1
|
Shin H, Cwiertny DM, Nelson MJ, Jepson RT, Pentella MA, Thompson DA. Detection of a genetically related carbapenemase-producing Escherichia coli ST167 in clinical and environmental isolates: Evidence for clonal spread of carbapenemase-producing Enterobacteriaceae in humans and the environment in Iowa, United States. J Glob Antimicrob Resist 2025; 42:154-160. [PMID: 40054522 DOI: 10.1016/j.jgar.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Carbapenemase-producing Enterobacteriaceae (CPE) are listed by the World Health Organization as one of the critical priority pathogens needing urgent attention to address global resistance to antimicrobials. Thus, the transmission and epidemiology of CPEs need to be studied via One Health perspectives. METHODS An environmental CPE, referred to as BO1, was isolated from a creek in Northwest Iowa using a Colilert system (IDEXX, Westbrook, ME, USA). The presence of carbapenemase was examined using the modified carbapenem inactivation test, and then phenotypic resistance was determined using a Sensititre Complete Automated AST System (Thermo Fisher Scientific, Roskilde, Denmark). Whole-genome sequencing was performed and analysed to compare with clinical CPEs. RESULTS BO1, carrying blaNDM-5, was isolated from a creek in Northwest Iowa. BO1 exhibited resistance to 15 antimicrobials and was defined as an extensively drug-resistant organism. BO1 was also identified as ST167, which is well known as an emerging high-risk clone, and IncFIA- and IncQ1-type conjugatable plasmids were identified within the BO1 genome. The genetic environment of blaNDM-5 was highly conserved as blaNDM-bleMBL-trpF-dsbD in all strains studied. Interestingly, single-nucleotide polymorphism analysis revealed that BO1 shared only 1, 4 and 12 single-nucleotide polymorphisms with three different clinical strains from patients at Iowa health care facilities. CONCLUSIONS The occurrence of BO1 was temporally and spatially close to that of one clinical strain, IA0018, implying the clonal spread of CPEs among humans and the environment, although the source and directionality of this spread remains unknown. This report illustrates the need for the strict control of CPEs in health care facilities and continuous surveillance within clinical and environmental settings to trace and prevent CPE transmission.
Collapse
Affiliation(s)
- Hanseob Shin
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, IA, United States; State Hygienic Laboratory, University of Iowa, Coralville, IA, United States.
| | - David M Cwiertny
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, IA, United States; Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA United States; Department of Chemistry, University of Iowa, Iowa City, IA, United States
| | - Megan J Nelson
- State Hygienic Laboratory, University of Iowa, Coralville, IA, United States
| | - Ryan T Jepson
- State Hygienic Laboratory, University of Iowa, Coralville, IA, United States
| | - Michael A Pentella
- State Hygienic Laboratory, University of Iowa, Coralville, IA, United States
| | - Darrin A Thompson
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, IA, United States; Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
2
|
Chekole WS, Tessema TS, Sternberg-Lewerin S, Magnusson U, Adamu H. Molecular identification and antimicrobial resistance profiling of pathogenic E. coli isolates from smallholder livestock households in Central Ethiopia. J Glob Antimicrob Resist 2025; 41:59-67. [PMID: 39725321 DOI: 10.1016/j.jgar.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Escherichia coli of different pathotypes are frequently involved in morbidity and mortality in animals and humans. The study aimed to identify E. coli pathotypes and determine antimicrobial resistance (AMR) profiles in Ethiopian smallholder livestock households. The pathotyping included 198 E. coli isolates identified from human and environmental samples collected from 98 households. AMR profiling was conducted on selected E. coli pathotypes from 89 households, along with known isolates from calf samples obtained from the same households. Morphological and biochemical tests were used to identify presumptive E. coli isolates. DNA was extracted and then singleplex PCR was used to amplify virulence genes. A disc diffusion test was applied for AMR profilings in E. coli pathotypes. Data were evaluated using chi-square tests and logistic regression. Calf (79.8 %) and human (73.7 %) samples were more likely to contain pathotypes (OR 3.2; 95 % CI: 1.7, 5.9; p=0.001 and OR 2.3; 95 % CI: 1.2, 4.1; p=0.008, respectively) than the environmental samples (55.6 %). ETEC (32.3 %) and STEC (15.2 %) were the most common pathotypes detected in the study samples. Out of the 176 isolates selected for AMR profiling, 85 % were resistant to at least one drug and 36 % were multi-drug resistant (MDR). The MDR isolates were found in 44 households, with 11 sharing identical pathotypes and resistance profiles among the different samples. Thus, E. coli strains were likely circulated among humans, animals, and the environment. This in turn calls for a One-health approach to improve antimicrobial usage standards and promote proper waste disposal practices.
Collapse
Affiliation(s)
- Wagaw Sendeku Chekole
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), 75007 Uppsala, Sweden; Institute of Biotechnology, Addis Ababa University, Addis Ababa 1176, Ethiopia; Institute of Biotechnology, University of Gondar, Gondar 196, Ethiopia.
| | | | - Susanna Sternberg-Lewerin
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Ulf Magnusson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), 75007 Uppsala, Sweden
| | - Haileeyesus Adamu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa 1176, Ethiopia
| |
Collapse
|
3
|
Milton AAP, Srinivas K, Lyngdoh V, Momin AG, Lapang N, Priya GB, Ghatak S, Sanjukta R, Sen A, Das S. Biofilm-forming antimicrobial-resistant pathogenic Escherichia coli: A one health challenge in Northeast India. Heliyon 2023; 9:e20059. [PMID: 37809422 PMCID: PMC10559811 DOI: 10.1016/j.heliyon.2023.e20059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/25/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
This study aimed to investigate the prevalence of Shiga toxin-producing Escherichia coli (STEC), Enteropathogenic E. coli (EPEC), and Enterotoxigenic E. coli (ETEC) in common food animals (cattle, goats, and pigs) reared by tribal communities and smallholder farmers in Northeast India. The isolates were characterized for the presence of virulence genes, extended-spectrum beta-lactamases (ESBL) production, antimicrobial resistance, and biofilm production, and the results were statistically interpreted. In pathotyping 141 E. coli isolates, 10 (7.09%, 95% CI: 3.45%-12.66%) were identified as STEC, 2 (1.42%, 95% CI: 0.17%-5.03%) as atypical-EPEC, and 1 (0.71%, 95% CI: 0.02%-3.89%) as typical-EPEC. None of the isolates were classified as ETEC. Additionally, using the phenotypic combination disc method (ceftazidime with and without clavulanic acid), six isolates (46.1%, 95% CI: 19.22%-74.87%) were determined to be ESBL producers. Among the STEC/EPEC strains, eleven (84.6%, 95% CI: 54.55%-98.08%) and one (7.7%, 95% CI: 0.19%-36.03%) strains were capable of producing strong or moderate biofilms, respectively. PFGE analysis revealed indistinguishable patterns for certain isolates, suggesting clonal relationships. These findings highlight the potential role of food animals reared by tribal communities and smallholder farmers as reservoirs of virulent biofilm-forming E. coli pathotypes, with implications for food contamination and zoonotic infections. Therefore, monitoring these pathogens in food animals is crucial for optimizing public health through one health strategy.
Collapse
Affiliation(s)
- A. Arun Prince Milton
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - K. Srinivas
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Vanita Lyngdoh
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Aleimo G. Momin
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Naphisabet Lapang
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - G. Bhuvana Priya
- College of Agriculture, Central Agricultural University (Imphal), Kyrdemkulai, Meghalaya, India
| | - Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - R.K. Sanjukta
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Arnab Sen
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| | - Samir Das
- Division of Animal and Fisheries Sciences, ICAR Research Complex for Northeastern Hill Region, Umiam, Meghalaya, India
| |
Collapse
|
4
|
Urzúa-Encina C, Fernández-Sanhueza B, Pavez-Muñoz E, Ramírez-Toloza G, Lujan-Tomazic M, Rodríguez AE, Alegría-Morán R. Epidemiological Characterization of Isolates of Salmonella enterica and Shiga Toxin-Producing Escherichia coli from Backyard Production System Animals in the Valparaíso and Metropolitana Regions. Animals (Basel) 2023; 13:2444. [PMID: 37570253 PMCID: PMC10417532 DOI: 10.3390/ani13152444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 08/13/2023] Open
Abstract
Backyard production systems (BPS) are distributed worldwide, rearing animals recognized as reservoirs of Salmonella enterica and Shiga toxin-producing Escherichia coli (STEC), both zoonotic pathogens. The aim of this study was to characterize isolates of both pathogens obtained from animals raised in BPS from two central Chile regions. The presence of pathogens was determined by bacterial culture and confirmatory PCR for each sampled BPS, calculating positivity rates. Multivariate logistic regression was used to determine risk factors. Additionally, phenotypic antimicrobial resistance was determined. A positivity rate of 2.88% for S. enterica and 14.39% for STEC was determined for the complete study region (Valparaíso and Metropolitana regions). Risk factor analysis suggests that the presence of ruminants (OR = 1.03; 95% CI = 1.002-1.075) increases the risk of STEC-positive BPS, and the presence of ruminants (OR = 1.05; 95% CI = 1.002-1.075) and the animal handlers being exclusively women (OR = 3.54; 95% CI = 1.029-12.193) increase the risk for S. enterica/STEC positivity. Eighty percent of S. enterica isolates were multidrug resistant, and all STEC were resistant to Cephalexin. This study evidences the circulation of multidrug-resistant zoonotic bacterial strains in animals kept in BPS and the presence of factors that modify the risk of BPS positivity for both pathogens.
Collapse
Affiliation(s)
- Constanza Urzúa-Encina
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (C.U.-E.); (B.F.-S.); (E.P.-M.); (G.R.-T.)
- Laboratorio Centralizado de Investigación Veterinaria, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - Bastián Fernández-Sanhueza
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (C.U.-E.); (B.F.-S.); (E.P.-M.); (G.R.-T.)
- Laboratorio Centralizado de Investigación Veterinaria, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
- Escuela de Medicina Veterinaria, Sede Santiago, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Ejercito Libertador 146, Santiago 8370003, Chile
| | - Erika Pavez-Muñoz
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (C.U.-E.); (B.F.-S.); (E.P.-M.); (G.R.-T.)
- Laboratorio Centralizado de Investigación Veterinaria, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - Galia Ramírez-Toloza
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (C.U.-E.); (B.F.-S.); (E.P.-M.); (G.R.-T.)
- Laboratorio Centralizado de Investigación Veterinaria, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - Mariela Lujan-Tomazic
- Instituto de Patobiología Veterinaria, Instituto Nacional de Tecnologías Agropecuarias, Consejo Nacional de Investigaciones Científicas y Técnicas, Av. de los Reseros y Nicolás Repetto s/n, Hurlingham, Buenos Aires 1686, Argentina; (M.L.-T.); (A.E.R.)
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Av. Junín 954, Buenos Aires C1113 AAD, Argentina
| | - Anabel Elisa Rodríguez
- Instituto de Patobiología Veterinaria, Instituto Nacional de Tecnologías Agropecuarias, Consejo Nacional de Investigaciones Científicas y Técnicas, Av. de los Reseros y Nicolás Repetto s/n, Hurlingham, Buenos Aires 1686, Argentina; (M.L.-T.); (A.E.R.)
| | - Raúl Alegría-Morán
- Escuela de Medicina Veterinaria, Sede Santiago, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Ejercito Libertador 146, Santiago 8370003, Chile
| |
Collapse
|
5
|
Zou H, Han J, Zhao L, Wang D, Guan Y, Wu T, Hou X, Han H, Li X. The shared NDM-positive strains in the hospital and connecting aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160404. [PMID: 36427732 DOI: 10.1016/j.scitotenv.2022.160404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
The spread of antibiotic-resistant priority pathogens outside hospital settings is, both, a significant public health concern and an environmental problem. In recent years, New Delhi Metallo-β-lactamase (NDM)-positive strains have caused nosocomial infections with high mortality and poor prognosis worldwide. Our study investigated the links of NDM-positive strains between the hospital and the connecting river system in Jinan city, Eastern China by using NDM-producing Escherichia coli (NDM-EC) as an indicator via whole genome sequencing. Thirteen NDM-EC isolates were detected from 187 river water and sediment samples, while 9 isolates were identified from patients at the local hospital. All NDM-EC isolates were resistant to imipenem, meropenem, cefotaxime, cefoxitin, ampicillin, tetracycline, fosfomycin, piperacillin-tazobactam. The blaNDM-5 (n = 20) and blaNDM-9 (n = 2) genes were identified, which were predominantly on IncX3 plasmids (n = 13), followed by IncFII plasmids (n = 5) and IncFIA plasmids (n = 2). Conjugation experiments showed that 21 isolates could transfer NDM-harboring plasmids. The well-conserved blaNDM-5 genetic environment (ISAba125-blaNDM-5/9-bleMBL-trpF-dsbD-IS26) of these plasmids suggested a common genetic origin. Nine sequence types (STs) were detected, including three international high-risk clones ST167 (n = 8), ST410 (n = 1), and ST617 (n = 1). Phylogenetic analysis showed ST167 E. coli from the river was genotypically related to clinical isolates recovered from patients. Furthermore, ST167 isolates showed high genetic similarities with other clinical strains from geographically distinct regions. The genetic concordance between isolates from different sampling sites in the same river (ST218 clone), and different rivers (ST448 clone) raises concerns regarding the rapid dissemination of NDM-EC in the aquatic environment. The emergence and spread of the clinically relevant NDM-positive strains, especially for E. coli ST167 clone, an international high-risk clone associated with multi-resistance and virulence capacity, within and between the hospital and aquatic environments were elucidated, highlighting the need for attention and action.
Collapse
Affiliation(s)
- Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jingyi Han
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ling Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Di Wang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanyu Guan
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tianle Wu
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xinjiao Hou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hui Han
- Department of Infection Control, Qilu Hospital of Shandong University, Jinan, China.
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
6
|
Whole Genome Sequencing (WGS) Analysis of Virulence and AMR Genes in Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli from Animal and Environmental Samples in Four Italian Swine Farms. Antibiotics (Basel) 2022; 11:antibiotics11121774. [PMID: 36551431 PMCID: PMC9774568 DOI: 10.3390/antibiotics11121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Whole genome sequencing (WGS) is a powerful tool to analyze bacterial genomes rapidly, and can be useful to study and detect AMR genes. We carried out WGS on a group of Escherichia coli (n = 30), sampled from healthy animals and farm environment in four pigsties in northern Italy. Two × 250bp paired end sequencing strategy on Illumina MiSeq™ was used. We performed in silico characterization of E. coli isolates through the web tools provided by the Center for Genomic Epidemiology (cge.cbs.dtu.dk/services/) to study AMR and virulence genes. Bacterial strains were further analyzed to detect phenotypic antimicrobial susceptibility against several antimicrobials. Data obtained from WGS were compared to phenotypic results. All 30 strains were MDR, and they were positive for the genes blaCTX-M and blaTEM as verified by PCR. We observed a good concordance between phenotypic and genomic results. Different AMR determinants were identified (e.g., qnrS, sul, tet). Potential pathogenicity of these strains was also assessed, and virulence genes were detected (e.g., etsC, gad, hlyF, iroN, iss), mostly related to extraintestinal E. coli pathotypes (UPEC/APEC). However, enterotoxin genes, such as astA, ltcA and stb were also identified, indicating a possible hybrid pathogenic nature. Various replicons associated to plasmids, previously recovered in pathogenic bacteria, were identified (e.g., IncN and IncR plasmid), supporting the hypothesis that our strains were pathogenic. Eventually, through WGS it was possible to confirm the phenotypic antibiotic resistance results and to appreciate the virulence side of our ESBL-producing E. coli. These findings highlight the need to monitor commensal E. coli sampled from healthy pigs considering a One Health perspective.
Collapse
|
7
|
Swarthout JM, Chan EMG, Garcia D, Nadimpalli ML, Pickering AJ. Human Colonization with Antibiotic-Resistant Bacteria from Nonoccupational Exposure to Domesticated Animals in Low- and Middle-Income Countries: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14875-14890. [PMID: 35947446 DOI: 10.1021/acs.est.2c01494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Data on community-acquired antibiotic-resistant bacterial infections are particularly sparse in low- and middle-income countries (LMICs). Limited surveillance and oversight of antibiotic use in food-producing animals, inadequate access to safe drinking water, and insufficient sanitation and hygiene infrastructure in LMICs could exacerbate the risk of zoonotic antibiotic resistance transmission. This critical review compiles evidence of zoonotic exchange of antibiotic-resistant bacteria (ARB) or antibiotic resistance genes (ARGs) within households and backyard farms in LMICs, as well as assesses transmission mechanisms, risk factors, and environmental transmission pathways. Overall, substantial evidence exists for exchange of antibiotic resistance between domesticated animals and in-contact humans. Whole bacteria transmission and horizontal gene transfer between humans and animals were demonstrated within and between households and backyard farms. Further, we identified water, soil, and animal food products as environmental transmission pathways for exchange of ARB and ARGs between animals and humans, although directionality of transmission is poorly understood. Herein we propose study designs, methods, and topical considerations for priority incorporation into future One Health research to inform effective interventions and policies to disrupt zoonotic antibiotic resistance exchange in low-income communities.
Collapse
Affiliation(s)
- Jenna M Swarthout
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Elana M G Chan
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Denise Garcia
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Maya L Nadimpalli
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts 02111, United States
| | - Amy J Pickering
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts 02111, United States
| |
Collapse
|
8
|
Börjesson S, Brouwer MSM, Östlund E, Eriksson J, Elving J, Karlsson Lindsjö O, Engblom LI. Detection of an IMI-2 carbapenemase-producing Enterobacter asburiae at a Swedish feed mill. Front Microbiol 2022; 13:993454. [PMID: 36338068 PMCID: PMC9634252 DOI: 10.3389/fmicb.2022.993454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Occurrence of multidrug resistant Enterobacteriaceae in livestock is of concern as they can spread to humans. A potential introduction route for these bacteria to livestock could be animal feed. We therefore wanted to identify if Escherichia spp., Enterobacter spp., Klebsiella spp., or Raoutella spp. with transferable resistance to extended spectrum cephalosporins, carbapenems or colistin could be detected in the environment at feed mills in Sweden. A second aim was to compare detected isolates to previous described isolates from humans and animals in Sweden to establish relatedness which could indicate a potential transmission between sectors and feed mills as a source for antibiotic resistant bacteria. However, no isolates with transferable resistance to extended-cephalosporins or colistin could be identified, but one isolate belonging to the Enterobacter cloacae complex was shown to be carbapenem-resistant and showing carbapenemase-activity. Based on sequencing by both short-read Illumina and long-read Oxford Nanopore MinIon technologies it was shown that this isolate was an E. asburiae carrying a blaIMI-2 gene on a 216 Kbp plasmid, designated pSB89A/IMI-2, and contained the plasmid replicons IncFII, IncFIB, and a third replicon showing highest similarity to the IncFII(Yp). In addition, the plasmid contained genes for various functions such as plasmid segregation and stability, plasmid transfer and arsenical transport, but no additional antibiotic resistance genes. This isolate and the pSB89A/IMI-2 was compared to three human clinical isolates positive for blaIMI-2 available from the Swedish antibiotic monitoring program Swedres. It was shown that one of the human isolates carried a plasmid similar with regards to gene content to the pSB89A/IMI-2 except for the plasmid transfer system, but that the order of genes was different. The pSB89A/IMI-2 did however share the same transfer system as the blaIMI-2 carrying plasmids from the other two human isolates. The pSB89A/IMI-2 was also compared to previously published plasmids carrying blaIMI-2, but no identical plasmids could be identified. However, most shared part of the plasmid transfer system and DNA replication genes, and the blaIMI-2 gene was located next the transcription regulator imiR. The IS3-family insertion element downstream of imiR in the pSB89A was also related to the IS elements in other blaIMI-carrying plasmids.
Collapse
Affiliation(s)
- Stefan Börjesson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), Uppsala, Sweden
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- *Correspondence: Stefan Börjesson,
| | - Michael S. M. Brouwer
- Department of Bacteriology, Host-Pathogen Interactions and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Emma Östlund
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Jenny Eriksson
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Josefine Elving
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Linda I. Engblom
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden
| |
Collapse
|