1
|
Karakaya E, Oleinik N, Edwards J, Tomberlin J, Barker RB, Berber B, Ericsson M, Alsudani H, Ergul A, Beyaz S, Lemasters JJ, Ogretmen B, Albayram O. p17/C18-ceramide-mediated mitophagy is an endogenous neuroprotective response in preclinical and clinical brain injury. PNAS NEXUS 2024; 3:pgae018. [PMID: 38328780 PMCID: PMC10847724 DOI: 10.1093/pnasnexus/pgae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Repeat concussions (or repetitive mild traumatic brain injury [rmTBI]) are complex pathological processes consisting of a primary insult and long-term secondary complications and are also a prerequisite for chronic traumatic encephalopathy (CTE). Recent evidence implies a significant role of autophagy-mediated dysfunctional mitochondrial clearance, mitophagy, in the cascade of secondary deleterious events resulting from TBI. C18-ceramide, a bioactive sphingolipid produced in response to cell stress and damage, and its synthesizing enzyme (CerS1) are precursors to selective stress-mediated mitophagy. A transporter, p17, mediates the trafficking of CerS1, induces C18-ceramide synthesis in the mitochondrial membrane, and acts as an elimination signal in cell survival. Whether p17-mediated mitophagy occurs in the brain and plays a causal role in mitochondrial quality control in secondary disease development after rmTBI are unknown. Using a novel repetitive less-than-mild TBI (rlmTBI) injury paradigm, ablation of mitochondrial p17/C18-ceramide trafficking in p17 knockout (KO) mice results in a loss of C18-ceramide-induced mitophagy, which contributes to susceptibility and recovery from long-term secondary complications associated with rlmTBI. Using a ceramide analog with lipid-selenium conjugate drug, LCL768 restored mitophagy and reduced long-term secondary complications, improving cognitive deficits in rlmTBI-induced p17KO mice. We obtained a significant reduction of p17 expression and a considerable decrease of CerS1 and C18-ceramide levels in cortical mitochondria of CTE human brains compared with age-matched control brains. These data demonstrated that p17/C18-ceramide trafficking is an endogenous neuroprotective mitochondrial stress response following rlmTBI, thus suggesting a novel prospective strategy to interrupt the CTE consequences of concussive TBI.
Collapse
Affiliation(s)
- Eda Karakaya
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jazlyn Edwards
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jensen Tomberlin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Randy Bent Barker
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Burak Berber
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biology, Eskisehir Technical University, Tepebasi/Eskisehir 26555, Turkey
| | - Maria Ericsson
- Electron Microscopy Laboratory, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Habeeb Alsudani
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- College of Science, University of Basrah, Basra 61004, Iraq
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Jackson Department of Veterans Affairs Medical Center, Charleston, SC 29425, USA
| | - Semir Beyaz
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - John J Lemasters
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Onder Albayram
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Jackson Department of Veterans Affairs Medical Center, Charleston, SC 29425, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Yatoo MI, Bahader GA, Beigh SA, Khan AM, James AW, Asmi MR, Shah ZA. Neuroprotection or Sex Bias: A Protective Response to Traumatic Brain Injury in the Females. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:906-916. [PMID: 37592792 DOI: 10.2174/1871527323666230817102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023]
Abstract
Traumatic brain injury (TBI) is a major healthcare problem and a common cause of mortality and morbidity. Clinical and preclinical research suggests sex-related differences in short- and longterm outcomes following TBI; however, males have been the main focus of TBI research. Females show a protective response against TBI. Female animals in preclinical studies and women in clinical trials have shown comparatively better outcomes against mild, moderate, or severe TBI. This reflects a favorable protective nature of the females compared to the males, primarily attributed to various protective mechanisms that provide better prognosis and recovery in the females after TBI. Understanding the sex difference in the TBI pathophysiology and the underlying mechanisms remains an elusive goal. In this review, we provide insights into various mechanisms related to the anatomical, physiological, hormonal, enzymatic, inflammatory, oxidative, genetic, or mitochondrial basis that support the protective nature of females compared to males. Furthermore, we sought to outline the evidence of multiple biomarkers that are highly potential in the investigation of TBI's prognosis, pathophysiology, and treatment and which can serve as objective measures and novel targets for individualized therapeutic interventions in TBI treatment. Implementations from this review are important for the understanding of the effect of sex on TBI outcomes and possible mechanisms behind the favorable response in females. It also emphasizes the critical need to include females as a biological variable and in sufficient numbers in future TBI studies.
Collapse
Affiliation(s)
- Mohammad I Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Shuhama, Alusteng, Srinagar, 190006, Jammu and Kashmir, India
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Shafayat A Beigh
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Shuhama, Alusteng, Srinagar, 190006, Jammu and Kashmir, India
| | - Adil M Khan
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Shuhama, Alusteng, Srinagar, 190006, Jammu and Kashmir, India
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Maleha R Asmi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
3
|
Scott MC, Prabhakara KS, Walters AJ, Olson SD, Cox CS. Determining Sex-Based Differences in Inflammatory Response in an Experimental Traumatic Brain Injury Model. Front Immunol 2022; 13:753570. [PMID: 35222368 PMCID: PMC8864286 DOI: 10.3389/fimmu.2022.753570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Traumatic brain injury is a leading cause of injury-related death and morbidity. Multiple clinical and pre-clinical studies have reported various results regarding sex-based differences in TBI. Our accepted rodent model of traumatic brain injury was used to identify sex-based differences in the pathological features of TBI. Methods Male and female Sprague-Dawley rats were subjected to either controlled-cortical impact (CCI) or sham injury; brain tissue was harvested at different time intervals depending on the specific study. Blood-brain barrier (BBB) analysis was performed using infrared imaging to measure fluorescence dye extravasation. Microglia and splenocytes were characterized with traditional flow cytometry; microglia markers such as CD45, P2Y12, CD32, and CD163 were analyzed with t-distributed stochastic neighbor embedding (t-SNE). Flow cytometry was used to study tissue cytokine levels, and supplemented with ELISAs of TNF-⍺, IL-17, and IL-1β of the ipsilateral hemisphere tissue. Results CCI groups of both sexes recorded a higher BBB permeability at 72 hours post-injury than their respective sham groups. There was significant difference in the integrated density value of BBB permeability between the male CCI group and the female CCI group (female CCI mean = 3.08 x 108 ± 2.83 x 107, male CCI mean = 2.20 x 108 ± 4.05 x 106, p = 0.0210), but otherwise no differences were observed. Traditional flow cytometry did not distinguish any sex-based difference in regards to splenocyte cell population after CCI. t-SNE did not reveal any significant difference between the male and female injury groups in the activation of microglia. Cytokine analysis after injury by flow cytometry and ELISA was limited in differences at the time point of 6 hours post-injury. Conclusion In our rodent model of traumatic brain injury, sex-based differences in pathology and neuroinflammation at specified time points are limited, and only noted in one specific analysis of BBB permeability.
Collapse
Affiliation(s)
- Michael C. Scott
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | | | - Scott D. Olson
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Charles S. Cox
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
4
|
Abstract
The cerebral microcirculation undergoes dynamic changes in parallel with the development of neurons, glia, and their energy metabolism throughout gestation and postnatally. Cerebral blood flow (CBF), oxygen consumption, and glucose consumption are as low as 20% of adult levels in humans born prematurely but eventually exceed adult levels at ages 3 to 11 years, which coincide with the period of continued brain growth, synapse formation, synapse pruning, and myelination. Neurovascular coupling to sensory activation is present but attenuated at birth. By 2 postnatal months, the increase in CBF often is disproportionately smaller than the increase in oxygen consumption, in contrast to the relative hyperemia seen in adults. Vascular smooth muscle myogenic tone increases in parallel with developmental increases in arterial pressure. CBF autoregulatory response to increased arterial pressure is intact at birth but has a more limited range with arterial hypotension. Hypoxia-induced vasodilation in preterm fetal sheep with low oxygen consumption does not sustain cerebral oxygen transport, but the response becomes better developed for sustaining oxygen transport by term. Nitric oxide tonically inhibits vasomotor tone, and glutamate receptor activation can evoke its release in lambs and piglets. In piglets, astrocyte-derived carbon monoxide plays a central role in vasodilation evoked by glutamate, ADP, and seizures, and prostanoids play a large role in endothelial-dependent and hypercapnic vasodilation. Overall, homeostatic mechanisms of CBF regulation in response to arterial pressure, neuronal activity, carbon dioxide, and oxygenation are present at birth but continue to develop postnatally as neurovascular signaling pathways are dynamically altered and integrated. © 2021 American Physiological Society. Compr Physiol 11:1-62, 2021.
Collapse
|
5
|
Curvello V, Pastor P, Hekierski H, Armstead WM. Inhaled Nitric Oxide Protects Cerebral Autoregulation and Reduces Hippocampal Necrosis After Traumatic Brain Injury Through Inhibition of ET-1, ERK MAPK and IL-6 Upregulation in Pigs. Neurocrit Care 2020; 30:467-477. [PMID: 30386963 DOI: 10.1007/s12028-018-0638-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is an important contributor to morbidity and mortality. Cerebral autoregulation is impaired after TBI, contributing to poor outcome. Extracellular signal-related kinase (ERK) mitogen activated protein kinase (MAPK) and ET-1 are upregulated and contribute to impairment of cerebral autoregulation and histopathology after porcine fluid percussion brain injury (FPI). Recent studies show that inhaled nitric oxide (iNO) prevents impairment of cerebral autoregulation and histopathology after FPI in pigs. Unrelated studies indicated an association between ERK and increased IL-6 after FPI. However, the role of IL-6 in central nervous system (CNS) pathology is not well understood. We investigated whether iNO protects autoregulation and limits histopathology after FPI in pigs due to modulation of brain injury associated upregulation of ET-1, ERK MAPK, and IL-6. METHODS Lateral FPI was produced in anesthetized pigs equipped with a closed cranial window and iNO administered at 30 min or 2 h post injury. RESULTS CSF ET-1, ERK MAPK, and IL-6 were increased by FPI, but release was blocked by iNO administered at 30 min or 2 h after TBI. The IL-6 antagonist LMT-28 prevented impairment of cerebral autoregulation and hippocampal CA1 and CA3 neuronal necrosis after FPI. Papaverine induced dilation was unchanged by FPI and LMT-28. Protection lasted for at least 2 h after iNO administration was stopped. CONCLUSIONS These data indicate that iNO protects cerebral autoregulation and reduces hippocampal necrosis after traumatic brain injury through inhibition of ET-1, ERK MAPK, and IL-6 upregulation in pigs.
Collapse
Affiliation(s)
- Victor Curvello
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA, l9l04, USA
| | - Philip Pastor
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA, l9l04, USA
| | - Hugh Hekierski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA, l9l04, USA
| | - William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA, l9l04, USA. .,Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, l9l04, USA.
| |
Collapse
|
6
|
Ma C, Wu X, Shen X, Yang Y, Chen Z, Sun X, Wang Z. Sex differences in traumatic brain injury: a multi-dimensional exploration in genes, hormones, cells, individuals, and society. Chin Neurosurg J 2019; 5:24. [PMID: 32922923 PMCID: PMC7398330 DOI: 10.1186/s41016-019-0173-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/20/2019] [Indexed: 11/10/2022] Open
Abstract
Traumatic brain injury (TBI) is exceptionally prevalent in society and often imposes a massive burden on patients' families and poor prognosis. The evidence reviewed here suggests that gender can influence clinical outcomes of TBI in many aspects, ranges from patients' mortality and short-term outcome to their long-term outcome, as well as the incidence of cognitive impairment. We mainly focused on the causes and mechanisms underlying the differences between male and female after TBI, from both biological and sociological views. As it turns out that multiple factors contribute to the gender differences after TBI, not merely the perspective of gender and sex hormones. Centered on this, we discussed how female steroid hormones exert neuroprotective effects through the anti-inflammatory and antioxidant mechanism, along with the cognitive impairment and the social integration problems it caused. As to the treatment, both instant and long-term treatment of TBI requires adjustments according to gender. A further study with more focus on this topic is therefore suggested to provide better treatment options for these patients.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Xiaotian Shen
- Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yanbo Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006 China
| |
Collapse
|
7
|
Lele AV, Alunpipatthanachai B, Qiu Q, Clark-Bell C, Watanitanon A, Moore A, Chesnut RM, Armstead W, Vavilala MS. Plasma Levels, Temporal Trends and Clinical Associations between Biomarkers of Inflammation and Vascular Homeostasis after Pediatric Traumatic Brain Injury. Dev Neurosci 2019; 41:177-192. [PMID: 31553988 DOI: 10.1159/000502276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023] Open
Abstract
Expression of inflammatory (interleukin-6 [IL-6]) and vascular homeostatic (angiopoietin-2 [AP-2], endothelin-1 [ET-1], endocan-2 [EC-2]) biomarkers in pediatric traumatic brain injury (TBI) was examined in this prospective, observational cohort study of 28 children hospitalized with mild, moderate, and severe TBI by clinical measures (age, sex, Glasgow Coma Scale score [GCS], Injury Severity Score [ISS], and cerebral autoregulation status). Biomarker patterns suggest an inverse relationship between GCS and AP-2, GCS and IL-6, ISS and ET-1, but a direct relationship between GCS and ET-1 and ISS and AP-2. Biomarker patterns suggest an inverse relationship between AP-2 and ET-1, AP-2 and EC-2, but a direct relationship between AP-2 and IL-6, IL-6 and EC-2, and IL-6 and ET-1. Plasma concentrations of inflammatory and vascular homeostatic biomarkers suggest a role for inflammation and disruption of vascular homeostasis during the first 10 days across the severity spectrum of pediatric TBI. Although not statistically significant, without impact on cerebral autoregulation, biomarker patterns suggest a relationship between inflammation and alterations in vascular homeostasis. The large variation in biomarker levels within TBI severity and age groups, and by sex suggests other contributory factors to biomarker expression.
Collapse
Affiliation(s)
- Abhijit V Lele
- Department of Anesthesiology and Pain Medicine, Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA, .,Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA,
| | | | - Qian Qiu
- Department of Anesthesiology and Pain Medicine, Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA
| | - Crystalyn Clark-Bell
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| | - Arraya Watanitanon
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| | - Anne Moore
- Department of Neurological Surgery and Orthopedics, Harborview Medical Center, Seattle, Washington, USA
| | - Randall M Chesnut
- Department of Neurological Surgery and Orthopedics, Harborview Medical Center, Seattle, Washington, USA
| | - William Armstead
- Department of Anethesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Monica S Vavilala
- Department of Anesthesiology and Pain Medicine, Harborview Injury Prevention and Research Center, Harborview Medical Center, Seattle, Washington, USA.,Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Gupte R, Brooks W, Vukas R, Pierce J, Harris J. Sex Differences in Traumatic Brain Injury: What We Know and What We Should Know. J Neurotrauma 2019; 36:3063-3091. [PMID: 30794028 PMCID: PMC6818488 DOI: 10.1089/neu.2018.6171] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is growing recognition of the problem of male bias in neuroscience research, including in the field of traumatic brain injury (TBI) where fewer women than men are recruited to clinical trials and male rodents have predominantly been used as an experimental injury model. Despite TBI being a leading cause of mortality and disability worldwide, sex differences in pathophysiology and recovery are poorly understood, limiting clinical care and successful drug development. Given growing interest in sex as a biological variable affecting injury outcomes and treatment efficacy, there is a clear need to summarize sex differences in TBI. This scoping review presents an overview of current knowledge of sex differences in TBI and a comparison of human and animal studies. We found that overall, human studies report worse outcomes in women than men, whereas animal studies report better outcomes in females than males. However, closer examination shows that multiple factors including injury severity, sample size, and experimental injury model may differentially interact with sex to affect TBI outcomes. Additionally, we explore how sex differences in mitochondrial structure and function might contribute to possible sex differences in TBI outcomes. We propose recommendations for future investigations of sex differences in TBI, which we hope will lead to improved patient management, prognosis, and translation of therapies from bench to bedside.
Collapse
Affiliation(s)
- Raeesa Gupte
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - William Brooks
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas
- Hoglund Brain Center, University of Kansas Medical Center, Kansas City, Kansas
- The University of Kansas Clinical and Translational Sciences Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Rachel Vukas
- School of Medicine, Dykes Library of Health Sciences, University of Kansas Medical Center, Kansas City, Kansas
| | - Janet Pierce
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Janna Harris
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
- Hoglund Brain Center, University of Kansas Medical Center, Kansas City, Kansas
- Address correspondence to: Janna Harris, PhD, Hoglund Brain Imaging Center, MS 1052, 3901 Rainbow Boulevard, Kansas City, KS 66160
| |
Collapse
|
9
|
Armstead WM, Vavilala MS. Improving Understanding and Outcomes of Traumatic Brain Injury Using Bidirectional Translational Research. J Neurotrauma 2019; 37:2372-2380. [PMID: 30834818 DOI: 10.1089/neu.2018.6119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent clinical trials in traumatic brain injury (TBI) have failed to demonstrate therapeutic effects even when there appears to be good evidence for efficacy in one or more appropriate pre-clinical models. While existing animal models mimic the injury, difficulties in translating promising therapeutics are exacerbated by the lack of alignment of discrete measures of the underlying injury pathology between the animal models and human subjects. To address this mismatch, we have incorporated reverse translation of bedside experience to inform pre-clinical studies in a large animal (pig) model of TBI that mirror practical clinical assessments. Cerebral autoregulation is impaired after TBI, contributing to poor outcome. Cerebral perfusion pressure (CPP) is often normalized by use of vasoactive agents to increase mean arterial pressure (MAP) and thereby limit impairment of cerebral autoregulation and neurological deficits. Vasoactive agents clinically used to elevate MAP to increase CPP after TBI, such as phenylephrine (Phe), dopamine (DA), norepinephrine (NE), and epinephrine (EPI), however, have not been compared sufficiently regarding effect on CPP, autoregulation, and survival after TBI, and clinically, current vasoactive agent use is variable. The cerebral effects of these clinically commonly used vasoactive agents are not known. This review will emphasize pediatric work and will describe bidirectional translational studies using a more human-like animal model of TBI to identify better therapeutic strategies to improve outcome post-injury. These studies in addition investigated the mechanism(s) involved in improvement of outcome in the setting of TBI.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care and University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Monica S Vavilala
- Department of Anesthesiology, Pediatrics, and Neurological Surgery, and Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Rubin TG, Lipton ML. Sex Differences in Animal Models of Traumatic Brain Injury. J Exp Neurosci 2019; 13:1179069519844020. [PMID: 31205421 PMCID: PMC6537488 DOI: 10.1177/1179069519844020] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is highly prevalent and there is currently no adequate treatment. Understanding the underlying mechanisms governing TBI and recovery remains an elusive goal. The heterogeneous nature of injury and individual's response to injury have made understanding risk and susceptibility to TBI of great importance. Epidemiologic studies have provided evidence of sex-dependent differences following TBI. However, preclinical models of injury have largely focused on adult male animals. Here, we review 50 studies that have investigated TBI in both sexes using animal models. Results from these studies are highly variable and model dependent, but largely show females to have a protective advantage in behavioral outcomes and pathology following TBI. Further research of both sexes using newer models that better recapitulate mild and repetitive TBI is needed to characterize the nature of sex-dependent injury and recovery, and ultimately identifies targets for enhanced recovery.
Collapse
Affiliation(s)
- Todd G Rubin
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Bronx, NY, USA.,Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael L Lipton
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Bronx, NY, USA.,Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx NY, USA.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
11
|
Arambula SE, Reinl EL, El Demerdash N, McCarthy MM, Robertson CL. Sex differences in pediatric traumatic brain injury. Exp Neurol 2019; 317:168-179. [PMID: 30831070 DOI: 10.1016/j.expneurol.2019.02.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
Abstract
The response of the developing brain to traumatic injury is different from the response of the mature, adult brain. There are critical developmental trajectories in the young brain, whereby injury can lead to long term functional abnormalities. Emerging preclinical and clinical literature supports the presence of significant sex differences in both the response to and the recovery from pediatric traumatic brain injury (TBI). These sex differences are seen at all pediatric ages, including neonates/infants, pre-pubertal children, and adolescents. As importantly, the response to neuroprotective therapies or treatments can differ between male and females subjects. These sex differences can result from several biologic origins, and may manifest differently during the various phases of brain and body development. Recognizing and understanding these potential sex differences is crucial, and should be considered in both preclinical and clinical studies of pediatric TBI.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erin L Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Courtney L Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
12
|
Curvello V, Pastor P, Hekierski H, Armstead WM. Inhaled Nitric Oxide Protects Cerebral Autoregulation and Reduces Hippocampal Necrosis After Traumatic Brain Injury Through Inhibition of ET-1, ERK MAPK and IL-6 Upregulation in Pigs. Neurocrit Care 2018. [PMID: 30386963 DOI: 10.1007/s12028‐018‐0638‐1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is an important contributor to morbidity and mortality. Cerebral autoregulation is impaired after TBI, contributing to poor outcome. Extracellular signal-related kinase (ERK) mitogen activated protein kinase (MAPK) and ET-1 are upregulated and contribute to impairment of cerebral autoregulation and histopathology after porcine fluid percussion brain injury (FPI). Recent studies show that inhaled nitric oxide (iNO) prevents impairment of cerebral autoregulation and histopathology after FPI in pigs. Unrelated studies indicated an association between ERK and increased IL-6 after FPI. However, the role of IL-6 in central nervous system (CNS) pathology is not well understood. We investigated whether iNO protects autoregulation and limits histopathology after FPI in pigs due to modulation of brain injury associated upregulation of ET-1, ERK MAPK, and IL-6. METHODS Lateral FPI was produced in anesthetized pigs equipped with a closed cranial window and iNO administered at 30 min or 2 h post injury. RESULTS CSF ET-1, ERK MAPK, and IL-6 were increased by FPI, but release was blocked by iNO administered at 30 min or 2 h after TBI. The IL-6 antagonist LMT-28 prevented impairment of cerebral autoregulation and hippocampal CA1 and CA3 neuronal necrosis after FPI. Papaverine induced dilation was unchanged by FPI and LMT-28. Protection lasted for at least 2 h after iNO administration was stopped. CONCLUSIONS These data indicate that iNO protects cerebral autoregulation and reduces hippocampal necrosis after traumatic brain injury through inhibition of ET-1, ERK MAPK, and IL-6 upregulation in pigs.
Collapse
Affiliation(s)
- Victor Curvello
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA, l9l04, USA
| | - Philip Pastor
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA, l9l04, USA
| | - Hugh Hekierski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA, l9l04, USA
| | - William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA, l9l04, USA. .,Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, l9l04, USA.
| |
Collapse
|
13
|
Rhee CJ, da Costa CS, Austin T, Brady KM, Czosnyka M, Lee JK. Neonatal cerebrovascular autoregulation. Pediatr Res 2018; 84:602-610. [PMID: 30196311 PMCID: PMC6422675 DOI: 10.1038/s41390-018-0141-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/04/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022]
Abstract
Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes.
Collapse
Affiliation(s)
- Christopher J. Rhee
- Baylor College of Medicine, Texas Children’s Hospital, Department of Pediatrics, Section of Neonatology, Houston, TX, USA
| | | | - Topun Austin
- Neonatal Unit, Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ken M. Brady
- Baylor College of Medicine, Texas Children’s Hospital, Department of Pediatrics, Critical Care Medicine and Anesthesiology, Houston, TX, USA
| | - Marek Czosnyka
- Department of Academic Neurosurgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
14
|
Späni CB, Braun DJ, Van Eldik LJ. Sex-related responses after traumatic brain injury: Considerations for preclinical modeling. Front Neuroendocrinol 2018; 50:52-66. [PMID: 29753798 PMCID: PMC6139061 DOI: 10.1016/j.yfrne.2018.03.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) has historically been viewed as a primarily male problem, since men are more likely to experience a TBI because of more frequent participation in activities that increase risk of head injuries. This male bias is also reflected in preclinical research where mostly male animals have been used in basic and translational science. However, with an aging population in which TBI incidence is increasingly sex-independent due to falls, and increasing female participation in high-risk activities, the attention to potential sex differences in TBI responses and outcomes will become more important. These considerations are especially relevant in designing preclinical animal models of TBI that are more predictive of human responses and outcomes. This review characterizes sex differences following TBI with a special emphasis on the contribution of the female sex hormones, progesterone and estrogen, to these differences. This information is potentially important in developing and customizing TBI treatments.
Collapse
Affiliation(s)
- Claudia B Späni
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY 40536, USA.
| | - David J Braun
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY 40536, USA.
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, B481, BBSRB, 741 S. Limestone Street, Lexington, KY 40536, USA; Department of Neuroscience, College of Medicine, University of Kentucky, UK Medical Center MN 150, Lexington, KY 40536, USA.
| |
Collapse
|
15
|
Abstract
Purpose/Aim: Animal models of traumatic brain injury (TBI) provide powerful tools to study TBI in a controlled, rigorous and cost-efficient manner. The mostly used animals in TBI studies so far are rodents. However, compared with rodents, large animals (e.g. swine, rabbit, sheep, ferret, etc.) show great advantages in modeling TBI due to the similarity of their brains to human brain. The aim of our review was to summarize the development and progress of common large animal TBI models in past 30 years. MATERIALS AND METHODS Mixed published articles and books associated with large animal models of TBI were researched and summarized. RESULTS We majorly sumed up current common large animal models of TBI, including discussion on the available research methodologies in previous studies, several potential therapies in large animal trials of TBI as well as advantages and disadvantages of these models. CONCLUSIONS Large animal models of TBI play crucial role in determining the underlying mechanisms and screening putative therapeutic targets of TBI.
Collapse
Affiliation(s)
- Jun-Xi Dai
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yan-Bin Ma
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Nan-Yang Le
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jun Cao
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yang Wang
- b Department of Emergency , Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
16
|
Autoregulation in paediatric TBI-current evidence and implications for treatment. Childs Nerv Syst 2017; 33:1735-1744. [PMID: 29149389 DOI: 10.1007/s00381-017-3523-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/03/2017] [Indexed: 10/24/2022]
Abstract
BACKGROUND Children who survive acute traumatic brain injury are at risk of death from subsequent brain swelling and secondary injury. Strict physiologic management in the ICU after traumatic brain injury is believed to be key to survival, and cerebral perfusion pressure is a prominent aspect of post brain injury care. However, optimal cerebral perfusion pressure targets for children are not known. Autoregulation monitoring has been used to delineate individualized optimal perfusion pressures for patients with traumatic brain injury. The methods to do so are diverse, confusing, and not universally validated. METHODS In this manuscript, we discuss the history of autoregulation monitoring, outline and categorize the methods used to measure autoregulation, and review the available validation data for methods used to monitor autoregulation. CONCLUSIONS Impaired autoregulation after traumatic brain injury is associated with a poor prognosis. Observational data suggests that optimal neurologic outcome and survival are associated with optimal perfusion pressure defined by autoregulation monitoring. No randomized, controlled, interventional data is available to assess autoregulation monitoring after pediatric traumatic brain injury.
Collapse
|
17
|
Abstract
This article provides a review of cerebral autoregulation, particularly as it relates to the clinician scientist experienced in neuroscience in anesthesia and critical care. Topics covered are biological mechanisms; methods used for assessment of autoregulation; effects of anesthetics; role in control of cerebral hemodynamics in health and disease; and emerging areas, such as role of age and sex in contribution to dysautoregulation. Emphasis is placed on bidirectional translational research wherein the clinical informs the study design of basic science studies, which, in turn, informs the clinical to result in development of improved therapies for treatment of central nervous system conditions.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA l9l04, USA; Department of Pharmacology, University of Pennsylvania, Philadelphia, PA l9l04, USA.
| |
Collapse
|
18
|
Gu Y, Zhang J, Zhao Y, Su Y, Zhang Y. Potassium Aspartate Attenuates Brain Injury Induced by Controlled Cortical Impact in Rats Through Increasing Adenosine Triphosphate (ATP) Levels, Na+/K+-ATPase Activity and Reducing Brain Edema. Med Sci Monit 2016; 22:4894-4901. [PMID: 27959885 PMCID: PMC5175720 DOI: 10.12659/msm.898185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Potassium aspartate (PA), as an electrolyte supplement, is widely used in clinical practice. In our previous study, we found PA had neuroprotective effects against apoptosis after cerebral ischemia/reperfusion in rats. In this study, we examine whether PA has protective effects on traumatic brain injury (TBI). MATERIAL AND METHODS TBI was induced by controlled cortical impact (CCI) in rats. Vehicle treatment (control) or PA treatment was administered intraperitoneally at 30 minutes after CCI. The modified neurological severity score (mNSS) and cortical lesion volume were examined. Brain edema and blood-brain barrier (BBB) integrity were measured, as well as brain ATP contents, lactic acid levels, and Na+/K+-ATPase activities. RESULTS We found that CCI induced cortical injury in rats. Acute PA treatment at the dose of 62.5 mg/kg and 125 mg/kg significantly improved neurological deficits (p<0.05 and p<0.001, respectively) and decreased the cortical lesion volume (p<0.05 and p<0.001, respectively) compared with vehicle-only treatment. PA treatment at the dose of 125 mg/kg attenuated brain edema and ameliorated BBB integrity. In addition, PA treatment significantly reduced the loss of ATP (p<0.01), reduced lactic acid levels (p<0.001), and increased the activity of Na+/K+-ATPase (p<0.01). CONCLUSIONS Our results indicate PA has neuroprotective effects on TBI through increasing ATP levels, Na+/K+-ATPase activity, and reducing brain edema. It provides experimental evidence for the clinical application of PA.
Collapse
Affiliation(s)
- Yi Gu
- Department of Pharmacology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing Key Laboratory of Central Nervous System Injury, China National Clinical Research Center for Neurological Diseases, Beijing, China (mainland)
| | - Jie Zhang
- Department of Pediatrics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Yumei Zhao
- Department of Pharmacology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing Key Laboratory of Central Nervous System Injury, China National Clinical Research Center for Neurological Diseases, Beijing, China (mainland)
| | - Yujin Su
- Department of Pathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing Key Laboratory of Central Nervous System Injury, China National Clinical Research Center for Neurological Diseases, Beijing, China (mainland)
| | - Yazhuo Zhang
- Department of Pharmacology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing Key Laboratory of Central Nervous System Injury, China National Clinical Research Center for Neurological Diseases, Beijing, China (mainland)
| |
Collapse
|
19
|
Pediatric Traumatic Brain Injury: Is It Time to Consider Gender-Based Treatments? Pediatr Crit Care Med 2016; 17:275-6. [PMID: 26945207 PMCID: PMC4780362 DOI: 10.1097/pcc.0000000000000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Bohman LE, Riley J, Milovanova TN, Sanborn MR, Thom SR, Armstead WM. Microparticles Impair Hypotensive Cerebrovasodilation and Cause Hippocampal Neuronal Cell Injury after Traumatic Brain Injury. J Neurotrauma 2015; 33:168-74. [PMID: 26230045 DOI: 10.1089/neu.2015.3885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Endothelin-1 (ET-1), tissue plasminogen activator (tPA), and extracellular signal-regulated kinases-mitogen activated protein kinase (ERK-MAPK) are mediators of impaired cerebral hemodynamics after fluid percussion brain injury (FPI) in piglets. Microparticles (MPs) are released into the circulation from a variety of cells during stress, are pro-thrombotic and pro-inflammatory, and may be lysed with polyethylene glycol telomere B (PEG-TB). We hypothesized that MPs released after traumatic brain injury impair hypotensive cerebrovasodilation and that PEG-TB protects the vascular response via MP lysis, and we investigated the relationship between MPs, tPA, ET-1, and ERK-MAPK in that process. FPI was induced in piglets equipped with a closed cranial window. Animals received PEG-TB or saline (vehicle) 30-minutes post-injury. Serum and cerebrospinal fluid (CSF) were sampled and pial arteries were measured pre- and post-injury. MPs were quantified by flow cytometry. CSF samples were analyzed with enzyme-linked immunosorbent assay. MP levels, vasodilatory responses, and CSF signaling assays were similar in all animals prior to injury and treatment. After injury, MP levels were elevated in the serum of vehicle but not in PEG-TB-treated animals. Pial artery dilation in response to hypotension was impaired after injury but protected in PEG-TB-treated animals. After injury, CSF levels of tPA, ET-1, and ERK-MAPK were all elevated, but not in PEG-TB-treated animals. PEG-TB-treated animals also showed reduction in neuronal injury in CA1 and CA3 hippocampus, compared with control animals. These results show that serum MP levels are elevated after FPI and lead to impaired hypotensive cerebrovasodilation via over-expression of tPA, ET-1, and ERK-MAPK. Treatment with PEG-TB after injury reduces MP levels and protects hypotensive cerebrovasodilation and limits hippocampal neuronal cell injury.
Collapse
Affiliation(s)
- Leif-Erik Bohman
- 1 Department of Neurosurgery, University of Pennsylvania , Philadelphia, Pennsylvania
| | - John Riley
- 2 Department of Anesthesiology and Critical Care, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Tatyana N Milovanova
- 3 Department of Emergency Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,5 Institute for Environmental Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Matthew R Sanborn
- 1 Department of Neurosurgery, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Stephen R Thom
- 3 Department of Emergency Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,5 Institute for Environmental Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - William M Armstead
- 2 Department of Anesthesiology and Critical Care, University of Pennsylvania , Philadelphia, Pennsylvania.,4 Department of Pharmacology, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Pesek M, Kibler K, Easley RB, Mytar J, Rhee C, Andropoulos D, Brady K. The Upper Limit of Cerebral Blood Flow Autoregulation Is Decreased With Elevations in Intracranial Pressure. Neurosurgery 2014; 75:163-70; discussion 169-70. [DOI: 10.1227/neu.0000000000000367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
22
|
Abstract
The majority of injury combinations in multiply injured patients entail the chest, abdomen, and extremities. Numerous pig models focus on the investigation of posttraumatic pathophysiology, organ performance monitoring and on potential treatment options. Depending on the experimental question, previous authors have included isolated insults (controlled or uncontrolled hemorrhage, chest trauma) or a combination of these injuries (hemorrhage with abdominal trauma, chest trauma, traumatic brain injury, and/or long-bone fractures). Combined trauma models in pigs can provide a high level of clinical relevance, when they are properly designed and mimicking the clinical situation. Most of these models focus on the first hours after trauma, to assess the acute sequel of traumatic hemorrhage. However, hemorrhagic shock and the associated mass transfusion are also major causes for organ failure and mortality in the later clinical course. Thus, most models lack information on the pathomechanisms during the late posttraumatic phase. Studying new therapies only during the early phase is also not reflective of the clinical situation. Therefore, a longer observation period is required to study the effects of therapeutic approaches during intensive care treatment when using animal models. These long-term studies of combined trauma models will allow the development of valuable therapeutic approaches relevant for the later posttraumatic course. This review summarizes the existing porcine models and outlines the need for long-term models to provide real effective novel therapeutics for multiply injured patients to improve organ function and clinical outcome.
Collapse
|
23
|
Armstead WM, Bohman LE, Riley J, Yarovoi S, Higazi AAR, Cines DB. tPA-S(481)A prevents impairment of cerebrovascular autoregulation by endogenous tPA after traumatic brain injury by upregulating p38 MAPK and inhibiting ET-1. J Neurotrauma 2013; 30:1898-907. [PMID: 23731391 DOI: 10.1089/neu.2013.2962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with loss of cerebrovascular autoregulation, which leads to cerebral hypoperfusion. Mitogen activated protein kinase (MAPK) isoforms ERK, p38, and JNK and endothelin-1 (ET-1) are mediators of impaired cerebral hemodynamics after TBI. Excessive tissue plasminogen activator (tPA) released after TBI may cause loss of cerebrovascular autoregulation either by over-activating N-methyl-D-aspartate receptors (NMDA-Rs) or by predisposing to intracranial hemorrhage. Our recent work shows that a catalytically inactive tPA variant (tPA-S(481)A) that competes with endogenous wild type (wt) tPA for binding to NMDA-R through its receptor docking site but that cannot activate it, prevents activation of ERK by wt tPA and impairment of autoregulation when administered 30 min after fluid percussion injury (FPI). We investigated the ability of variants that lack proteolytic activity but bind/block activation of NMDA-Rs by wt tPA (tPA-S(481)A), do not bind/block activation of NMDA-Rs but are proteolytic (tPA-A(296-299)), or neither bind/block NMDA-Rs nor are proteolytic (tPA-A(296-299)S(481)A) to prevent impairment of autoregulation after TBI and the role of MAPK and ET-1 in such effects. Results show that tPA-S(481)A given 3 h post-TBI, but not tPA-A(296-299) or tPA-A(296-299)S(481)A prevents impaired autoregulation by upregulating p38 and inhibiting ET-1, suggesting that tPA-S(481)A has a realistic therapeutic window and focuses intervention on NMDA-Rs to improve outcome.
Collapse
Affiliation(s)
- William M Armstead
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
24
|
Armstead WM, Riley J, Vavilala MS. Dopamine prevents impairment of autoregulation after traumatic brain injury in the newborn pig through inhibition of Up-regulation of endothelin-1 and extracellular signal-regulated kinase mitogen-activated protein kinase. Pediatr Crit Care Med 2013; 14:e103-11. [PMID: 23314184 PMCID: PMC3567252 DOI: 10.1097/pcc.0b013e3182712b44] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Traumatic brain injury contributes to morbidity in children and boys are disproportionately represented. Autoregulation is impaired more in male compared with female piglets after traumatic brain injury through sex-dependent up-regulation of the spasmogen endothelin-1 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK), a family of three kinases: ERK, p38, and JNK). Elevation of mean arterial pressure leading to increased cerebral perfusion pressure via phenylephrine improves impairment of autoregulation after traumatic brain injury in female but not male piglets through modulation of endothelin-1 and ERK MAPK up-regulation, blocked in females, but aggravated in males. We hypothesized that pressor choice to elevate cerebral perfusion pressure is important in improving cerebral hemodynamics after traumatic brain injury and that dopamine will prevent impairment of autoregulation in both male and female piglets through blockade of endothelin-1 and ERK MAPK. DESIGN Prospective, randomized animal study. SETTING University laboratory. SUBJECTS Newborn (1-5 days old) pigs. INTERVENTIONS Cerebral perfusion pressure and pial artery diameter were determined before and after lateral fluid percussion brain injury was produced in piglets equipped with a closed cranial window. Dopamine (15 µg/kg/min IV) was administered 30 mins post fluid percussion injury. Cerebrospinal fluid ERK MAPK was determined by enzyme-linked immunosorbent assay. MEASUREMENTS AND MAIN RESULTS Dopamine increased cerebral perfusion pressure equivalently in both sexes and prevented sex-dependent reductions in pial artery diameter after fluid percussion injury. Loss of pial artery dilation during hypotension was greater in male than in female piglets after fluid percussion injury, but dopamine prevented such impairment equivalently in both sexes post injury. endothelin-1 and ERK MAPK release was greater in male compared to female piglets after fluid percussion injury, but dopamine also blocked their up-regulation equivalently in male and female piglets after fluid percussion injury. CONCLUSIONS These data indicate that dopamine is protective of autoregulation after fluid percussion injury in both sexes. These observations advocate for the consideration of development of sex based therapies for treatment of hemodynamic sequalae of pediatric traumatic brain injury.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | |
Collapse
|
25
|
Neuroprotection with phenylephrine in traumatic brain injury. Crit Care Med 2012; 40:2515-7. [DOI: 10.1097/ccm.0b013e318258e9d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|