1
|
Tharmalingam N, Jayanthan HS, Port J, Rossatto FCP, Mylonakis E. Mefloquine reduces the bacterial membrane fluidity of Acinetobacter baumannii and distorts the bacterial membrane when combined with polymyxin B. mBio 2025; 16:e0401624. [PMID: 39998211 PMCID: PMC11980597 DOI: 10.1128/mbio.04016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Acinetobacter baumannii is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of A. baumannii, decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (pH range: 5-8). Structure-activity relationship analysis using MFQ analogs demonstrated that piperidin-2-yl methanol is required for antibacterial activity. Scanning and transmission electron microscopy demonstrated the compromised morphological and membrane integrity in MFQ-treated cells. MFQ synergized with the membrane permeabilizers polymyxin B and colistin and the MFQ + polymyxin B combination killed bacterial cells more effectively than either treatment alone. MFQ + polymyxin B was effective against other gram-negative bacteria including Escherichia coli, Burkholderia pseudomallei, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Bodipy-cadaverine displacement assays confirmed the active interaction of MFQ with other membrane lipid components, such as lipopolysaccharide, lipid A, lipoteichoic acids, and fatty acids. In all-atom molecular dynamics simulations, lipid interactions facilitated the permeation of MFQ into the simulated Gram-negative membrane. Additionally, positively charged nitrogen in the piperidine group of MFQ seems to enhance interactions with the negatively charged components of the bacterial membrane. MFQ + polymyxin B caused significantly greater curvature in the simulated membrane, indicating greater damage than standalone drug treatment. Finally, in vivo assays showed that MFQ + polymyxin B rescued Galleria mellonella larvae infected with A. baumannii. In conclusion, membrane-active agents such as MFQ may warrant further investigation as a potential components of gram-negative infection treatment, particularly in combination with polymyxin B. IMPORTANCE Antimicrobial resistance is a threat globally, and new treatments are urgently needed to combat the rise of multidrug-resistant bacteria. However, the development of anti-infectives has declined over the last two decades due to regulatory, financial and long-term requirement related challenges. In this study, we examined the membrane interactions of the antiparasitic agent mefloquine (MFQ) in combination with polymyxin B, using both in vitro and in silico approaches to evaluate their potential efficacy against gram-negative bacterial infections. We investigated the interaction of MFQ with lipid bilayers to understand the mechanism through which antibacterial activity is exerted. The piperidine moiety of MFQ plays a critical role in its interaction with the lipid bilayer and facilitates membrane permeabilization. In contrast, the membrane permeabilizer polymyxin B is associated with significant neurotoxicity and nephrotoxicity. Our findings highlight the potential of membrane-acting compounds, such as MFQ, to enhance combinatorial activity while mitigating polymyxin B-associated toxicity.
Collapse
Affiliation(s)
- Nagendran Tharmalingam
- Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
| | | | - Jenna Port
- Tufts University, Boston, Massachusetts, USA
| | | | - Eleftherios Mylonakis
- Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
2
|
Tharmalingam N, Jayanthan HS, Port J, Rossatto FCP, Mylonakis E. Mefloquine reduces the bacterial membrane fluidity of Acinetobacter baumannii and distorts the bacterial membrane when combined with polymyxin B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633232. [PMID: 39868148 PMCID: PMC11761044 DOI: 10.1101/2025.01.15.633232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Acinetobacter baumannii is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of A. baumannii , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8). Structure-activity relationship analysis using MFQ analogs demonstrated that piperidin-2-yl methanol is required for antibacterial activity. Scanning and transmission electron microscopy demonstrated the compromised morphological and membrane integrity in MFQ treated cells. MFQ synergized with the membrane permeabilizers polymyxin B and colistin and the MFQ+polymyxin B combination killed bacterial cells more effectively than either treatment alone. MFQ+polymyxin B was effective against other Gram-negative bacteria including Escherisia coli, Burkholderia pseudomallei, Klebsiella pneumoniae, and Pseudomonas auroginosa . Bodipy-cadaverine displacement assays confirmed the active interaction of MFQ with other membrane lipid components, such as lipopolysaccharide, lipid A, lipoteichoic acids, and fatty acids. In all-atom molecular dynamics simulations, lipid interactions facilitated the permeation of MFQ into the simulated Gram-negative membrane. Additionally, positively charged nitrogen in the piperidine group of MFQ seems to enhance interactions with the negatively charged components of the bacterial membrane. MFQ+polymyxin B caused significantly greater curvature in the simulated membrane, indicating greater damage than standalone drug treatment. Finally, in vivo assays showed that MFQ+polymyxin B rescued Galleria mellonella larvae infected with A. baumannii . In conclusion, membrane-active agents such as MFQ may warrant further investigation as potential component of Gram-negative infection treatment, particularly in combination with polymyxin B. Importance Antimicrobial resistance is a threat globally, and new treatments are urgently needed to combat the rise of multidrug-resistant bacteria. However, the development of anti-infectives has declined over the last two decades due to regulatory, financial and long-term requirement related challenges. In this study, we examined the membrane interactions of the antiparasitic agent mefloquine in combination with polymyxin B, using both in vitro and in silico approaches to evaluate their potential efficacy against Gram-negative bacterial infections. We investigated the interaction of MFQ with lipid bilayers to understand the mechanism through which antibacterial activity is exerted. The piperidine moiety of MFQ plays a critical role in its interaction with the lipid bilayer and facilitates membrane permeabilization. In contrast, the membrane permeabilizer polymyxin B is associated with significant neurotoxicity and nephrotoxicity. Our findings highlight the potential of membrane-acting compounds, such as MFQ, to enhance combinatorial activity while mitigating polymyxin B-associated toxicity.
Collapse
|
3
|
Shehadeh F, Felix L, Kalligeros M, Shehadeh A, Fuchs BB, Ausubel FM, Sotiriadis PP, Mylonakis E. Machine Learning-Assisted High-Throughput Screening for Anti-MRSA Compounds. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1911-1921. [PMID: 39058605 DOI: 10.1109/tcbb.2024.3434340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
BACKGROUND Antimicrobial resistance is a major public health threat, and new agents are needed. Computational approaches have been proposed to reduce the cost and time needed for compound screening. AIMS A machine learning (ML) model was developed for the in silico screening of low molecular weight molecules. METHODS We used the results of a high-throughput Caenorhabditis elegans methicillin-resistant Staphylococcus aureus (MRSA) liquid infection assay to develop ML models for compound prioritization and quality control. RESULTS The compound prioritization model achieved an AUC of 0.795 with a sensitivity of 81% and a specificity of 70%. When applied to a validation set of 22,768 compounds, the model identified 81% of the active compounds identified by high-throughput screening (HTS) among only 30.6% of the total 22,768 compounds, resulting in a 2.67-fold increase in hit rate. When we retrained the model on all the compounds of the HTS dataset, it further identified 45 discordant molecules classified as non-hits by the HTS, with 42/45 (93%) having known antimicrobial activity. CONCLUSION Our ML approach can be used to increase HTS efficiency by reducing the number of compounds that need to be physically screened and identifying potential missed hits, making HTS more accessible and reducing barriers to entry.
Collapse
|
4
|
Kim S, Lee JH, Kim YG, Tan Y, Lee J. Hydroquinones Inhibit Biofilm Formation and Virulence Factor Production in Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms231810683. [PMID: 36142597 PMCID: PMC9506180 DOI: 10.3390/ijms231810683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is one of the major pathogens responsible for antimicrobial resistance-associated death. S. aureus can secrete various exotoxins, and staphylococcal biofilms play critical roles in antibiotic tolerance and the persistence of chronic infections. Here, we investigated the inhibitory effects of 18 hydroquinones on biofilm formation and virulence factor production by S. aureus. It was found that 2,5-bis(1,1,3,3-tetramethylbutyl) hydroquinone (TBHQ) at 1 µg/mL efficiently inhibits biofilm formation by two methicillin-sensitive and two methicillin-resistant S. aureus strains with MICs of 5 µg/mL, whereas the backbone compound hydroquinone did not (MIC > 400 µg/mL). In addition, 2,3-dimethylhydroquinone and tert-butylhydroquinone at 50 µg/mL also exhibited antibiofilm activity. TBHQ at 1 µg/mL significantly decreased the hemolytic effect and lipase production by S. aureus, and at 5−50 µg/mL was non-toxic to the nematode Caenorhabditis elegans and did not adversely affect Brassica rapa seed germination or growth. Transcriptional analyses showed that TBHQ suppressed the expression of RNAIII (effector of quorum sensing). These results suggest that hydroquinones, particularly TBHQ, are potentially useful for inhibiting S. aureus biofilm formation and virulence.
Collapse
Affiliation(s)
- Sanghun Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Yulong Tan
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: ; Tel.: +82-53-810-2533
| |
Collapse
|
5
|
Kim Y, Kim S, Cho KH, Lee JH, Lee J. Antibiofilm Activities of Cinnamaldehyde Analogs against Uropathogenic Escherichia coli and Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23137225. [PMID: 35806244 PMCID: PMC9267110 DOI: 10.3390/ijms23137225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
Bacterial biofilm formation is a major cause of drug resistance and bacterial persistence; thus, controlling pathogenic biofilms is an important component of strategies targeting infectious bacterial diseases. Cinnamaldehyde (CNMA) has broad-spectrum antimicrobial and antibiofilm activities. In this study, we investigated the antibiofilm effects of ten CNMA derivatives and trans-CNMA against Gram-negative uropathogenic Escherichia coli (UPEC) and Gram-positive Staphylococcus aureus. Among the CNMA analogs tested, 4-nitrocinnamaldehyde (4-nitroCNMA) showed antibacterial and antibiofilm activities against UPEC and S. aureus with minimum inhibitory concentrations (MICs) for cell growth of 100 µg/mL, which were much more active than those of trans-CNMA. 4-NitroCNMA inhibited UPEC swimming motility, and both trans-CNMA and 4-nitroCNMA reduced extracellular polymeric substance production by UPEC. Furthermore, 4-nitroCNMA inhibited the formation of mixed UPEC/S. aureus biofilms. Collectively, our observations indicate that trans-CNMA and 4-nitroCNMA potently inhibit biofilm formation by UPEC and S. aureus. We suggest efforts be made to determine the therapeutic scope of CNMA analogs, as our results suggest CNMA derivatives have potential therapeutic use for biofilm-associated diseases.
Collapse
Affiliation(s)
- Yeseul Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea; (Y.K.); (S.K.)
| | - Sanghun Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea; (Y.K.); (S.K.)
| | - Kiu-Hyung Cho
- Gyeongbuk Institute for Bioindustry, Andong 36618, Korea;
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea; (Y.K.); (S.K.)
- Correspondence: (J.-H.L.); (J.L.); Tel.: +82-53-810-3812 (J.-H.L.); +82-53-810-2533 (J.L.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea; (Y.K.); (S.K.)
- Correspondence: (J.-H.L.); (J.L.); Tel.: +82-53-810-3812 (J.-H.L.); +82-53-810-2533 (J.L.)
| |
Collapse
|
6
|
Protective Immunity against Listeria monocytogenes in Rats, Provided by HCl- and NaOH-Induced Listeria monocytogenes Bacterial Ghosts (LMGs) as Vaccine Candidates. Int J Mol Sci 2022; 23:ijms23041946. [PMID: 35216061 PMCID: PMC8876606 DOI: 10.3390/ijms23041946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes (Lm) bacterial ghosts (LMGs) were produced by the minimum inhibitory concentration (MIC) of HCl, H2SO4, and NaOH. Acid and alkali effects on the LMGs were compared by in vitro and in vivo analyses. Scanning electron microscope showed that all chemicals form lysis pores on the Lm cell envelopes. Real-time qPCR revealed a complete absence of genomic DNA in HCl- and H2SO4-induced LMGs but not in NaOH-induced LMGs. HCl-, H2SO4- and NaOH-induced LMGs showed weaker or missing protein bands on SDS-PAGE gel when compared to wild-type Lm. Murine macrophages exposed to the HCl-induced LMGs showed higher cell viability than those exposed to NaOH-induced LMGs or wild-type Lm. The maximum level of cytokine expression (TNF-α, iNOS, IFN-γ, and IL-10 mRNA) was observed in the macrophages exposed to NaOH-induced LMGs, while that of IL-1β mRNA was observed in the macrophages exposed to HCl-induced LMGs. To investigate LMGs as a vaccine candidate, mice were divided into PBS buffer-injected, HCl- and NaOH-induced LMGs immunized groups. Mice vaccinated with HCl- and NOH-induced LMGs, respectively, significantly increased in specific IgG antibodies, bactericidal activities of serum, and CD4+ and CD8+ T-cell population. Antigenic Lm proteins reacted with antisera against HCl- and NOH-induced LMGs, respectively. Bacterial loads in HCl- and NaOH-induced LMGs immunized mice were significantly lower than PBS-injected mice after virulent Lm challenges. It suggested that vaccination with LMGs induces both humoral and cell-mediated immune responses and protects against virulent challenges.
Collapse
|
7
|
Swami Vetha BS, Adam AG, Aileru A. Redox Responsive Copolyoxalate Smart Polymers for Inflammation and Other Aging-Associated Diseases. Int J Mol Sci 2021; 22:ijms22115607. [PMID: 34070585 PMCID: PMC8198274 DOI: 10.3390/ijms22115607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Polyoxalate (POx) and copolyoxalate (CPOx) smart polymers are topics of interest the field of inflammation. This is due to their drug delivery ability and their potential to target reactive oxygen species (ROS) and to accommodate small molecules such as curcumin, vanilline, and p-Hydroxybenzyl alcohol. Their biocompatibility, ultra-size tunable characteristics and bioimaging features are remarkable. In this review we discuss the genesis and concept of oxylate smart polymer-based particles and a few innovative systemic delivery methods that is designed to counteract the inflammation and other aging-associated diseases (AADs). First, we introduce the ROS and its role in human physiology. Second, we discuss the polymers and methods of incorporating small molecule in oxalate backbone and its drug delivery application. Finally, we revealed some novel proof of concepts which were proven effective in disease models and discussed the challenges of oxylate polymers.
Collapse
Affiliation(s)
- Berwin Singh Swami Vetha
- Department of Foundational Sciences and Research, School of Dental Medicine, East Carolina University, 1851 MacGregor Downs Road, MS 701, Greenville, NC 27834, USA;
| | - Angela Guma Adam
- Physio/Biochem/New Product Development Division, Cocoa Research Center Institute of Ghana, P.O. Box 8, New Tafo-Akim 0233, Eastern Region, Ghana;
| | - Azeez Aileru
- Department of Foundational Sciences and Research, School of Dental Medicine, East Carolina University, 1851 MacGregor Downs Road, MS 701, Greenville, NC 27834, USA;
- Correspondence: ; Tel.: +252-737-7125
| |
Collapse
|
8
|
The antimicrobial peptide Brevinin-2ISb enhances the innate immune response against methicillin-resistant Staphylococcus aureus by activating DAF-2/DAF-16 signaling in Caenorhabditis elegans, as determined by in vivo imaging. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Meng T, Hou Y, Shang C, Zhang J, Zhang B. Recent advances in indole dimers and hybrids with antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch Pharm (Weinheim) 2020; 354:e2000266. [PMID: 32986279 DOI: 10.1002/ardp.202000266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 01/27/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), one of the major and most dangerous pathogens in humans, is a causative agent of severe pandemic of mainly skin and soft tissue and occasionally fatal infections. Therefore, it is imperative to develop potent and novel anti-MRSA agents. Indole derivatives could act against diverse enzymes and receptors in bacteria, occupying a salient place in the development of novel antibacterial agents. Dimerization and hybridization are common strategies to discover new drugs, and a number of indole dimers and hybrids possess potential antibacterial activity against a panel of clinically important pathogens including MRSA. Accordingly, indole dimers and hybrids are privileged scaffolds for the discovery of novel anti-MRSA agents. This review outlines the recent development of indole dimers and hybrids with a potential activity against MRSA, covering articles published between 2010 and 2020. The structure-activity relationship and the mechanism of action are also discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Tingting Meng
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Yani Hou
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Congshan Shang
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi, China
| | - Jing Zhang
- School of Biomedical and Food Engineering, Shangluo University, Shangluo, Shaanxi, China
| | - Bo Zhang
- School of Biomedical and Food Engineering, Shangluo University, Shangluo, Shaanxi, China
| |
Collapse
|
10
|
Poupet C, Chassard C, Nivoliez A, Bornes S. Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Front Nutr 2020; 7:135. [PMID: 33425969 PMCID: PMC7786404 DOI: 10.3389/fnut.2020.00135] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Caenorhabditis elegans, a non-parasitic nematode emerges as a relevant and powerful candidate as an in vivo model for microorganisms-microorganisms and microorganisms-host interactions studies. Experiments have demonstrated the probiotic potential of bacteria since they can provide to the worm a longer lifespan, an increased resistance to pathogens and to oxidative or heat stresses. Probiotics are used to prevent or treat microbiota dysbiosis and associated pathologies but the molecular mechanisms underlying their capacities are still unknown. Beyond safety and healthy aspects of probiotics, C. elegans represents a powerful way to design large-scale studies to explore transkingdom interactions and to solve questioning about the molecular aspect of these interactions. Future challenges and opportunities would be to validate C. elegans as an in vivo tool for high-throughput screening of microorganisms for their potential probiotic use on human health and to enlarge the panels of microorganisms studied as well as the human diseases investigated.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| |
Collapse
|
11
|
Song F, Li Z, Bian Y, Huo X, Fang J, Shao L, Zhou M. Indole/isatin-containing hybrids as potential antibacterial agents. Arch Pharm (Weinheim) 2020; 353:e2000143. [PMID: 32667714 DOI: 10.1002/ardp.202000143] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
The emergence and worldwide spread of drug-resistant bacteria have already posed a serious threat to human life, creating the urgent need to develop potent and novel antibacterial drug candidates with high efficacy. Indole and isatin (indole-2,3-dione) present a wide structural and mechanistic diversity, so their derivatives possess various pharmacological properties and occupy a salient place in the development of new drugs. Indole/isatin-containing hybrids, which demonstrate a promising activity against a panel of clinically important Gram-positive and Gram-negative bacteria, are privileged scaffolds for the discovery of novel antibacterial candidates. This review, covering articles published between January 2015 and May 2020, focuses on the development and structure-activity relationship (SAR) of indole/isatin-containing hybrids with potential application for fighting bacterial infections, to facilitate further rational design of novel drug candidates.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China.,School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Xiankai Huo
- Department of Medical Imaging, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Linlin Shao
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou, Shandong, China
| |
Collapse
|
12
|
Ahamefule CS, Qin Q, Odiba AS, Li S, Moneke AN, Ogbonna JC, Jin C, Wang B, Fang W. Caenorhabditis elegans-Based Aspergillus fumigatus Infection Model for Evaluating Pathogenicity and Drug Efficacy. Front Cell Infect Microbiol 2020; 10:320. [PMID: 32670897 PMCID: PMC7332887 DOI: 10.3389/fcimb.2020.00320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Abstract
Aspergillus fumigatus is the most reported causative pathogen associated with the increasing global incidences of aspergilloses, with the health of immunocompromised individuals mostly at risk. Monitoring the pathogenicity of A. fumigatus strains to identify virulence factors and evaluating the efficacy of potent active agents against this fungus in animal models are indispensable in current research effort. Caenorhabditis elegans has been successfully utilized as an infection model for bacterial and dimorphic fungal pathogens because of the advantages of being time-efficient, and less costly. However, application of this model to the filamentous fungus A. fumigatus is less investigated. In this study, we developed and optimized a stable and reliable C. elegans model for A. fumigatus infection, and demonstrated the infection process with a fluorescent strain. Virulence results of several mutant strains in our nematode model demonstrated high consistency with the already reported pathogenicity pattern in other models. Furthermore, this C. elegans-A. fumigatus infection model was optimized for evaluating the efficacy of current antifungal drugs. Interestingly, the azole drugs in nematode model prevented conidial germination to a higher extent than amphotericin B. Overall, our established C. elegans infection model for A. fumigatus has potential applications in pathogenicity evaluation, antifungal agents screening, drug efficacy evaluation as well as host-pathogen interaction studies.
Collapse
Affiliation(s)
- Chukwuemeka Samson Ahamefule
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Qijian Qin
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Arome Solomon Odiba
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Siqiao Li
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Anene N. Moneke
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - James C. Ogbonna
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Cheng Jin
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bin Wang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
13
|
Kim SM, Escorbar I, Lee K, Fuchs BB, Mylonakis E, Kim W. Anti-MRSA agent discovery using Caenorhabditis elegans-based high-throughput screening. J Microbiol 2020; 58:431-444. [PMID: 32462486 DOI: 10.1007/s12275-020-0163-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is a leading cause of hospital- and community-acquired infections. Despite current advances in antimicrobial chemotherapy, the infections caused by S. aureus remain challenging due to their ability to readily develop resistance. Indeed, antibiotic resistance, exemplified by methicillin-resistant S. aureus (MRSA) is a top threat to global health security. Furthermore, the current rate of antibiotic discovery is much slower than the rate of antibiotic-resistance development. It seems evident that the conventional in vitro bacterial growth-based screening strategies can no longer effectively supply new antibiotics at the rate needed to combat bacterial antibiotic-resistance. To overcome this antibiotic resistance crisis, screening assays based on host-pathogen interactions have been developed. In particular, the free-living nematode Caenorhabditis elegans has been used for drug screening against MRSA. In this review, we will discuss the general principles of the C. elegans-based screening platform and will highlight its unique strengths by comparing it with conventional antibiotic screening platforms. We will outline major hits from high-throughput screens of more than 100,000 small molecules using the C. elegans-MRSA infection assay and will review the mode-of-action of the identified hit compounds. Lastly, we will discuss the potential of a C. elegans-based screening strategy as a paradigm shift screening platform.
Collapse
Affiliation(s)
- Soo Min Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Iliana Escorbar
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Kiho Lee
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
14
|
Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA). Eur J Med Chem 2020; 194:112245. [DOI: 10.1016/j.ejmech.2020.112245] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
|
15
|
Liu H, Long S, Rakesh KP, Zha GF. Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents. Eur J Med Chem 2019; 185:111804. [PMID: 31675510 DOI: 10.1016/j.ejmech.2019.111804] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/19/2022]
Abstract
The emergence of drug resistance has created unmet medical need for the development of new classes of antibiotics. Innovation of new antibacterial agents with new mode of action remains a high priority universally. Triazines are six-membered, nitrogen-containing heterocyclic scaffold with a wide range of pharmaceutical properties such as antibacterial, antifungal, anticancer, antioxidants, antitubercular, antimalarial, anti-HIV, anticonvulsant, anti-inflammatory, antiulcer, and analgesic activities. The present review focuses on the recent developments in the area of medicinal chemistry to discover various chemical structures as potential antimicrobial agents and their structure-activity relationships (SAR) studies are also discussed for further rational design of this kind of derivatives.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - K P Rakesh
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Gao-Feng Zha
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China; Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong.
| |
Collapse
|
16
|
Tharmalingam N, Khader R, Fuchs BB, Mylonakis E. The Anti-virulence Efficacy of 4-(1,3-Dimethyl-2,3-Dihydro-1H-Benzimidazol-2-yl)Phenol Against Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2019; 10:1557. [PMID: 31379761 PMCID: PMC6653400 DOI: 10.3389/fmicb.2019.01557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial drug discovery against drug-resistant bacteria is an urgent need. Beyond agents with direct antibacterial activity, anti-virulent molecules may also be viable compounds to defend against bacterial pathogenesis. Using a high throughput screen (HTS) that utilized Caenorhabditis elegans infected with methicillin-resistant Staphylococcus aureus (MRSA) strain of MW2, we identified 4-(1,3-dimethyl-2,3-dihydro-1H-benzimidazol-2-yl)phenol (BIP). Interestingly, BIP had no in vitro inhibition activity against MW2, at least up to 64 μg/ml. The lack of direct antimicrobial activity suggests that BIP could inhibit bacterial virulence factors. To explore the possible anti-virulence effect of the identified molecule, we first performed real-time PCR to examine changes in virulence expression. BIP was highly active against MRSA virulence factors at sub-lethal concentrations and down-regulated virulence regulator genes, such as agrA and codY. However, the benzimidazole derivatives omeprazole and pantoprazole did not down-regulate virulence genes significantly, compared to BIP. Moreover, the BIP-pretreated MW2 cells were more vulnerable to macrophage-mediated killing, as confirmed by intracellular killing and live/dead staining assays, and less efficient in establishing a lethal infection in the invertebrate host Galleria mellonella (p = 0.0131). We tested the cytotoxicity of BIP against human red blood cells (RBCs), and it did not cause hemolysis at the highest concentration tested (64 μg/ml). Taken together, our findings outline the potential anti-virulence activity of BIP that was identified through a C. elegans-based, whole animal based, screen.
Collapse
Affiliation(s)
| | | | | | - Eleftherios Mylonakis
- Department of Medicine, Division of Infectious Diseases, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
17
|
Opoku-Temeng C, Onyedibe KI, Aryal UK, Sintim HO. Proteomic analysis of bacterial response to a 4-hydroxybenzylidene indolinone compound, which re-sensitizes bacteria to traditional antibiotics. J Proteomics 2019; 202:103368. [PMID: 31028946 DOI: 10.1016/j.jprot.2019.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/21/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Halogenated 4-hydroxybenzylidene indolinones have been shown to re-sensitize methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE) to methicillin and vancomycin respectively. The mechanism of antibiotic re-sensitization was however not previously studied. Here, we probe the scope of antibiotic re-sensitization and present the global proteomics analysis of S. aureus treated with GW5074, a 4-hydroxybenzylidene indolinone compound. With a minimum inhibitory concentration (MIC) of 8 μg/mL against S. aureus, GW5074 synergized with beta-lactam antibiotics like ampicillin, carbenicillin and cloxacillin, the DNA synthesis inhibitor, ciprofloxacin, the protein synthesis inhibitor, gentamicin and the folate acid synthesis inhibitor, trimethoprim. Global proteomics analysis revealed that GW5074 treatment resulted in significant downregulation of enzymes involved in the purine biosynthesis. S. aureus proteins involved in amino acid metabolism and peptide transport were also observed to be downregulated. Interestingly, anti-virulence targets such as AgrC (a quorum sensing-related histidine kinase), AgrA (a quorum sensing-related response regulator) as well as downstream targets, such as hemolysins, lipases and proteases in S. aureus were also downregulated by GW5074. We observed that the peptidoglycan hydrolase, SceD was significantly upregulated. The activity of GW5074 on S. aureus suggests that the compound primes bacteria for the antibacterial action of ineffective antibiotics. SIGNIFICANCE: Antibiotic resistance continues to present significant challenges to the treatment of bacterial infections. Given that antibiotic resistance is a natural phenomenon and that it has become increasingly difficult to discover novel antibiotics, efforts to improve the activity of existing agents are worth pursuing. A few small molecules that re-sensitize resistant bacteria to traditional antibiotics have been described but the molecular details that underpin how these compounds work to re-sensitize bacteria remain largely unknown. In this report, global label-free quantitative proteomics was used to identify changes in the proteome that occurs when GW5074, a compound that re-sensitize MRSA to methicillin, is administered to S. aureus. The identification of pathways that are impacted by GW5074 could help identify novel targets for antibiotic re-sensitization.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Graduate Program in Biochemistry, University of Maryland, College Park, MD 20742, USA; Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Kenneth Ikenna Onyedibe
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
18
|
Fang Z, Zheng S, Chan KF, Yuan W, Guo Q, Wu W, Lui HK, Lu Y, Leung YC, Chan TH, Wong KY, Sun N. Design, synthesis and antibacterial evaluation of 2,4-disubstituted-6-thiophenyl-pyrimidines. Eur J Med Chem 2019; 161:141-153. [DOI: 10.1016/j.ejmech.2018.10.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 01/04/2023]
|
19
|
Multidrug-Resistant Gram-Negative Bacilli: A Retrospective Study of Trends in a Tertiary Healthcare Unit. ACTA ACUST UNITED AC 2018; 54:medicina54060092. [PMID: 30486311 PMCID: PMC6307078 DOI: 10.3390/medicina54060092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
Background and objective: Bacterial multidrug resistance is particularly common in Gram-negative bacilli (GNB), with important clinical consequences regarding their spread and treatment options. The aim of this study was to investigate the trend of multidrug-resistant GNB (MDR-GNB) in high-risk hospital departments, between 2000–2015, in intervals of five years, with the intention of improving antibiotic therapy policies and optimising preventive and control practices. Materials and methods: This is an observational, retrospective study performed in three departments of the most important tertiary healthcare unit in the southwestern part of Romania: the Intensive Care Unit (ICU), the General Surgery Department (GSD), and the Nutrition and Metabolic Diseases Department (NMDD). MDR was defined as acquired resistance to at least one agent in three or more antimicrobial categories. Trends over time were determined by the Cochran–Armitage trend test and linear regression. Results: During the study period, a total of 2531 strains of MDR-GNB were isolated in 1999 patients: 9.20% in 2000, 18.61% in 2005, 37.02% in 2010, and 35.17% in 2015. The most significant increasing trend was recorded in the ICU (gradient = 7.63, R² = 0.842, p < 0.001). The most common MDR-GNB in the ICU was isolated from bronchoalveolar aspiration samples. Concerning the proportion of different species, most of the changes were recorded in the ICU, where a statistically significant increasing trend was observed for Proteus mirabilis (gradient = 2.62, R2 = 0.558, p < 0.001) and Acinetobacter baumannii (gradient = 2.25, R2 = 0.491, p < 0.001). Analysis of the incidence of the main resistance phenotypes proportion identified a statistically significant increase in carbapenem resistance in the ICU (Gradient = 8.27, R² = 0.866, p < 0.001), and an increased proportion of aminoglycoside-resistant strains in all three departments, but more importantly in the ICU and GSD. Conclusion: A statistically significant increasing trend was observed in all three departments; the most significant one was recorded in the ICU, where after 2010, carbapenem-resistant strains were isolated.
Collapse
|
20
|
Kim YG, Lee JH, Raorane CJ, Oh ST, Park JG, Lee J. Herring Oil and Omega Fatty Acids Inhibit Staphylococcus aureus Biofilm Formation and Virulence. Front Microbiol 2018; 9:1241. [PMID: 29963020 PMCID: PMC6014104 DOI: 10.3389/fmicb.2018.01241] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/23/2018] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is notorious for its ability to become resistant to antibiotics and biofilms play a critical role in antibiotic tolerance. S. aureus is also capable of secreting several exotoxins associated with the pathogenesis of sepsis and pneumonia. Thus, the objectives of the study were to examine S. aureus biofilm formation in vitro, and the effects of herring oil and its main components, omega fatty acids [cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) and cis-5,8,11,14,17-eicosapentaenoic acid (EPA)], on virulence factor production and transcriptional changes in S. aureus. Herring oil decreased biofilm formation by two S. aureus strains. GC-MS analysis revealed the presence of several polyunsaturated fatty acids in herring oil, and of these, two omega-3 fatty acids, DHA and EPA, significantly inhibited S. aureus biofilm formation. In addition, herring oil, DHA, and EPA at 20 μg/ml significantly decreased the hemolytic effect of S. aureus on human red blood cells, and when pre-treated to S. aureus, the bacterium was more easily killed by human whole blood. Transcriptional analysis showed that herring oil, DHA, and EPA repressed the expression of the α-hemolysin hla gene. Furthermore, in a Caenorhabditis elegans nematode model, all three prolonged nematode survival in the presence of S. aureus. These findings suggest that herring oil, DHA, and EPA are potentially useful for controlling persistent S. aureus infection.
Collapse
Affiliation(s)
- Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Chaitany J Raorane
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Seong T Oh
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Jae G Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
21
|
Karumathil DP, Nair MS, Gaffney J, Kollanoor-Johny A, Venkitanarayanan K. Trans-Cinnamaldehyde and Eugenol Increase Acinetobacter baumannii Sensitivity to Beta-Lactam Antibiotics. Front Microbiol 2018; 9:1011. [PMID: 29875743 PMCID: PMC5974060 DOI: 10.3389/fmicb.2018.01011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 04/30/2018] [Indexed: 01/23/2023] Open
Abstract
Multi-drug resistant (MDR) Acinetobacter baumannii is a major nosocomial pathogen causing a wide range of clinical conditions with significant mortality rates. A. baumannii strains are equipped with a multitude of antibiotic resistance mechanisms, rendering them resistant to most of the currently available antibiotics. Thus, there is a critical need to explore novel strategies for controlling antibiotic resistance in A. baumannii. This study investigated the efficacy of two food-grade, plant-derived antimicrobials (PDAs), namely trans-cinnamaldehyde (TC) and eugenol (EG) in decreasing A. baumannii’s resistance to seven β-lactam antibiotics, including ampicillin, methicillin, meropenem, penicillin, aztreonam, amoxicillin, and piperacillin. Two MDR A. baumannii isolates (ATCC 17978 and AB 251847) were separately cultured in tryptic soy broth (∼6 log CFU/ml) containing the minimum inhibitory concentration (MIC) of TC or EG with or without the MIC of each antibiotic at 37°C for 18 h. A. baumannii strains not exposed to the PDAs or antibiotics served as controls. Following incubation, A. baumannii counts were determined by broth dilution assay. In addition, the effect of PDAs on the permeability of outer membrane and efflux pumps in A. baumannii was measured. Further, the effect of TC and EG on the expression of A. baumannii genes encoding resistance to β-lactam antibiotics (blaP), efflux pumps (adeABC), and multi-drug resistant protein (mdrp) was studied using real-time quantitative PCR (RT-qPCR). The experiment was replicated three times with duplicate samples of each treatment and control. The results from broth dilution assay indicated that both TC and EG in combination with antibiotics increased the sensitivity of A. baumannii to all the tested antibiotics (P < 0.05). The two PDAs inhibited the function of A. baumannii efflux pump, (AdeABC), but did not increase the permeability of its outer membrane. Moreover, RT-qPCR data revealed that TC and EG down-regulated the expression of majority of the genes associated with β-lactam antibiotic resistance, especially blaP and adeABC (P < 0.05). The results suggest that TC and EG could potentially be used along with β-lactam antibiotics for controlling MDR A. baumannii infections; however, their clinical significance needs to be determined using in vivo studies.
Collapse
Affiliation(s)
- Deepti P Karumathil
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Meera Surendran Nair
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - James Gaffney
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Anup Kollanoor-Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN, United States
| | | |
Collapse
|
22
|
Repurposing the anthelmintic drug niclosamide to combat Helicobacter pylori. Sci Rep 2018; 8:3701. [PMID: 29487357 PMCID: PMC5829259 DOI: 10.1038/s41598-018-22037-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/15/2018] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need to discover novel antimicrobial therapies. Drug repurposing can reduce the time and cost risk associated with drug development. We report the inhibitory effects of anthelmintic drugs (niclosamide, oxyclozanide, closantel, rafoxanide) against Helicobacter pylori strain 60190 and pursued further characterization of niclosamide against H. pylori. The MIC of niclosamide against H. pylori was 0.25 μg/mL. Niclosamide was stable in acidic pH and demonstrated partial synergy with metronidazole and proton pump inhibitors, such as omeprazole and pantoprazole. Niclosamide administration at 1 × MIC concentration, eliminated 3-log10 CFU of H. pylori adhesion/invasion to AGS cells. Interestingly, no resistance developed even after exposure of H. pylori bacteria to niclosamide for 30 days. The cytotoxic assay demonstrated that niclosamide is not hemolytic and has an IC50 of 4 μg/mL in hepatic and gastric cell lines. Niclosamide administration decreased transmembrane pH as determined by DiSC3(5) assay indicating that the mechanism of action of the anti-H. pylori activity of niclosamide was the disruption of H. pylori proton motive force. Niclosamide was effective in the Galleria mellonella-H. pylori infection model (p = 0.0001) and it can be develop further to combat H. pylori infection. However, results need to be confirmed with other H. pylori and clinical strains.
Collapse
|