1
|
Mimpen JY, Baldwin MJ, Paul C, Ramos-Mucci L, Kurjan A, Cohen CJ, Sharma S, Chevalier Florquin MSN, Hulley PA, McMaster J, Titchener A, Martin A, Costa ML, Gwilym SE, Cribbs AP, Snelling SJB. Exploring cellular changes in ruptured human quadriceps tendons at single-cell resolution. J Physiol 2025. [PMID: 40232153 DOI: 10.1113/jp287812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/21/2025] [Indexed: 04/16/2025] Open
Abstract
Tendon ruptures in humans have often been studied during the chronic phase of injury, particularly in the context of rotator cuff disease. However, the early response to acute tendon ruptures remains less investigated. Quadriceps tendons, which require prompt surgical treatment, offer a model to investigate this early response. Therefore, this study aimed to explore the early cellular changes in ruptured compared to healthy human quadriceps tendons. Quadriceps tendon samples were collected from patients undergoing fracture repair (healthy) or tendon repair surgery (collected 7-8 days post-injury). Nuclei were isolated for single-nucleus RNA sequencing, and comprehensive transcriptomic analysis was conducted. The transcriptomes of 12,808 nuclei (7268 from healthy and 5540 from ruptured quadriceps tendons) were profiled, revealing 12 major cell types and several cell subtypes and states. Rupture samples showed increased expression of genes related to extracellular matrix organisation and cell cycle signalling, and a decrease in expression of genes in lipid metabolism pathways. These changes were predominantly driven by gene expression changes in the fibroblast, vascular endothelial cell (VEC), mural cell, and macrophage populations: fibroblasts shift to an activated phenotype upon rupture and there is an increase in the proportion of capillary and dividing VECs. A diverse immune environment was observed, with a shift from homeostatic to activated macrophages following rupture. Cell-cell interactions increased in number and diversity in rupture, and primarily involved fibroblast and VEC populations. Collectively, this transcriptomic analysis suggests that fibroblasts and endothelial cells are key orchestrators of the early injury response within ruptured quadriceps tendon. KEY POINTS: Tendon ruptures in humans have regularly been studied during the chronic phase of injury, but less is known about the early injury response after acute tendon ruptures. This study explored the early cellular changes in ruptured compared to healthy human quadriceps tendons at single-cell resolution. Fibroblasts and endothelial cells seem to be the key orchestrators of the early injury response within ruptured quadriceps tendon. Therefore, these cell types are obvious targets for interventions to enhance tendon healing. Overall, this study highlights that the development of more effective therapeutic options for tendon injury requires better understanding of the cellular, extracellular, and mechanical landscape of tendon tissue.
Collapse
Affiliation(s)
- Jolet Y Mimpen
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Mathew J Baldwin
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Claudia Paul
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lorenzo Ramos-Mucci
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alina Kurjan
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Carla J Cohen
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Shreeya Sharma
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Philippa A Hulley
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - John McMaster
- Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | | | | | - Matthew L Costa
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Stephen E Gwilym
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Adam P Cribbs
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research University of Oxford, Oxford, UK
| | - Sarah J B Snelling
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Vijayaraghavan M, Gadad SS, Dhandayuthapani S. Long non-coding RNA transcripts in Mycobacterium tuberculosis-host interactions. Noncoding RNA Res 2025; 11:281-293. [PMID: 39926616 PMCID: PMC11803167 DOI: 10.1016/j.ncrna.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/24/2024] [Accepted: 12/08/2024] [Indexed: 02/11/2025] Open
Abstract
Tuberculosis (TB) persists as a significant health threat, affecting millions of people all over the world. Despite years of control measures, the elimination of TB has become a difficult task as morbidity and mortality rates remain unaffected for several years. Developing new diagnostics and therapeutics is paramount to keeping TB under control. However, it largely depends upon understanding the pathogenic mechanisms of Mycobacterium tuberculosis (Mtb), the causative agent of TB. Mtb is an intracellular pathogen capable of subverting the defensive functions of the immune cells, and it can survive and multiply within humans' mononuclear phagocytes. Emerging evidence indicates that long non-coding RNAs (lncRNAs), a class of RNA molecules with limited coding potential, are critical players in this intricate game as they regulate gene expression at transcriptional and post-transcriptional levels and also by chromatin modification. Moreover, they have been shown to regulate cellular processes by controlling the function of other molecules, such as DNA, RNA, and protein, through binding with them. Recent studies have shown that lncRNAs are differentially regulated in the tissues of TB patients and cells infected in vitro with Mtb. Some dysregulated lncRNAs are associated with essential roles in modulating immune response, apoptosis, and autophagy in the host cells, adding a new dimension to TB pathogenesis. In this article, we provide a comprehensive review of the recent literature in this field and the impact of lncRNAs in unraveling pathogenic mechanisms in TB. We also discuss how the studies involving lncRNAs provide insight into TB pathogenesis, especially Mtb-host interactions.
Collapse
Affiliation(s)
- Mahalakshmi Vijayaraghavan
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Texas-79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Texas-79905, USA
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas-79905, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Texas-79905, USA
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas-79905, USA
| |
Collapse
|
3
|
Kotey SK, Tan X, Kinser AL, Liu L, Cheng Y. Host Long Noncoding RNAs as Key Players in Mycobacteria-Host Interactions. Microorganisms 2024; 12:2656. [PMID: 39770858 PMCID: PMC11728548 DOI: 10.3390/microorganisms12122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Mycobacterial infections, caused by various species within the Mycobacterium genus, remain one of the main challenges to global health across the world. Understanding the complex interplay between the host and mycobacterial pathogens is essential for developing effective diagnostic and therapeutic strategies. Host long noncoding RNAs (lncRNAs) have emerged as key regulators in cellular response to bacterial infections within host cells. This review provides an overview of the intricate relationship between mycobacterial infections and host lncRNAs in the context of Mycobacterium tuberculosis and non-tuberculous mycobacterium (NTM) infections. Accumulation of evidence indicates that host lncRNAs play a critical role in regulating cellular response to mycobacterial infection within host cells, such as macrophages, the primary host cells for mycobacterial intracellular survival. The expression of specific host lncRNAs has been implicated in the pathogenesis of mycobacterial infections, providing potential targets for the development of novel host-directed therapies and biomarkers for TB diagnosis. In summary, this review aims to highlight the current state of knowledge regarding the involvement of host lncRNAs in mycobacterial infections. It also emphasizes their potential application as novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Stephen K. Kotey
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Xuejuan Tan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Audrey L. Kinser
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yong Cheng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA; (S.K.K.); (X.T.); (A.L.K.)
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
4
|
Védrine M, Gilbert FB, Maman S, Klopp C, Gitton C, Rainard P, Germon P. Soluble CD14 produced by bovine mammary epithelial cells modulates their response to full length LPS. Vet Res 2024; 55:76. [PMID: 38867337 PMCID: PMC11170775 DOI: 10.1186/s13567-024-01329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/04/2024] [Indexed: 06/14/2024] Open
Abstract
Bovine mastitis remains a major disease in cattle world-wide. In the mammary gland, mammary epithelial cells (MEC) are sentinels equipped with receptors allowing them to detect and respond to the invasion by bacterial pathogens, in particular Escherichia coli. Lipopolysaccharide (LPS) is the major E. coli motif recognized by MEC through its interaction with the TLR4 receptor and the CD14 co-receptor. Previous studies have highlighted the role of soluble CD14 (sCD14) in the efficient recognition of LPS molecules possessing a full-length O-antigen (LPSS). We demonstrate here that MEC are able to secrete CD14 and are likely to contribute to the presence of sCD14 in milk. We then investigated how sCD14 modulates and is required for the response of MEC to LPSS. This study highlights the key role of sCD14 for the full activation of the Myd88-independent pathway by LPSS. We also identified several lncRNA that are activated in MEC in response to LPS, including one lncRNA showing homologies with the mir-99a-let-7c gene (MIR99AHG). Altogether, our results show that a full response to LPS by mammary epithelial cells requires sCD14 and provide detailed information on how milk sCD14 can contribute to an efficient recognition of LPS from coliform pathogens.
Collapse
Affiliation(s)
- Mégane Védrine
- ISP UMR 1282, INRAE, Université François Rabelais de Tours, Nouzilly, France
| | - Florence B Gilbert
- ISP UMR 1282, INRAE, Université François Rabelais de Tours, Nouzilly, France
| | - Sarah Maman
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Christophe Klopp
- SIGENAE, Genotoul Bioinfo, BioInfoMics, MIAT UR875, INRAE, Castanet Tolosan, France
| | - Christophe Gitton
- ISP UMR 1282, INRAE, Université François Rabelais de Tours, Nouzilly, France
| | - Pascal Rainard
- ISP UMR 1282, INRAE, Université François Rabelais de Tours, Nouzilly, France
| | - Pierre Germon
- ISP UMR 1282, INRAE, Université François Rabelais de Tours, Nouzilly, France.
| |
Collapse
|
5
|
Zhao L, Fan K, Sun X, Li W, Qin F, Shi L, Gao F, Zheng C. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus. Front Immunol 2024; 14:1305325. [PMID: 38259491 PMCID: PMC10800548 DOI: 10.3389/fimmu.2023.1305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) is caused by the bacterial pathogen Mycobacterium tuberculosis (MTB) and is one of the principal reasons for mortality and morbidity worldwide. Currently, recommended anti-tuberculosis drugs include isoniazid, rifampicin, ethambutol, and pyrazinamide. TB treatment is lengthy and inflicted with severe side-effects, including reduced patient compliance with treatment and promotion of drug-resistant strains. TB is also prone to other concomitant diseases such as diabetes and HIV. These drug-resistant and complex co-morbid characteristics increase the complexity of treating MTB. Host-directed therapy (HDT), which effectively eliminates MTB and minimizes inflammatory tissue damage, primarily by targeting the immune system, is currently an attractive complementary approach. The drugs used for HDT are repositioned drugs in actual clinical practice with relative safety and efficacy assurance. HDT is a potentially effective therapeutic intervention for the treatment of MTB and diabetic MTB, and can compensate for the shortcomings of current TB therapies, including the reduction of drug resistance and modulation of immune response. Here, we summarize the state-of-the-art roles and mechanisms of HDT in immune modulation and treatment of MTB, with a special focus on the role of HDT in diabetic MTB, to emphasize the potential of HDT in controlling MTB infection.
Collapse
Affiliation(s)
- Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
6
|
Buthelezi LA, Pillay S, Ntuli NN, Gcanga L, Guler R. Antisense Therapy for Infectious Diseases. Cells 2023; 12:2119. [PMID: 37626929 PMCID: PMC10453568 DOI: 10.3390/cells12162119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Infectious diseases, particularly Tuberculosis (TB) caused by Mycobacterium tuberculosis, pose a significant global health challenge, with 1.6 million reported deaths in 2021, making it the most fatal disease caused by a single infectious agent. The rise of drug-resistant infectious diseases adds to the urgency of finding effective and safe intervention therapies. Antisense therapy uses antisense oligonucleotides (ASOs) that are short, chemically modified, single-stranded deoxyribonucleotide molecules complementary to their mRNA target. Due to their designed target specificity and inhibition of a disease-causing gene at the mRNA level, antisense therapy has gained interest as a potential therapeutic approach. This type of therapy is currently utilized in numerous diseases, such as cancer and genetic disorders. Currently, there are limited but steadily increasing studies available that report on the use of ASOs as treatment for infectious diseases. This review explores the sustainability of FDA-approved and preclinically tested ASOs as a treatment for infectious diseases and the adaptability of ASOs for chemical modifications resulting in reduced side effects with improved drug delivery; thus, highlighting the potential therapeutic uses of ASOs for treating infectious diseases.
Collapse
Affiliation(s)
- Lwanda Abonga Buthelezi
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa; (L.A.B.); (S.P.); (N.N.N.); (L.G.)
- Department of Pathology, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Shandre Pillay
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa; (L.A.B.); (S.P.); (N.N.N.); (L.G.)
- Department of Pathology, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Noxolo Nokukhanya Ntuli
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa; (L.A.B.); (S.P.); (N.N.N.); (L.G.)
- Department of Pathology, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lorna Gcanga
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa; (L.A.B.); (S.P.); (N.N.N.); (L.G.)
- Department of Pathology, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa; (L.A.B.); (S.P.); (N.N.N.); (L.G.)
- Department of Pathology, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
7
|
Qiao X, Ding Y, Wu D, Zhang A, Yin Y, Wang Q, Wang W, Kang J. The roles of long noncoding RNA-mediated macrophage polarization in respiratory diseases. Front Immunol 2023; 13:1110774. [PMID: 36685535 PMCID: PMC9849253 DOI: 10.3389/fimmu.2022.1110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Macrophages play an essential role in maintaining the normal function of the innate and adaptive immune responses during host defence. Macrophages acquire diverse functional phenotypes in response to various microenvironmental stimuli, and are mainly classified into classically activated macrophages (M1) and alternatively activated macrophages (M2). Macrophage polarization participates in the inflammatory, fibrotic, and oncogenic processes of diverse respiratory diseases by changing phenotype and function. In recent decades, with the advent of broad-range profiling methods such as microarrays and next-generation sequencing, the discovery of RNA transcripts that do not encode proteins termed "noncoding RNAs (ncRNAs)" has become more easily accessible. As one major member of the regulatory ncRNA family, long noncoding RNAs (lncRNAs, transcripts >200 nucleotides) participate in multiple pathophysiological processes, including cell proliferation, differentiation, and apoptosis, and vary with different stimulants and cell types. Emerging evidence suggests that lncRNAs account for the regulation of macrophage polarization and subsequent effects on respiratory diseases. In this review, we summarize the current published literature from the PubMed database concerning lncRNAs relevant to macrophage polarization and the underlying molecular mechanisms during the occurrence and development of respiratory diseases. These differentially expressed lncRNAs are expected to be biomarkers and targets for the therapeutic regulation of macrophage polarization during disease development.
Collapse
|