1
|
Francolino R, Martino M, Caputo L, Amato G, Chianese G, Gargiulo E, Formisano C, Romano B, Ercolano G, Ianaro A, De Martino L, Feo VD. Phytochemical Constituents and Biological Activity of Wild and Cultivated Rosmarinus officinalis Hydroalcoholic Extracts. Antioxidants (Basel) 2023; 12:1633. [PMID: 37627628 PMCID: PMC10451299 DOI: 10.3390/antiox12081633] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Rosmarinus officinalis L. is an aromatic evergreen plant from the Lamiaceae family. The purpose of this study was to compare the chemical profile and bioactivities of hydroalcoholic extracts derived from wild and cultivated R. officinalis. The chemical composition of the extracts was evaluated via LC-MS analysis, which revealed the presence of a wide range of phenolic compounds, including flavonoids, phenolic and terpenes. Both extracts showed a similar interesting antioxidant activity, probably related to their content of phenol and flavonoids. The analysis of anti-acetylcholinesterase (AChE), anti-butyrylcholinesterase (BChE), and anti-α-amylase activities showed analogous inhibition, except for AChE, in which the wild type was more active than the cultivated one. Finally, in vitro studies were performed using the J774A.1 murine macrophage cell line, to characterize the anti-inflammatory and the antioxidant effects of the extracts. As expected, pretreatment with the extracts significantly reduced the production proinflammatory cytokines and ROS through modulation of the nitric oxide pathway and the mitochondrial activity. Importantly, it is observed that the anti-inflammatory effect of the extracts was explicated through the inhibition of NF-kB and its downstream mediator COX-2. Collectively, these results demonstrated that these extracts could represent a starting point for developing novel therapeutic strategies for the treatment of inflammation-based diseases. Moreover, since no significant changes were observed in terms of composition and activity, both wild and cultivated R. officinalis extracts can be recommended for food and pharmaceutical purposes.
Collapse
Affiliation(s)
- Rosaria Francolino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (R.F.); (M.M.); (L.C.); (G.A.); (V.D.F.)
| | - Mara Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (R.F.); (M.M.); (L.C.); (G.A.); (V.D.F.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (R.F.); (M.M.); (L.C.); (G.A.); (V.D.F.)
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (R.F.); (M.M.); (L.C.); (G.A.); (V.D.F.)
| | - Giuseppina Chianese
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy; (G.C.); (E.G.); (B.R.); (G.E.); (A.I.)
| | - Ernesto Gargiulo
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy; (G.C.); (E.G.); (B.R.); (G.E.); (A.I.)
| | - Carmen Formisano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy; (G.C.); (E.G.); (B.R.); (G.E.); (A.I.)
| | - Benedetta Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy; (G.C.); (E.G.); (B.R.); (G.E.); (A.I.)
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy; (G.C.); (E.G.); (B.R.); (G.E.); (A.I.)
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy; (G.C.); (E.G.); (B.R.); (G.E.); (A.I.)
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (R.F.); (M.M.); (L.C.); (G.A.); (V.D.F.)
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (R.F.); (M.M.); (L.C.); (G.A.); (V.D.F.)
- Institute of Food Science, National Research Council (C.N.R.), Via Roma, n. 60, 83100 Avellino, Italy
| |
Collapse
|
2
|
Maeda Y, Takeda M, Mitsuhara T, Okazaki T, Shimizu K, Kuwabara M, Hosogai M, Yuge L, Horie N. Longitudinal electrophysiological changes after mesenchymal stem cell transplantation in a spinal cord injury rat model. PLoS One 2022; 17:e0272526. [PMID: 35930554 PMCID: PMC9355172 DOI: 10.1371/journal.pone.0272526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Transcranial electrically stimulated motor-evoked potentials (tcMEPs) are widely used to evaluate motor function in humans and animals. However, the relationship between tcMEPs and the recovery of paralysis remains unclear. We previously reported that transplantation of mesenchymal stem cells to a spinal cord injury (SCI) rat model resulted in various degrees of recovery from paraplegia. As a continuation of this work, in the present study, we aimed to establish the longitudinal electrophysiological changes in this SCI rat model after mesenchymal stem cell transplantation. SCI rats were established using the weight-drop method. The model rats were transvenously transplanted with two types of mesenchymal stem cells (MSCs), one derived from rat cranial bones and the other from the bone marrow of the femur and tibia bone, 24 h after SCI. A phosphate-buffered saline (PBS) group that received only PBS was also created for comparison. The degree of paralysis was evaluated over 28 days using the Basso–Beattie–Bresnahan (BBB) scale and inclined plane task score. Extended tcMEPs were recorded using a previously reported bone-thinning technique, and the longitudinal electrophysiological changes in tcMEPs were investigated. In addition, the relationship between the time course of recovery from paralysis and reappearance of tcMEPs was revealed. The appearance of the tcMEP waveform was earlier in MSC-transplanted rats than in PBS-administered rats (earliest date was 7 days after SCI). The MEP waveforms also appeared at approximately the same level on the BBB scale (average score, 11 points). Ultimately, this study can help enhance our understanding of the relationship between neural regeneration and tcMEP recording. Further application of tcMEP in regenerative medicine research is expected.
Collapse
Affiliation(s)
- Yuyo Maeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| | - Masaaki Takeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takafumi Mitsuhara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takahito Okazaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyoharu Shimizu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Kuwabara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Hosogai
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Maeda Y, Otsuka T, Mitsuhara T, Okazaki T, Yuge L, Takeda M. A novel bone-thinning technique for transcranial stimulation motor-evoked potentials in rats. Sci Rep 2021; 11:12496. [PMID: 34127706 PMCID: PMC8203740 DOI: 10.1038/s41598-021-91780-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
Transcranial electrical stimulated motor-evoked potentials (tcMEPs) are widely used to evaluate motor function in humans, and even in animal studies, tcMEPs are used to evaluate neurological dysfunction. However, there is a dearth of reports on extended tcMEP recordings in both animal models and humans. Therefore, this study examined a new technique for stably recording tcMEPs over several weeks in six healthy female Sprague–Dawley rats. We thinned the skull bone using the skull base and spinal surgery technique to reduce electrical resistance for electrical stimulation. tcMEPs were recorded on days 1, 7, 14, 21, and 28 after surgery. The onset latency and amplitude of tcMEPs from the hindlimbs were recorded and evaluated, and histological analysis was performed. Stable amplitude and onset latency could be recorded over several weeks, and histological analysis indicated no complications attributable to the procedure. Thus, our novel technique allows for less invasive, safer, easier, and more stable extended tcMEP recordings than previously reported techniques. The presently reported technique may be applied to the study of various nerve injury models in rats: specifically, to evaluate the degree of nerve dysfunction and recovery in spinal cord injury, cerebral infarction, and brain contusion models.
Collapse
Affiliation(s)
- Yuyo Maeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Takashi Otsuka
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takafumi Mitsuhara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Takahito Okazaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masaaki Takeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
4
|
Okamoto E, Ishikawa E, Yamamoto T, Matsuda M, Nakai K, Matsushita A, Masuda Y, Akutsu H, Ayuzawa S, Sakamaki F, Matsumoto Y, Matsumura A. Variability in amplitude and stimulation threshold values in motor evoked potential (MEP) monitoring during the resection of brain lesions. Clin Neurophysiol 2015; 126:1271-1278. [DOI: 10.1016/j.clinph.2014.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/05/2014] [Accepted: 10/01/2014] [Indexed: 02/02/2023]
|
5
|
Saito T, Muragaki Y, Maruyama T, Tamura M, Nitta M, Okada Y. Intraoperative functional mapping and monitoring during glioma surgery. Neurol Med Chir (Tokyo) 2014; 55:1-13. [PMID: 25744346 PMCID: PMC4533401 DOI: 10.2176/nmc.ra.2014-0215] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glioma surgery represents a significant advance with respect to improving resection rates using new surgical techniques, including intraoperative functional mapping, monitoring, and imaging. Functional mapping under awake craniotomy can be used to detect individual eloquent tissues of speech and/or motor functions in order to prevent unexpected deficits and promote extensive resection. In addition, monitoring the patient’s neurological findings during resection is also very useful for maximizing the removal rate and minimizing deficits by alarming that the touched area is close to eloquent regions and fibers. Assessing several types of evoked potentials, including motor evoked potentials (MEPs), sensory evoked potentials (SEPs) and visual evoked potentials (VEPs), is also helpful for performing surgical monitoring in patients under general anesthesia (GA). We herein review the utility of intraoperative mapping and monitoring the assessment of neurological findings, with a particular focus on speech and the motor function, in patients undergoing glioma surgery.
Collapse
Affiliation(s)
- Taiichi Saito
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women' Medical University; Department of Neurosurgery, Tokyo Rosai Hospital
| | | | | | | | | | | |
Collapse
|
6
|
Hiraishi T, Fukuda M, Oishi M, Nishino K, Shinbo J, Sorimachi T, Ito Y, Fujii Y. Usefulness of motor-evoked potential monitoring during coil embolization of anterior choroidal artery aneurysms: technical reports. Neurol Res 2013; 33:360-2. [DOI: 10.1179/016164110x12807570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Arle JE, Shils JL, Malik WQ. Localized stimulation and recording in the spinal cord with microelectrode arrays. 2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY 2012; 2012:1851-4. [PMID: 23366273 DOI: 10.1109/embc.2012.6346312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey E Arle
- Lahey Clinic, Tufts University School of Medicine, Burlington, MA, USA.
| | | | | |
Collapse
|
8
|
Horiuchi K, Suzuki K, Sasaki T, Matsumoto M, Sakuma J, Konno Y, Oinuma M, Itakura T, Kodama N. Intraoperative monitoring of blood flow insufficiency during surgery of middle cerebral artery aneurysms. J Neurosurg 2005; 103:275-83. [PMID: 16175857 DOI: 10.3171/jns.2005.103.2.0275] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. The usefulness of motor evoked potential (MEP) monitoring to detect blood flow insufficiency (BFI) in the cortical branches of the middle cerebral artery (MCA) and lenticulostriate arteries (LSAs) during MCA aneurysm surgery was investigated based on the correlation between MEP and somatosensory evoked potential (SEP) monitoring.
Methods. Fifty-three patients with MCA aneurysms underwent surgery accompanied by intraoperative MEP and SEP monitoring. There was no postoperative motor paresis in 43 patients in whom MEP and SEP results remained unchanged. In the other 10 patients, nine manifested transient MEP changes; in five of these, SEP changes did not occur. The transient MEP changes were thought to be attributable to BFI of the MCA cortical branches in two patients, the LSA in three, and either the MCA branches or the LSA in four patients. Of these nine patients, six did not present with postoperative motor paresis; transient motor paresis was recognized in the other three. In the 10th patient, MEP waves disappeared and did not recover. This patient's SEPs remained at 70% of the control level, and he developed severe hemiparesis. A postoperative computerized tomography scan revealed a new low-density area in the corona radiata and putamen.
Conclusions. Blood flow insufficiency in both the LSA and MCA cortical branches that perfuse the corticospinal tract can be detected by intraoperative MEP monitoring. Somatosensory evoked potential monitoring is not reliable enough to detect BFI in the MCA branches and the LSAs.
Collapse
Affiliation(s)
- Kazuomi Horiuchi
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yamamoto T, Katayama Y, Nagaoka T, Kobayashi K, Fukaya C. Intraoperative Monitoring of the Corticospinal Motor Evoked Potential (D-wave): Clinical Index for Postoperative Motor Function and Functional Recovery. Neurol Med Chir (Tokyo) 2004; 44:170-80; discussion 181-2. [PMID: 15185755 DOI: 10.2176/nmc.44.170] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The corticospinal motor evoked potential was investigated as a monitoring index of motor function to perform maximal resection of brain tumors located around the motor cortex in 37 patients with glioma. Tumor resections were performed under general anesthesia with muscle relaxant and completely controlled ventilation. No special arrangements for anesthesia were required. Direct cortical stimulation revealed that if one electrode was placed on the posterior half of the precentral gyrus, the D-wave could be recorded even when using an electrode separation of 10 mm, and the amplitude was larger with anodic rather than cathodic stimulation. Monitoring of the D-wave enabled the function of the corticospinal tract to be evaluated selectively. Postoperative persistent motor disturbance remained in six patients who had a decrease of over 30% in amplitude of the D-wave during tumor resection. A decrease of less than 30% may indicate postoperative preservation of motor function, including transient motor disturbance with subsequent complete recovery. Intraoperative monitoring of the D-wave is suitable for open cranial surgery with general anesthesia, can detect the primary motor cortex, and allow maximal resection of brain tumors located around the motor cortex.
Collapse
Affiliation(s)
- Takamitsu Yamamoto
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
10
|
Suzuki K, Kodama N, Sasaki T, Matsumoto M, Konno Y, Sakuma J, Oinuma M, Murakawa M. Intraoperative monitoring of blood flow insufficiency in the anterior choroidal artery during aneurysm surgery. J Neurosurg 2003; 98:507-14. [PMID: 12650421 DOI: 10.3171/jns.2003.98.3.0507] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The lack of a specified intraoperative method for monitoring anterior choroidal artery (AChA) blood flow insufficiency (BFI) led the authors to devise a method for checking the BFI in this artery during aneurysm surgery. To this end, the authors relied on the intraoperative motor evoked potentials (MEPs) elicited by electrical stimulation of the hand motor cortex. METHODS The study population consisted of 108 patients with internal carotid artery (ICA) aneurysms who underwent surgery via a standard frontotemporal craniotomy. After the dura mater had been opened, a grid electrode strip with 16 small electrodes was inserted subdurally into the hand motor cortex from the edge of the craniotomy. To check BFI in the AChA, the hand motor cortex was stimulated at an intensity level between 10 and 18 mA. The MEPs were successfully recorded from the contralateral thenar muscles in all 108 patients. There was no postoperativemotor paresis in 88 patients in whom the MEPs remained unchanged during the performance of various surgical maneuvers. Among the other 20 patients, 19 manifested transient MEP changes, but 15 of those patients experienced no postoperative motor paresis. In four patients who exhibited transient MEP changes, either after aneurysm clipping or during temporary occlusion of the ICA and/or AChA, hemiparesis occurred postoperatively but disappeared within 24 hours. In one patient with an ICA-posterior communicating artery aneurysm, the MEP disappeared and did not reappear by the time of dural closure. Severe hemiplegia developed in this patient and a computerized tomography scan obtained postoperatively revealed a new low-density area in the internal capsule. CONCLUSIONS The findings of this study suggest that the monitoring method that is introduced here is safe and reliable for detecting intraoperative BFI in the AChA.
Collapse
Affiliation(s)
- Kyouichi Suzuki
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|