1
|
Myftiu A, Mäder L, Aroyo I, Kollmar R, on behalf of the IGNITE Study Group & DIVI Section Studies & Standards. Results of an Online Survey on Intensive Care Management of Patients with Aneurysmal Subarachnoid Hemorrhage in German-Speaking Countries. J Clin Med 2024; 13:7614. [PMID: 39768538 PMCID: PMC11676747 DOI: 10.3390/jcm13247614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/31/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The clinical course of patients with aneurysmal SAH (aSAH) is often dynamic and highly unpredictable. Since its management varies between hospitals despite guidelines, this survey aimed to assess the current state of intensive care treatment for aSAH in the German-speaking region and provide insights that could aid standardization of care for aSAH patients in the intensive care setting. Methods: From February 2023 to April 2023, medical professionals of the German Interdisciplinary Association for Intensive Care and Emergency Medicine (DIVI), the Initiative of German Neuro-Intensive Trial Engagement (IGNITE) network and manually recorded clinics with intensive care units were invited to participate in a standardized anonymous online questionnaire including 44 questions. The questionnaire was validated in multiple steps by experts of different specialties including those from the DIVI. A descriptive data analysis was carried out. Results: A total of 135 out of 220 participants answered the survey completely. The results showed that most patients were treated in anesthesia-led intensive care units at university and maximum care hospitals. Aneurysms were usually treated within 24 h after bleeding. If vasospasm was detected, induced hypertension was usually implemented as the first treatment option. In refractory vasospasm, interventional spasmolysis with calcium antagonists was usually carried out (81%), despite unclear evidence. There were significant discrepancies in blood pressure target values, particularly after aneurysm repair or after delayed cerebral ischemia (DCI), as well as in hemoglobin limit values for erythrocyte substitution. Despite the limited level of evidence, most institutions used temperature management (68%), including hypothermia (56%), for severe cases. Conclusions: While we anticipated variations between individual intensive care facilities, our survey identified numerous similarities in the treatment of aSAH patients. Methods such as interventional spasmolysis and temperature management were used frequently despite limited evidence. Our results can serve as a fundamental framework for formulating recommendations for intensive care treatment and planning of multicenter studies.
Collapse
Affiliation(s)
- Anisa Myftiu
- Department of Neurology and Neurintensive Care Medicine, Academic Hospital Darmstadt, 64283 Darmstadt, Germany; (A.M.); (L.M.); (I.A.)
- Department of Neurology, University Hospital Erlangen, Neurologische Universitätsklinik Erlangen, Friedrich-Alexander Universität Erlangen Nuremberg, 91054 Erlangen, Germany
| | - Lisa Mäder
- Department of Neurology and Neurintensive Care Medicine, Academic Hospital Darmstadt, 64283 Darmstadt, Germany; (A.M.); (L.M.); (I.A.)
| | - Ilia Aroyo
- Department of Neurology and Neurintensive Care Medicine, Academic Hospital Darmstadt, 64283 Darmstadt, Germany; (A.M.); (L.M.); (I.A.)
| | - Rainer Kollmar
- Department of Neurology and Neurintensive Care Medicine, Academic Hospital Darmstadt, 64283 Darmstadt, Germany; (A.M.); (L.M.); (I.A.)
- Department of Neurology, University Hospital Erlangen, Neurologische Universitätsklinik Erlangen, Friedrich-Alexander Universität Erlangen Nuremberg, 91054 Erlangen, Germany
| | | |
Collapse
|
2
|
Dai H, Zhou Y, Lu Y, Zhang X, Zhuang Z, Gao Y, Liu G, Chen C, Ma J, Li W, Hang C. Decreased Expression of CIRP Induced by Therapeutic Hypothermia Correlates with Reduced Early Brain Injury after Subarachnoid Hemorrhage. J Clin Med 2022; 11:jcm11123411. [PMID: 35743480 PMCID: PMC9225369 DOI: 10.3390/jcm11123411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
Early brain injury is considered to be a primary reason for the poor prognosis of patients suffering from subarachnoid hemorrhage (SAH). Due to its pro-inflammatory activity, cold-inducible RNA-binding protein (CIRP) has been implicated in the ischemic brain insult, but its possible interplay with hypothermia in SAH treatment remains to be evaluated. One-hundred and thirty-eight Sprague-Dawley rats (300–350 g males) were randomly allocated into the following groups: sham-operated (Sham); SAH; and SAH + hypothermia (SAH + H), each comprised of 46 animals. After treatments, the brain tissues of the three groups were randomly collected after 12 h, 1 d, 3 d, and 7 d, and the expression levels of the CIRP and mitochondrial apoptosis pathway-related proteins Bax, Bcl-2, caspase-9, caspase-3, and cytochrome c measured using Western blotting and real-time PCR. Brain damage was assessed by TUNEL and Nissl staining, the electron microscopy of brain tissue slices as well as functional rotarod tests. Expression of CIRP, Bax, caspase-9, caspase-3, and cytochrome c as well as reduced motor function incidence were higher in the SAH group, particularly during the first 3 d after SAH induction. Hypothermia blunted these SAH responses and apoptosis, thereby indicating reduced inflammatory signaling and less brain cell injury in the early period after SAH. Hypothermia treatment was found to effectively protect the brain tissue from early SAH injury in a rat model and its further evaluation as a therapeutic modality in SAH patients requires further study.
Collapse
Affiliation(s)
- Haibin Dai
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Xiangsheng Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China;
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Yongyue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Guangjie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Chunlei Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Jin Ma
- Department of Medical Equipment, School of Aerospace Medicine, Air Force Medical University, Xi’an 710032, China
- Correspondence: (J.M.); (C.H.); Tel.: +86-29-84774825 (J.M.); +86-25-83106666 (C.H.)
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Chunhua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
- Correspondence: (J.M.); (C.H.); Tel.: +86-29-84774825 (J.M.); +86-25-83106666 (C.H.)
| |
Collapse
|
3
|
Oh JS, Park J, Kim K, Jeong HH, Oh YM, Choi S, Choi KH. HSP70-mediated neuroprotection by combined treatment of valproic acid with hypothermia in a rat asphyxial cardiac arrest model. PLoS One 2021; 16:e0253328. [PMID: 34138955 PMCID: PMC8211226 DOI: 10.1371/journal.pone.0253328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
It has been reported that valproic acid (VPA) combined with therapeutic hypothermia can improve survival and neurologic outcomes in a rat asphyxial cardiac arrest model. However, neuroprotective mechanisms of such combined treatment of valproic acid with hypothermia remains unclear. We hypothesized that epigenetic regulation of HSP70 by histone acetylation could increase HSP70-mediated neuroprotection suppressed under hypothermia. Male Sprague-Dawley rats that achieved return of spontaneous circulation (ROSC) from asphyxial cardiac arrest were randomized to four groups: normothermia (37°C ± 1°C), hypothermia (33°C ± 1°C), normothermia + VPA (300 mg/kg IV initiated 5 minutes post-ROSC and infused over 20 min), and hypothermia + VPA. Three hours after ROSC, acetyl-histone H3 was highly expressed in VPA-administered groups (normothermia + VPA, hypothermia + VPA). Four hours after ROSC, HSP70 mRNA expression levels were significantly higher in normothermic groups (normothermia, normothermia + VPA) than in hypothermic groups (hypothermia, hypothermia + VPA). The hypothermia + VPA group showed significantly higher HSP70 mRNA expression than the hypothermia group. Similarly, at five hours after ROSC, HSP70 protein levels were significantly higher in normothermic groups than in hypothermic groups. HSP70 levels were significantly higher in the hypothermia + VPA group than in the hypothermia group. Only the hypothermia + VPA group showed significantly attenuated cleaved caspase-9 levels than the normothermia group. Hypothermia can attenuate the expression of HSP70 at transcriptional level. However, VPA administration can induce hyperacetylation of histone H3, leading to epigenetic transcriptional activation of HSP70 even in a hypothermic status. Combining VPA treatment with hypothermia may compensate for reduced activation of HSP70-mediated anti-apoptotic pathway.
Collapse
Affiliation(s)
- Joo Suk Oh
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Jungtaek Park
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Kiwook Kim
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Hyun Ho Jeong
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Young Min Oh
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Semin Choi
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Kyoung Ho Choi
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| |
Collapse
|
4
|
Kumagai K, Tomiyama A, Takeuchi S, Otani N, Fujita M, Fujii K, Wada K, Mori K. New endovascular perforation subarachnoid hemorrhage model for investigating the mechanisms of delayed brain injury. J Neurosurg 2021; 134:84-94. [PMID: 31756704 DOI: 10.3171/2019.9.jns191934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/11/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Delayed brain injury (DBI) is considered one of the most important causes of mortality and morbidity after subarachnoid hemorrhage (SAH). However, no suitable experimental rat endovascular perforation (EVP) SAH model was available for investigating DBI. The authors added early cerebral hypoperfusion to a mild EVP SAH model by unilateral common carotid artery occlusion (UCCAO) 24 hours after induction of SAH to mimic the clinical course of early cerebral hypoperfusion after SAH. METHODS A total of 109 adult male Sprague-Dawley rats were randomly divided into 2 groups: no SAH and SAH. Next, no-SAH rats were randomly divided on day 1 into 2 groups: sham and UCCAO. SAH rats with a neurological score of 15 or greater were randomly divided into 2 groups: SAH - UCCAO and SAH + UCCAO group. RESULTS The mild SAH model had a lower mortality rate of 5.4% within the first 24 hours. No rat died in the SAH + UCCAO group until day 7. DBI as well as early brain injury (EBI), reactive astrogliosis, and cerebral vasospasm significantly worsened in the SAH + UCCAO group. CONCLUSIONS The present SAH + UCCAO model can simulate EBI with aggravation of reactive astrogliosis, cerebral vasospasm, and DBI but without high mortality.
Collapse
Affiliation(s)
| | | | | | | | - Masanori Fujita
- 2Division of Environmental Medicine, National Defense Medical College, Tokorozawa, Saitama; and
| | | | | | - Kentaro Mori
- 1Department of Neurosurgery and
- 3Department of Neurosurgery, Tokyo General Hospital, Tokyo, Japan
| |
Collapse
|
5
|
Kurisu K, Kim JY, You J, Yenari MA. Therapeutic Hypothermia and Neuroprotection in Acute Neurological Disease. Curr Med Chem 2019; 26:5430-5455. [PMID: 31057103 PMCID: PMC6913523 DOI: 10.2174/0929867326666190506124836] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/24/2018] [Accepted: 04/11/2019] [Indexed: 01/07/2023]
Abstract
Therapeutic hypothermia has consistently been shown to be a robust neuroprotectant in many labs studying different models of neurological disease. Although this therapy has shown great promise, there are still challenges at the clinical level that limit the ability to apply this routinely to each pathological condition. In order to overcome issues involved in hypothermia therapy, understanding of this attractive therapy is needed. We review methodological concerns surrounding therapeutic hypothermia, introduce the current status of therapeutic cooling in various acute brain insults, and review the literature surrounding the many underlying molecular mechanisms of hypothermic neuroprotection. Because recent work has shown that body temperature can be safely lowered using pharmacological approaches, this method may be an especially attractive option for many clinical applications. Since hypothermia can affect multiple aspects of brain pathophysiology, therapeutic hypothermia could also be considered a neuroprotection model in basic research, which would be used to identify potential therapeutic targets. We discuss how research in this area carries the potential to improve outcome from various acute neurological disorders.
Collapse
Affiliation(s)
- Kota Kurisu
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | - Jong Youl Kim
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Departments of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jesung You
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| |
Collapse
|
6
|
Chowdhury T, Dash HH, Cappellani RB, Daya J. Early brain injury and subarachnoid hemorrhage: Where are we at present? Saudi J Anaesth 2013; 7:187-90. [PMID: 23956721 PMCID: PMC3737697 DOI: 10.4103/1658-354x.114047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The current era has adopted many new innovations in nearly every aspect of management of subarachnoid hemorrhage (SAH); however, the neurological outcome has still not changed significantly. These major therapeutic advances mainly addressed the two most important sequels of the SAH-vasospasm and re-bleed. Thus, there is a possibility of some different pathophysiological mechanism that would be responsible for causing poor outcome in these patients. In this article, we have tried to compile the current role of this different yet potentially treatable pathophysiological mechanism in post-SAH patients. The main pathophysiological mechanism for the development of early brain injury (EBI) is the apoptotic pathways. The macro-mechanism includes increased intracranial pressure, disruption of the blood-brain barrier, and finally global ischemia. Most of the treatment strategies are still in the experimental phase. Although the role of EBI following SAH is now well established, the treatment modalities for human patients are yet to be testified.
Collapse
Affiliation(s)
- Tumul Chowdhury
- Department of Anesthesiology and Perioperative Medicine, Health Sciences Center, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
7
|
Abstract
Brain injury after subarachnoid hemorrhage (SAH) is a biphasic event with an acute ischemic insult at the time of the initial bleed and secondary events such as cerebral vasospasm 3 to 7 days later. Although much has been learned about the delayed effects of SAH, less is known about the mechanisms of acute SAH-induced injury. Distribution of blood in the subarachnoid space, elevation of intracranial pressure, reduced cerebral perfusion and cerebral blood flow (CBF) initiates the acute injury cascade. Together they lead to direct microvascular injury, plugging of vessels and release of vasoactive substances by platelet aggregates, alterations in the nitric oxide (NO)/nitric oxide synthase (NOS) pathways and lipid peroxidation. This review will summarize some of these mechanisms that contribute to acute cerebral injury after SAH.
Collapse
Affiliation(s)
- Fatima A Sehba
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | |
Collapse
|
8
|
Thomé C, Schubert GA, Schilling L. Hypothermia as a neuroprotective strategy in subarachnoid hemorrhage: a pathophysiological review focusing on the acute phase. Neurol Res 2013; 27:229-37. [PMID: 15845206 DOI: 10.1179/016164105x25252] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) remains a very prevalent challenge in neurosurgery associated with a high morbidity and mortality due to the lack of specific treatment modalities. The prognosis of SAH patients depends primarily on three factors: (i) the severity of the initial bleed, (ii) the endovascular or neurosurgical procedure to occlude the aneurysm and (iii) the occurrence of late sequelae, namely delayed ischemic neurological deficits due to cerebral vasospasm. While neurosurgeons and interventionalists have put significant efforts in minimizing periprocedural complications and a multitude of investigators have been devoted to the research on chronic vasospasm, the acute phase of SAH has not been studied in comparable detail. In various experimental studies during the past decade, hypothermia has been shown to reduce neuronal damage after ischemia, traumatic brain injury and other cerebrovascular diseases. Clinically, only some of these encouraging results could be reproduced. This review analyses results of studies on the effects of hypothermia on SAH with special respect to the acute phase in an experimental setting. Based on the available data, some considerations for the application of mild to moderate hypothermia in patients with subarachnoid hemorrhage are given.
Collapse
Affiliation(s)
- Claudius Thomé
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1, 68167 Mannheim, Germany.
| | | | | |
Collapse
|
9
|
Palade C, Ciurea AV, Nica DA, Savu R, Moisa HA. Interference of apoptosis in the pathophysiology of subarachnoid hemorrhage. Asian J Neurosurg 2013; 8:106-11. [PMID: 24049554 PMCID: PMC3775181 DOI: 10.4103/1793-5482.116389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Programmed cell death is crucial for the correct development of the organism and the clearance of harmful cells like tumor cells or autoreactive immune cells. Apoptosis is initiated by the activation of cell death receptors and in most cases it is associated with the activation of the cysteine proteases, which lead to apoptotic cell death. Cells shrink, chromatin clumps and forms a large, sharply demarcated, crescent-shaped or round mass; the nucleus condenses, apoptotic bodies are formed and eventually dead cells are engulfed by a neighboring cell or cleared by phagocytosis. The authors have summarized the most important data concerning apoptosis in subarachnoid hemorrhage that have been issued in the medical literature in the last 20 years.
Collapse
Affiliation(s)
- C. Palade
- Department of Neurosurgical, Carol Davila University School of Medicine, The National Center for Excellency in Neurosurgery, Bagdasar-Arseni Emergency Hospital, Bucharest, Romania
| | - Alexandru V. Ciurea
- Department of Neurosurgical, Carol Davila University School of Medicine, The National Center for Excellency in Neurosurgery, Bagdasar-Arseni Emergency Hospital, Bucharest, Romania
| | - D. A. Nica
- Department of Neurosurgical, Sf. Pantelimon Emergency Hospital, Bucharest, Romania
| | - R. Savu
- Department of Neurosurgical, Euromedica Hospital, Baia Mare, Romania
| | - Horatiu Alexandru Moisa
- Department of Neurosurgical, Carol Davila University School of Medicine, The National Center for Excellency in Neurosurgery, Bagdasar-Arseni Emergency Hospital, Bucharest, Romania
| |
Collapse
|
10
|
|
11
|
Hypothermia to Identify Therapeutic Targets for Stroke Treatment. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Hasegawa Y, Suzuki H, Sozen T, Altay O, Zhang JH. Apoptotic mechanisms for neuronal cells in early brain injury after subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 110:43-8. [PMID: 21116913 DOI: 10.1007/978-3-7091-0353-1_8] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTS The major causes of death and disability in subarachnoid hemorrhage (SAH) may be early brain injury (EBI) and cerebral vasospasm. Although cerebral vasospasm has been studied and treated by a lot of drugs, the outcome is not improved even if vasospasm is reversed. Based on these data, EBI is considered a primary target for future research, and apoptosis may be involved in EBI after experimental SAH. METHODS We reviewed the published literature about the relationship between SAH induced EBI and apoptosis in PubMed. RESULT Most available information can be obtained from the endovascular filament perforation animal model. After onset of SAH, intracranial pressure is increased and then cerebral blood flow is reduced. Many factors are involved in the mechanism of apoptotic cell death in EBI after SAH. In the neuronal cells, both intrinsic and extrinsic pathways of apoptosis can occur. Some antiapoptotic drugs were studied and demonstrated a protective effect against EBI after SAH. However, apoptosis in EBI after SAH has been little studied and further studies will provide us more beneficial findings. CONCLUSIONS The study of apoptosis in EBI after experimental SAH may give us new therapies for SAH.
Collapse
Affiliation(s)
- Yu Hasegawa
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | |
Collapse
|
13
|
MacLellan CL, Clark DL, Silasi G, Colbourne F. Use of prolonged hypothermia to treat ischemic and hemorrhagic stroke. J Neurotrauma 2009; 26:313-23. [PMID: 19216634 DOI: 10.1089/neu.2008.0580] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Therapeutic (induced) hypothermia (TH) has been extensively studied as a means to reduce brain injury following global and focal cerebral ischemia, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). Here, we briefly review the clinical and experimental evidence supporting the use of TH in each condition. We emphasize the importance of systematically evaluating treatment parameters, especially the duration of cooling, in each condition. We contend that TH provides considerable protection after global and focal cerebral ischemia, especially when cooling is prolonged (e.g., >24 h). However, there is presently insufficient evidence to support the clinical use of TH for ICH and SAH. In any case, further animal work is needed to develop optimized protocols for treating cardiac arrest (global ischemia), and to maximize the likelihood of successful clinical translation in focal cerebral ischemia.
Collapse
Affiliation(s)
- Crystal L MacLellan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | | | | | | |
Collapse
|
14
|
Seule MA, Muroi C, Mink S, Yonekawa Y, Keller E. THERAPEUTIC HYPOTHERMIA IN PATIENTS WITH ANEURYSMAL SUBARACHNOID HEMORRHAGE, REFRACTORY INTRACRANIAL HYPERTENSION, OR CEREBRAL VASOSPASM. Neurosurgery 2009; 64:86-92; discussion 92-3. [DOI: 10.1227/01.neu.0000336312.32773.a0] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
OBJECTIVE
To evaluate the feasibility and safety of mild hypothermia treatment in patients with aneurysmal subarachnoid hemorrhage (SAH) who are experiencing intracranial hypertension and/or cerebral vasospasm (CVS).
METHODS
Of 441 consecutive patients with SAH, 100 developed elevated intracranial pressure and/or symptomatic CVS refractory to conventional treatment. Hypothermia (33–34°C) was induced and maintained until intracranial pressure normalized, CVS resolved, or severe side effects occurred.
RESULTS
Thirteen patients were treated with hypothermia alone, and 87 were treated with hypothermia in combination with barbiturate coma. Sixty-six patients experienced poor-grade SAH (Hunt and Hess Grades IV and V) and 92 had Fisher Grade 3 and 4 bleedings. The mean duration of hypothermia was 169 ± 104 hours, with a maximum of 16.4 days. The outcome after 1 year was evaluated in 90 of 100 patients. Thirty-two patients (35.6%) survived with good functional outcome (Glasgow Outcome Scale [GOS] score, 4 and 5), 14 (15.5%) were severely disabled (GOS score, 3), 1 (1.1%) was in a vegetative state (GOS score, 2), and 43 (47.8%) died (GOS score, 1). The most frequent side effects were electrolyte disorders (77%), pneumonia (52%), thrombocytopenia (47%), and septic shock syndrome (40%). Of 93 patients with severe side effects, 6 (6.5%) died as a result of respiratory or multi-organ failure.
CONCLUSION
Prolonged systemic hypothermia may be considered as a last-resort option for a carefully selected group of SAH patients with intracranial hypertension or CVS resistant to conventional treatment. However, complications associated with hypothermia require elaborate protocols in general intensive care unit management.
Collapse
Affiliation(s)
- Martin A. Seule
- Neurointensive Care Unit, Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Carl Muroi
- Neurointensive Care Unit, Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Susanne Mink
- Neurointensive Care Unit, Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Yasuhiro Yonekawa
- Neurointensive Care Unit, Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Emanuela Keller
- Neurointensive Care Unit, Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Schubert GA, Poli S, Schilling L, Heiland S, Thomé C. Hypothermia Reduces Cytotoxic Edema and Metabolic Alterations during the Acute Phase of Massive SAH: A Diffusion-Weighted Imaging and Spectroscopy Study in Rats. J Neurotrauma 2008; 25:841-52. [DOI: 10.1089/neu.2007.0443] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Gerrit Alexander Schubert
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sven Poli
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lothar Schilling
- Department of Neurosurgical Research, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sabine Heiland
- Department of Neuroradiological Research, University of Heidelberg, Mannheim, Germany
| | - Claudius Thomé
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
16
|
Yatsushige H, Ostrowski RP, Tsubokawa T, Colohan A, Zhang JH. Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. J Neurosci Res 2007; 85:1436-48. [PMID: 17410600 DOI: 10.1002/jnr.21281] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The c-Jun N-terminal kinase (JNK) is induced by cerebral ischemia and injurious blood components acutely after subarachnoid hemorrhage (SAH). We hypothesized that inhibition of JNK will prevent damage to the neurovascular unit in the early brain injury period after SAH. Ninety-nine male SD rats (300-350 g) were randomly assigned to sham, SAH, and SAH treated with JNK inhibitor groups. SAH was induced by endovascular perforation. The JNK inhibitor SP600125 was administered intraperitoneally at 1 hr before and 6 hr after SAH. At 24 hr after SAH, we observed increased phosphorylation of JNK and c-Jun. Signs of neurovascular damage were observed in the hemorrhagic brains; these included the increases of aquaporin (AQP)-1 expression and brain water content as well as enhanced matrix metalloproteinase (MMP)-9 activity, vascular collagen IV loss, increased VEGF tissue level, and Evans blue extravasation. The appearances of cleaved caspase-3 expression, TUNEL-positive cells, and apoptotic morphology in cerebral tissues were associated with neurological deficit after SAH. JNK inhibition prevented c-Jun phosphorylation and suppressed AQP1, MMP-9, VEGF, and caspase-3 activation, with concomitant diminution of neuronal injury, blood-brain barrier preservation, reduced brain swelling, and improved neurological deficit in rats after SAH. This study demonstrates a multitude of beneficial effects of JNK inhibition, including protection of the neurovascular unit in early brain injury after SAH.
Collapse
Affiliation(s)
- Hiroshi Yatsushige
- Department of Physiology, Loma Linda University, Loma Linda, California 92354, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Hypothermia to mitigate ischemic brain tissue damage has a history of about six decades. Both in clinical and experimental studies of hypothermia, two principal arbitrary patterns of core temperature lowering have been defined: mild (32-35 degrees C) and moderate hypothermia (30-33 degrees C). The neuroprotective effectiveness of postischemic hypothermia is typically viewed with skepticism because of conflicting experimental data. The questions to be resolved include the: (i) postischemic delay; (ii) depth; and (iii) duration of hypothermia. However, more recent experimental data have revealed that a protected reduction in brain temperature can provide sustained behavioral and histological neuroprotection, especially when thermoregulatory responses are suppressed by sedation or anesthesia. Conversely, brief or very mild hypothermia may only delay neuronal damage. Accordingly, protracted hypothermia of 32-34 degrees C may be beneficial following acute cerebral ischemia. But the pathophysiological mechanism of this protection remains yet unclear. Although reduction of metabolism could explain protection by deep hypothermia, it does not explain the robust protection connected with mild hypothermia. A thorough understanding of the experimental data of postischemic hypothermia would lead to a more selective and effective clinical therapy. For this reason, we here summarize recent experimental data on the application of hypothermia in cerebral ischemia, discuss problems to be solved in the experimental field, and try to draw parallels to therapeutic potentials and limitations.
Collapse
Affiliation(s)
- B Schaller
- Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | |
Collapse
|
18
|
Kimura T, Yamada K, Masago A, Shimada S. Subarachnoid hemorrhage induces Na+/myo-inositol cotransporter in the rat brain. Neurol Med Chir (Tokyo) 2003; 43:74-8; discussion 79. [PMID: 12627883 DOI: 10.2176/nmc.43.74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurons and glial cells respond to extracellular hyperosmolarity by accumulating small organic solutes, called "osmolytes." Na+/myo-inositol is one of the major organic osmolytes in the brain and Na+/myo-inositol cotransporter (SMIT) regulates extracellular Na+/myo-inositol content. Subarachnoid hemorrhage (SAH) is an osmotic stress-inducing event of the brain. The expression of SMIT messenger ribonucleic acid (mRNA) and protein was investigated with in situ hybridization and immunohistochemistry in rat brains with SAH induced by endovascular perforation. SMIT riboprobe was raised from a 490-bp rat SMIT complementary deoxyribonucleic acid. Anti-SMIT antibody was raised in rabbits. SMIT mRNA was expressed strongly in the cortex, hippocampus, and hypothalamus of the perforated side at 6 to 24 hours after SAH. Mild upregulation was noted in the contralateral cortex, hippocampus, and hypothalamus. The ventral aspect of the pons showed mild upregulation. Microautoradiography and immunostaining showed SMIT expression mainly in the neurons, but also in some non-neural cells in the hippocampus. The present results indicate that diffuse osmotic stress occurs in the host brain after SAH.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Departments of Neurosurgery, Nagoya City University Medical School, Nagoya, Japan
| | | | | | | |
Collapse
|
19
|
Gules I, Satoh M, Clower BR, Nanda A, Zhang JH. Comparison of three rat models of cerebral vasospasm. Am J Physiol Heart Circ Physiol 2002; 283:H2551-9. [PMID: 12427599 DOI: 10.1152/ajpheart.00616.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A substantial number of rat models have been used to research subarachnoid hemorrhage-induced cerebral vasospasm; however, controversy exists regarding which method of selection is appropriate for this species. This study was designed to provide extensive information about the three most popular subarachnoid hemorrhage rat models: the endovascular puncture model, the single-hemorrhage model, and the double-hemorrhage model. In this study, the basilar artery and posterior communicating artery were chosen for histopathological examination and morphometric analysis. Both the endovascular puncture model and single-hemorrhage model developed significant degrees of vasospasm, which were less severe when compared with the double-hemorrhage model. The endovascular puncture model and double-hemorrhage model both developed more vasospasms in the posterior communicating artery than in the basilar artery. The endovascular puncture model has a markedly high mortality rate and high variability in bleeding volume. Overall, the present study showed that the double-hemorrhage model in rats is a more suitable tool with which to investigate mechanism and therapeutic approaches because it accurately correlates with the time courses for vasospasm in humans.
Collapse
Affiliation(s)
- Ilker Gules
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Induced hypothermia to treat various neurologic emergencies, which had initially been introduced into clinical practice in the 1940s and 1950s, had become obsolete by the 1980s. In the early 1990s, however, it made a comeback in the treatment of severe traumatic brain injury. The success of mild hypothermia led to the broadening of its application to many other neurologic emergencies. We sought to summarize recent developments in mild hypothermia, as well as its therapeutic potential and limitations. Mild hypothermia has been applied with varying degrees of success in many neurologic emergencies, including traumatic brain injury, spinal cord injury, ischemic stroke, subarachnoid hemorrhage, out-of-hospital cardiopulmonary arrest, hepatic encephalopathy, perinatal asphyxia (hypoxic-anoxic encephalopathy), and infantile viral encephalopathy. At present, the efficacy and safety of mild hypothermia remain unproved. Although the preliminary clinical studies have shown that mild hypothermia can be a feasible and relatively safe treatment, multicenter randomized, controlled trials are warranted to define the indications for induced hypothermia in an evidence-based fashion.
Collapse
Affiliation(s)
- Joji Inamasu
- Department of Emergency Medicine, National Tokyo Medical Center, Tokyo, Japan.
| | | |
Collapse
|
21
|
Russwurm S, Stonāns I, Schwerter K, Stonāne E, Meissner W, Reinhart K. Direct influence of mild hypothermia on cytokine expression and release in cultures of human peripheral blood mononuclear cells. J Interferon Cytokine Res 2002; 22:215-21. [PMID: 11911804 DOI: 10.1089/107999002753536185] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hypothermia is associated with elevated frequency of infectious complications. Dysfunction of the immune response caused by hypothermia has been demonstrated in both clinical and animal studies, but it still remains unclear to what extent immunocompetent cells are directly influenced by hypothermia. To estimate the direct influence of mild hypothermia on cytokine expression and release by human peripheral blood mononuclear cells (PBMC), primary cultures of PBMC were incubated at 34 degrees C or 32 degrees C activated by lipopolysaccharide (LPS), phytohemagglutinin (PHA), or tumor necrosis factor-alpha (TNF-alpha). The cytokine gene expression was evaluated by RT-PCR. Release of interleukin-2 (IL-2), IL-6, IL-10, and TNF-alpha was measured by ELISA. Mild hyperthermia significantly impaired IL-2 gene expression in PHA-stimulated cultures of PBMC and decreased IL-2 release in all variants of cultures. Secretion of IL-6, IL-10, and TNF-alpha was decreased in hypothermic cultures of PBMC stimulated with the T lymphocyte activator PHA. Slight suppression of IL-10 secretion was observed also in TNF-alpha-stimulated hypothermic cultures of PBMC. TNF-alpha release increased slightly in mild hypothermia control cultures. Our data demonstrate that the direct influence of hypothermia on cytokine expression and release from PBMC is not uniform. Reduction of IL-2 production might play a crucial role in the impairment of immune response in hypothermia.
Collapse
Affiliation(s)
- Stefan Russwurm
- Clinic of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University of Jena, D-07740 Jena, Germany
| | | | | | | | | | | |
Collapse
|