (4× MIC), comparable to standard inhibitor compounds. In contrast, rhodomyrtone did not affect lipase activity in staphylococci—both epidemic methicillin-resistant S. aureus and S. aureus ATCC 29213. Interfering with the synthesis of multiple macromolecules is thought to be one of the antibacterial mechanisms of rhodomyrtone.
Collapse
|
6
|
Zhang Q, Lyu Y, Huang J, Zhang X, Yu N, Wen Z, Chen S. Antibacterial activity and mechanism of sanguinarine against Providencia rettgeri in vitro. PeerJ 2020; 8:e9543. [PMID: 32864203 PMCID: PMC7427548 DOI: 10.7717/peerj.9543] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/24/2020] [Indexed: 01/01/2023] Open
Abstract
Background Sanguinarine (SAG), a benzophenanthridine alkaloid, occurs in Papaveraceas, Berberidaceae and Ranunculaceae families. Studies have found that SAG has antioxidant, anti-inflammatory, and antiproliferative activities in several malignancies and that it exhibits robust antibacterial activities. However, information reported on the action of SAG against Providencia rettgeri is limited in the literature. Therefore, the present study aimed to evaluate the antimicrobial and antibiofilm activities of SAG against P. rettgeri in vitro. Methods The agar dilution method was used to determine the minimum inhibitory concentration (MIC) of SAG against P. rettgeri. The intracellular ATP concentration, intracellular pH (pHin), and cell membrane integrity and potential were measured. Confocal laser scanning microscopy (CLSM), field emission scanning electron microscopy (FESEM), and crystal violet staining were used to measure the antibiofilm formation of SAG. Results The MIC of SAG against P. rettgeri was 7.8 μg/mL. SAG inhibited the growth of P. rettgeri and destroyed the integrity of P. rettgeri cell membrane, as reflected mainly through the decreases in the intracellular ATP concentration, pHin and cell membrane potential and significant changes in cellular morphology. The findings of CLSM, FESEM and crystal violet staining indicated that SAG exhibited strong inhibitory effects on the biofilm formation of P. rettgeri and led to the inactivity of biofilm-related P. rettgeri cells.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,Shenzhen University Health Science Center, Shenzhen, China.,Department of Dermatology, PLAGH Hainan Hospital Of PLA General Hospital, Sanya, China
| | - Yansi Lyu
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Jingkai Huang
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Xiaodong Zhang
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Na Yu
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Ziping Wen
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Si Chen
- Shenzhen University Health Science Center, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
7
|
Traithan A, Tongtawe P, Thanongsaksrikul J, Voravuthikunchai S, Srimanote P. Antibacterial mechanism of rhodomyrtone involves the disruption of nucleoid segregation checkpoint in Streptococcus suis. AMB Express 2020; 10:110. [PMID: 32514868 PMCID: PMC7280372 DOI: 10.1186/s13568-020-01047-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
Rhodomyrtone has been recently demonstrated to possess a novel antibiotic mechanism of action against Gram-positive bacteria which involved the multiple targets, resulting in the interference of several bacterial biological processes including the cell division. The present study aims to closely look at the downstream effect of rhodomyrtone treatment on nucleoid segregation in Streptococcus suis, an important zoonotic pathogen. The minimum inhibition concentration (MIC) and the minimum bactericidal concentration (MBC) values of rhodomyrtone against the recombinant S. suis ParB-GFP, a nucleoid segregation reporter strain, were 0.5 and 1 µg/ml, respectively, which were equivalent to the potency of vancomycin. Using the fluorescence live-cell imaging, we demonstrated that rhodomyrtone at 2× MIC caused incomplete nucleoid segregation and septum misplacement, leading to the generation of anucleated cells. FtsZ immune-staining of rhodomyrtone-treated S. suis for 30 min revealed that the large amount of FtsZ was trapped in the region of high fluidity membrane and appeared to be able to polymerize to form a complete Z-ring. However, the Z-ring was shifted away from the midcell. Transmission electron microscopy further confirmed the disruption of nucleoid segregation and septum misplacement at 120 min following the rhodomyrtone treatment. Asymmetric septum formation resulted in either generation of minicells without nucleoid, septum formed over incomplete segregated nucleoid (guillotine effect), or formation of multi-constriction of Z-ring within a single cell. This finding spotlights on antibacterial mechanism of rhodomyrtone involves the early stage in bacterial cell division process.
Collapse
|
8
|
Sianglum W, Muangngam K, Joycharat N, Voravuthikunchai SP. Mechanism of Action and Biofilm Inhibitory Activity of Lupinifolin Against Multidrug-Resistant Enterococcal Clinical Isolates. Microb Drug Resist 2019; 25:1391-1400. [DOI: 10.1089/mdr.2018.0391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wipawadee Sianglum
- Department of Microbiology, Faculty of Science, Prince of Songkhla University, Hat Yai, Thailand
- Excellence Research Laboratory on Natural Products, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Kanitta Muangngam
- Department of Microbiology, Faculty of Science, Prince of Songkhla University, Hat Yai, Thailand
- Excellence Research Laboratory on Natural Products, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Nantiya Joycharat
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Department of Microbiology, Faculty of Science, Prince of Songkhla University, Hat Yai, Thailand
- Excellence Research Laboratory on Natural Products, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
9
|
Qian W, Fu Y, Liu M, Wang T, Zhang J, Yang M, Sun Z, Li X, Li Y. In Vitro Antibacterial Activity and Mechanism of Vanillic Acid against Carbapenem-Resistant Enterobacter cloacae. Antibiotics (Basel) 2019; 8:antibiotics8040220. [PMID: 31766130 PMCID: PMC6963763 DOI: 10.3390/antibiotics8040220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/20/2022] Open
Abstract
Vanillic acid (VA) is a flavoring agent found in edible plants and fruits. Few recent studies exhibited robust antibacterial activity of VA against several pathogen microorganisms. However, little was reported about the effect of VA on carbapenem-resistant Enterobacter cloacae (CREC). The purpose of the current study was to assess in vitro antimicrobial and antibiofilm activities of VA against CREC. Here, minimum inhibitory concentrations (MIC) of VA against CREC was determined via gradient diffusion method. Furthermore, the antibacterial mode of VA against CREC was elucidated by measuring changes in intracellular adenosine triphosphate (ATP) concentration, intracellular pH (pHin), cell membrane potential and membrane integrity. In addition, antibiofilm formation of VA was measured by crystal violet assay and visualized with field emission scanning electron microscopy (FESEM) and confocal laser scanning microscopy (CLSM). The results showed that MIC of VA against E. cloacae was 600 μg/mL. VA was capable of inhibiting the growth of CREC and destroying the cell membrane integrity of CREC, as confirmed by the decrease of intracellular ATP concentration, pHin and membrane potential as well as distinctive variation in cellular morphology. Moreover, crystal violet staining, FESEM and CLSM results indicated that VA displayed robust inhibitory effects on biofilm formation of CREC and inactivated biofilm-related CREC cells. These findings revealed that VA exhibits potent antibacterial activity against CREC, and thus has potential to be exploited as a natural preservative to control the CREC associated infections.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
- Correspondence: (W.Q.); (T.W.); Tel.: +86-29-86168583 (W.Q. & T.W.)
| | - Yuting Fu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
| | - Miao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
- Correspondence: (W.Q.); (T.W.); Tel.: +86-29-86168583 (W.Q. & T.W.)
| | - Jianing Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
| | - Min Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
| | - Zhaohuan Sun
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
| | - Xiang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China;
| |
Collapse
|
10
|
Swain J, El Khoury M, Flament A, Dezanet C, Briée F, Van Der Smissen P, Décout JL, Mingeot-Leclercq MP. Antimicrobial activity of amphiphilic neamine derivatives: Understanding the mechanism of action on Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182998. [DOI: 10.1016/j.bbamem.2019.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/06/2023]
|
11
|
The Health Beneficial Properties of Rhodomyrtus tomentosa as Potential Functional Food. Biomolecules 2019; 9:biom9020076. [PMID: 30795643 PMCID: PMC6406238 DOI: 10.3390/biom9020076] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Rhodomyrtus tomentosa (Aiton) Hassk. is a flowering plant belonging to the family Myrtaceae, native to southern and southeastern Asia. It has been used in traditional Vietnamese, Chinese, and Malaysian medicine for a long time for the treatment of diarrhea, dysentery, gynecopathy, stomachache, and wound healing. Moreover, R. tomentosa is used to make various food products such as wine, tea, and jam. Notably, R. tomentosa has been known to contain structurally diverse and biologically active metabolites, thus serving as a potential resource for exploring novel functional agents. Up to now, numerous phenolic and terpenoid compounds from the leaves, root, or fruits of R. tomentosa have been identified, and their biological activities such as antioxidant, antibacterial, anti-inflammatory, and anticancer have been evidenced. In this contribution, an overview of R. tomentosa and its health beneficial properties was focused on and emphasized.
Collapse
|